Как проверить бактерицидную лампу на работоспособность
Перейти к содержимому

Как проверить бактерицидную лампу на работоспособность

Способ проверки работоспособности бактерицидных ламп и устройство для его осуществления

Использование: в медицине, в бактериологическом контроле, в частности для проверки работоспособности бактерицидных ламп. Способ проверки работоспособности бактерицидных ламп по результатам бактериологического контроля заключается в том, что измерения производят на фиксированном расстоянии от бактерицидной лампы, ее ультрафиолетовое излучение длиной волны 253,7 нм и сравнивают полученные данные с ультрафиолетовым излучением в том же диапазоне длин волн двух других ламп, одна из которых работоспособна, а другая неработоспособна. Устройство для проверки работоспособности бактерицидных ламп содержит мостовую резисторную схему, в одно из плеч которой включен фотоприемник, дифференциальный усилитель, включенный в диагональ мостовой резисторной схемы, индикатор, резистор установки нуля, резистор установки конца шкалы, переключатель, приспособление для перемещения фотоприемника. 2 с. п. ф-лы, 2 ил.

Изобретение относится к испытательной технике и может быть использовано в медицине, в бактериологическом контроле, в частности для проверки работоспособности бактерицидных ламп.

Известен способ контроля работоспособности бактерицидных ламп по времени их наработки до среднего срока службы.

Однако такой способ несовершенен и не дает объективной оценки при разбраковке ламп.

Наиболее близким к предлагаемому является способ проверки работоспособности бактерицидных ламп, основанный на бактериологическом контроле пробы воздуха, взятого после облучения бактерицидной лампой заданного количества воздуха за фиксированный промежуток времени.

Для реализации способа используют помещение заданного объема, в котором устанавливают контролируемую бактерицидную лампу, измеритель времени, аппарат Кротова для забора пробы воздуха и чашки Петри для определения роста числа колоний.

Наиболее близким к предлагаемому является устройство для контроля световых потоков от источников излучения, содержащее фотоприемник, включенный в одно из плеч измерительного моста, и дифференциальный усилитель, включенный в диагональ измерительного моста, источник тока и показывающий прибор.

Однако само по себе измерение световых потоков от бактерицидных ламп не дает информации об их работоспособности, поскольку и неработоспособные лампы «светят», т.е. дают световые потоки.

Недостатком известного способа является низкая производительность, исключающая возможность оперативного контроля работоспособности бактерицидных ламп. Бактериологический контроль занимает боле двух суток.

Целью изобретения является повышение производительности и оперативности проверки работоспособности бактерицидных ламп.

Цель достигается тем, что измеряют на фиксированном расстоянии от бактерицидной лампы ее ультрафиолетовое излучение в диапазоне длин с максимумом 253,7 нм и сравнивают его с ультрафиолетовыми излучениями в том же диапазоне длин волн с тем же максимумом двух других ламп, одна из которых по результатам бактериологического контроля признана работоспособной, а другая неработоспособной, при этом работоспособную бактерицидную лампу выбирают из группы ламп с наименьшим ультрафиолетовым излучением, а неработоспособную лампу из группы ламп с наибольшим ультрафиолетовым излучением.

Ультрафиолетовый диапазон выбран с учетом того факта, что максимум бактерицидного действия лучистой энергии близок к длине волны 253,7 нм.

Выбор работоспособной лампы из группы ламп, прошедших бактерицидный контроль, с наименьшим излучением и неработоспособной лампы из группы ламп, не прошедших бактерицидный контроль, с наибольшим излучением производится с целью уменьшения зоны неопределенности контроля.

Лампы, попадающие в зону неопределенности, подлежат дополнительному бактериологическому контролю или по договоренности относятся, например, к неработоспособным.

В устройстве цель достигается тем, что оно дополнительно содержит цепи электрической калибровки нуля и конца шкалы, линейный измеритель с фиксатором расстояния фотоприемника до бактерицидной лампы, при этом фотоприемник выбирают с максимальной чувствительностью на волне, близкой к длине волны 253,7 нм, а шкалу показывающего прибора устанавливают откалиброванной по ультрафиолетовым излучениям бактерицидных ламп, одна из которых по результатам бактерицидного контроля признана неработоспособной, а другая работоспособной.

На фиг.1 приведена принципиальная электрическая схема предлагаемого устройства; на фиг.2 предлагаемый прибор.

Фотодатчик D включен в одно из плеч измерительного моста R1. R2, R3, R4; дифференциальный усилитель, состоящий из элементов VT1, VT2, R6, R7, R8, включен в диагональ измерительного моста; показывающий прибор мА соединен с входом дифференциального усилителя; последовательно с прибором мА включен резистор R9 для калибровки конца шкалы (КШ); переключатель на два положения КН1: положение «Р» работа, положение «КШ» калибровка конца шкалы; резистор R2 служит для установки электрического нуля прибора.

На фиг.2 изображены: измеритель 2 расстояния от ультрафиолетовой лампы 1 до фотодатчика 4, который закреплен на подвижной относительно измерителя 2 расстояния рамке 3 с фиксатором, выполненным в виде стопорного винта. Фотодатчик 4 выполнен выносным и соединен с вторичным прибором 5 экранированным кабелем. Шкала прибора 5 имеет отметку электрического нуля, отметку показаний А, до которой бактерицидные лампы признаются неработоспособными, отметку B, начиная с которой бактерицидные лампы считаются годными, и отметку «КШ» конец шкалы.

Способ осуществляют с помощью предлагаемого устройства следующим образом.

Тумблером Q 1, служащим для подключения источника питания В1 к прибору, включают прибор, резистором R2 устанавливают стрелку показывающего прибора на 0, переключатель КН1 устанавливают в положение калибровки конца шкалы «КШ», резистором R9 устанавливают стрелку прибора на отметку «КШ» (конец шкалы). После электрической калибровки прибора переводят переключатель КН1 в положение «Р» (работа).

Включают ультрафиолетовую лампу 1 (фиг.2), признанную по результатам бактериологического контроля работоспособной. Устанавливают линейный измеритель 2 (фиг.2) и перемещают рамку 3 с фотодатчиком 4 по линейке измерителя на такое расстояние от бактерицидной лампы 1, при котором показание стрелки прибора будет находиться в пределах от 1/2 до 2/3 шкалы прибора.

Фиксируют рамку с фотодатчиком с помощью стопорного винта, а на шкале прибора делают отметку В, начиная с которой все бактерицидные лампы признаются работоспособными. Затем заменяют бактерицидную лампу на лампу, которая по результатам бактериологического контроля признана неработоспособной, и включают ее. Стрелка показывающего прибора измерит свое показание в сторону уменьшения ультрафиолетового потока. Делают отметку A на шкале прибора. Все лампы, показания которых не превышают отметки A, являются неработоспособными.

Показания прибора, находящиеся в промежутке между двумя отметками от A до B, не определены.

С целью уменьшения промежутка неопределенности по результатам бактериологического контроля выбирают такую работоспособную лампу, при которой ультрафиолетовый поток с длиной волны 253,7 нм минимальный, и такую неработоспособную лампу, для которой ультрафиолетовый поток максимальный.

После проведения электрической настройки нуля и конца шкалы прибора, определения фиксированного расстояния от фотодатчика до бактерицидной лампы и калибровки шкалы по ультрафиолетовому излучению двух ламп, одна из которых признана работоспособной, а другая неработоспособной, прибор готов к работе.

Фотодатчик прибора устанавливают на определенное фиксированное расстояние от проверяемой бактерицидной лампы, измеряют ее ультрафиолетовое излучение в диапазоне волн с максимумом, близким к длине волны 253,7 нм, и по положению стрелки показывающего прибора определяют работоспособность лампы. Если показание прибора не превышает отметки A, то бактерицидная лампа неработоспособна, если показания прибора не меньше отметки B, то бактерицидная лампа работоспособна.

Бактерицидные лампы, попадающие в зону неопределенности AB, подлежат дополнительному бактериологическому контролю или по договоренности относятся, например, к неработоспособным.

Положительный эффект от изобретения достигается за счет сокращения времени на разбраковку бактерицидных излучателей.

1. Способ проверки работоспособности бактерицидных ламп по результатам бактериологического контроля пробы воздуха, взятой после облучения проверяемой лампой заданного объема воздуха в течение заданного интервала времени, отличающийся тем, что предварительно из числа проверяемых ламп формируют статистически представительную выборку, осуществляют проверку работоспособности каждой лампы из числа входящих в выборку бактериологического контроля пробы воздуха, взятой после облучения проверяемой лампой заданного объема воздуха в течение заданного интервала времени, после чего выбирают из числа ламп, признанных работоспособными, лампу с наименьшим значением интенсивности излучения на длине волны 253,7 нм Jmin р, а из числа ламп, признанных неработоспособными, выбирают лампу с наибольшим значением интенсивности излучения на той же длине волны Jmax н, измеряют значение интенсивности излучения проверяемой лампы на указанной длине волны Jпр, относят проверяемую лампу к работоспособным при выполнении соотношения Jпр Jмин р, а при выполнении соотношения Jпр Jmax н относят проверяемую лампу к неработоспособым.

2. Устройство для проверки работоспособности бактерицидных ламп, содержащее мостовую резисторную схему, в одно из плеч которой включен фотоприемник, дифференциальный усилитель, включенный в диагональ мостовой резисторной схемы, индикатор, подключенный к выходу дифференциального усилителя, резистор установки нуля, включенный между двумя смежными плечевыми резисторами мостовой резисторной схемы, резистор установки конца шкалы, подключенный через переключатель параллельно плечу мостовой резисторной схемы, содержащему последовательно соединенные переключатель и фотоприемник, приспособление для перемещения фотоприемника и фиксации его на заданном расстоянии относительно проверяемой лампы, при этом в качестве фотоприемника использован фотоприемник с максимумом спектральной чувствительности в области длины волны 253,7 нм, а индикатор снабжен шкалой, разделенной двумя отметками на участки, соответствующие диапазонам значений интенсивностей излучения работоспособных и неработоспособных ламп.

Как в домашних условиях проверить лампу на наличие УФ-лучей?

Можно ли проверить лампу на наличие УФ-лучей без специального приспособления?

Если можно, то как?

Проще всего прочитать характеристики излучения лампы в дейташите и сделать заключение о наличии УФ излучения.

Задача определения в домашних условиях наличия УФ излучения лампы непроста. Но выполнима.

Для этого необходимо использовать УФ фотодиод. Он имеет чувствительность в УФ области выше, чем в видимом диапазоне. Его использовать в качестве детектора ультрафиолетового излучения.

Чтобы отфильтровать видимое излучение от ультрафиолетового, можно использовать отражающую дифрешетку. Получить ее можно, разделив DVD или CD диск. Из фотодиода и дифрешетки сооружаем спектрофотометр. Делаем измерения и можно дать какое-то более-менее правдивое заключение о наличии УФ излучения и его интенсивности.

Можно поискать в магазинах персональный индикатор УФ излучения. Насколько ему можно доверять — не знаю.

Если все это показалось сложным, то лучше занести лампу в лабораторию. Они дадут квалифицированное заключение.

Найдите какую нибудь вещь, одежду, ткань или ещё что, которые под ультрафиолетовым излучением начинают светиться или сильно, заметно меняют свой цвет. У меня была рубашка синего цвета, которая даже от небольшого ультрафиолета становилась глубокого фиолетового цвет, чуть ли не светилась! Я её специально клал на видное место во время экспериментов, чтобы знать о появлении опасного ультрафиолетового излучения. Также, часы с люминофором (кажется, "командирские") служат отличным индикатором ультрафиолета — начинают ярко светиться отметки на циферблате, которые сделаны из специального "светосостава".

Для поиска такого индикатора ультрафиолета, удобно использовать какой источник слабого ультрафиолета. Например, ультрафиолетовый детектор банкнот, или зажигалка с ультрафиолетовым светодиодом. Посветив таким источником на разные пластмассовые вещи, одежду, можно найти нужный предмет. Такой "индикатор" удобен тем, что, например, купив светодиодную лампу, можно проверить её на наличие побочного ультрафиолетового излучения.

Или, придя на дискотеку в рубашке (которая светиться или меняет цвет от ультрафиолета), можно обнаружить места, куда случайно падает ультрафиолет, от специальных ламп подсветки красочных надписей или артистов на сцене.

Как определить ультрафиолетовую лампу

В любом помещении, будь то дом или общественное сооружение, главную роль играет освещение. Это связано с тем, что все больше людей предпочитают с наступлением темного времени суток продолжать активно жить, а не ложиться спать.
Сегодня, посещая различные помещения общественного назначения можно встретить такие осветительные приборы, как ультрафиолетовые лапы.

Такие светильники имеют достаточно обширную область применения (обеззараживание помещений медицинского плана, подсветка черепах и пресмыкающихся, сушка ногтей и т.д.). Причем следует знать, что ультрафиолетовую лампу следует периодически проверять, хотя бы один раз в месяц, на предмет ее правильной работы. Но чтобы знать, как проверить такой аппарат, необходимо понимать устройство и его принцип работы.

Поговорим об устройстве и принципе работы

В связи с тем, что ультрафиолетовая продукция сегодня очень распространена в различных сферах человеческой деятельности (медицина, косметология и покраска ногтей, подсветка цветов и черепах и т.д.), необходимо иметь четкие представления касательно ее устройства.
Современный ультрафиолетовый светильник имеет почти такое же строение и принцип работы, что и люминесцентные лампы. Здесь также имеется стеклянная колба, которая наполнена парами ртути. Свечение ее паров происходит в процессе прохождения через это вещество электромагнитных разрядов.

Строение ультрафиолетовой лампы

В состав такой лампы входят:

  • кварцевая трубка;
  • в ней находится вольфрамовый электрод;
  • токоведущие молибденовые нити;
  • цоколи, оснащенные штырьковыми разъемами. Они могут быть пластиковыми или металлическими;
  • сверху кварцевая трубка имеет нанесенный рефлекторный слой люминофора.

Колба изделия получила название «газоразрядная трубка». Ее изготавливают из специального увиолевого или кварцевого стекла. Оба таких стекла обладают способностью пропускать сквозь себя ультрафиолетовое излучение.

Обратите внимание! Увиолевое стекло считается более современным, так как оно позволяет добиться более низкого количества озона, который обрадуется в процессе работы подобной осветительной продукции. Озон в больших количествах может наносить заметный вред здоровью человека.

Выбирая ультрафиолетовую лампу, обязательно стоит обращать внимание на стекло, из которого она была выполнена. Особенно это нужно делать для тех светильников, которые предназначены для работы в непосредственной близости от человека, растений и животных. Данное правило в первую очередь касается медицинского оборудования, подсветки черепах и комнатных растений, а также сушки ногтей.

Производители путем изменения характеристик стекла добиваются выпуска такой продукции, которая способна создавать излучение в определенном волновом диапазоне. Это особенно актуально для медицинской аппаратуры, в частности бактерицидных светильников.
Зная строение УФ-лампы, можно самостоятельно выявить причины поломки и провести все необходимые ремонтные работы.

Для чего и где применяются УФ-светильники

Ультрафиолетовую лампу можно увидеть сегодня практически везде. Такое ее широкое применение основывается на следующих положительных качествах:

  • создание светового спектра, необходимого для роста и развития растений и животных. Такую лампу часто используют для подсветки черепах и земноводных животных, а также комнатных растений;

Обратите внимание! Если вы планируете организовывать ультрафиолетовую подсветку черепах (или других животных или растений) в домашних условиях, то нужно выбирать только те модели, которые допускается к работе в непосредственной близости от живых организмов.

  • способность убивать болезнетворные и патогенные микроорганизмы путем нарушения их молекул ДНК. Данное свойство ультрафиолетовой продукции активно используется в медицинских целях для обеззараживания ран, помещений, воздуха и воды;

  • в косметической сфере. Многие мастера используют такие лампы для сушки ногтей. Кроме этого они применяются для наращивания ногтей. Помните, что для ногтей, также как и для черепах, можно использовать светильники закрытого типа, которые допускаются к работе рядом с живыми организмами. Такие лампы позволяют проводить манипуляции для ногтей с большей скоростью, стимулируя быстрое подсыпание наносимых на них веществ;
  • продолжительный период службы. Даже лампа, предназначенная для подсветки черепах, прослужит долго, если ее правильно установить;
  • механическая надежность конструкционной организации светильного прибора.

Но кроме этого не стоит забывать и об опасности, которую несут такие изделия при неправильной эксплуатации. Опасность здесь заключается в следующем:

  • в колбе имеются пары ртути. При нарушении целостности стеклянной колбы они выделяются в окружающее пространство. Ртуть способна накапливаться в человеческом организме и вызывать хронические заболевания (при достаточном накоплении);
  • кроме этого осколки колбы также несут опасность, особенно для маленьких детей и животных (черепах). Они могут нанести микропорезы, через которые в организм человека могут проникнуть болезнетворные микроорганизмы.

Также нарушение правил эксплуатации может привести к преждевременному выходу лампы из строя.

Какие имеются проблемы в работе

Как и любая осветительная продукция, ультрафиолетовые осветительные приборы также выходят из строя. Поломка может произойти по самым разнообразным причинам:

  • перегорание вольфрамовой нити;
  • выход из строя определенных элементов устройства лампы;
  • перегорание контактов;
  • выход из строя электродов;
  • повреждение элементов самого светильника.

Кроме этого такая лампа может не работать по причине неисправности электропроводки в помещении, а также выхода из строя розеток или выключателей.
Если проблема кроется в самой ультрафиолетовой лампе, то проверить это можно мультиметром. Если проблемы не в ней, то нужно искать другую причину.
О том, что источник света работает неправильно, свидетельствует следующее:

  • полное отсутствие свечение паров ртути при подключении лампы к источнику питания;
  • мигание во время работы. Причем мигание может проявляться как редко, так и довольно часто;
  • различные световые эффекты, которые не характерны для нормальной работы светильника;
  • наличие нехарактерного запаха во время работы осветительного прибора (например, запаха гари). Он появляется в ситуации, когда имеется перегорание проводов внутри корпуса светильника.

При наличии таких эффектов первое, что нужно проверить – работоспособность источника света.

Как проверить работоспособность

Измерительный прибор – мультиметр

Поскольку устройство и принцип работы такой продукции подобен люминесцентным источникам света, то и алгоритм проверки здесь так же будет аналогичным. Здесь в качестве измерительного прибора тоже следует использовать мультиметр.

Для проверки следует провести следующие манипуляции:

  • разобрать светильник;
  • извлечь из него источник света;
  • подсоединить к нему мультиметр и определить, проходит ли напряжение через лампу.

Если на табло прибора появится значение, то лампа исправно функционирует и причину нужно искать в другом. А вот если напряжение на выходе будет равняться нулю, то причина кроется именно в источнике света.
В такой ситуации причиной может быть обрыв контакта. Если причина в этом, то контакт можно установить на место самостоятельно. А вот если неисправность кроется внутри стеклянной колбы, то тут уже ничего не поделаешь. Придется покупать новую лампу и устанавливать ее на место испорченной.

Заключение

Широкое применение ультрафиолетовых ламп в различных сферах человеческой деятельности делает необходимым знание и понимание их устройства. В некоторых ситуациях эти знания помогут выявить, работает ли источник света как надо и, в случае надобности, провести необходимые ремонтные работы.

В любом помещении, будь то дом или общественное сооружение, главную роль играет освещение. Это связано с тем, что все больше людей предпочитают с наступлением темного времени суток продолжать активно жить, а не ложиться спать.
Сегодня, посещая различные помещения общественного назначения можно встретить такие осветительные приборы, как ультрафиолетовые лапы.

Такие светильники имеют достаточно обширную область применения (обеззараживание помещений медицинского плана, подсветка черепах и пресмыкающихся, сушка ногтей и т.д.). Причем следует знать, что ультрафиолетовую лампу следует периодически проверять, хотя бы один раз в месяц, на предмет ее правильной работы. Но чтобы знать, как проверить такой аппарат, необходимо понимать устройство и его принцип работы.

Поговорим об устройстве и принципе работы

В связи с тем, что ультрафиолетовая продукция сегодня очень распространена в различных сферах человеческой деятельности (медицина, косметология и покраска ногтей, подсветка цветов и черепах и т.д.), необходимо иметь четкие представления касательно ее устройства.
Современный ультрафиолетовый светильник имеет почти такое же строение и принцип работы, что и люминесцентные лампы. Здесь также имеется стеклянная колба, которая наполнена парами ртути. Свечение ее паров происходит в процессе прохождения через это вещество электромагнитных разрядов.

Строение ультрафиолетовой лампы

В состав такой лампы входят:

  • кварцевая трубка;
  • в ней находится вольфрамовый электрод;
  • токоведущие молибденовые нити;
  • цоколи, оснащенные штырьковыми разъемами. Они могут быть пластиковыми или металлическими;
  • сверху кварцевая трубка имеет нанесенный рефлекторный слой люминофора.

Колба изделия получила название «газоразрядная трубка». Ее изготавливают из специального увиолевого или кварцевого стекла. Оба таких стекла обладают способностью пропускать сквозь себя ультрафиолетовое излучение.

Обратите внимание! Увиолевое стекло считается более современным, так как оно позволяет добиться более низкого количества озона, который обрадуется в процессе работы подобной осветительной продукции. Озон в больших количествах может наносить заметный вред здоровью человека.

Выбирая ультрафиолетовую лампу, обязательно стоит обращать внимание на стекло, из которого она была выполнена. Особенно это нужно делать для тех светильников, которые предназначены для работы в непосредственной близости от человека, растений и животных. Данное правило в первую очередь касается медицинского оборудования, подсветки черепах и комнатных растений, а также сушки ногтей.

Производители путем изменения характеристик стекла добиваются выпуска такой продукции, которая способна создавать излучение в определенном волновом диапазоне. Это особенно актуально для медицинской аппаратуры, в частности бактерицидных светильников.
Зная строение УФ-лампы, можно самостоятельно выявить причины поломки и провести все необходимые ремонтные работы.

Для чего и где применяются УФ-светильники

Ультрафиолетовую лампу можно увидеть сегодня практически везде. Такое ее широкое применение основывается на следующих положительных качествах:

  • создание светового спектра, необходимого для роста и развития растений и животных. Такую лампу часто используют для подсветки черепах и земноводных животных, а также комнатных растений;

Обратите внимание! Если вы планируете организовывать ультрафиолетовую подсветку черепах (или других животных или растений) в домашних условиях, то нужно выбирать только те модели, которые допускается к работе в непосредственной близости от живых организмов.

  • способность убивать болезнетворные и патогенные микроорганизмы путем нарушения их молекул ДНК. Данное свойство ультрафиолетовой продукции активно используется в медицинских целях для обеззараживания ран, помещений, воздуха и воды;

  • в косметической сфере. Многие мастера используют такие лампы для сушки ногтей. Кроме этого они применяются для наращивания ногтей. Помните, что для ногтей, также как и для черепах, можно использовать светильники закрытого типа, которые допускаются к работе рядом с живыми организмами. Такие лампы позволяют проводить манипуляции для ногтей с большей скоростью, стимулируя быстрое подсыпание наносимых на них веществ;
  • продолжительный период службы. Даже лампа, предназначенная для подсветки черепах, прослужит долго, если ее правильно установить;
  • механическая надежность конструкционной организации светильного прибора.

Но кроме этого не стоит забывать и об опасности, которую несут такие изделия при неправильной эксплуатации. Опасность здесь заключается в следующем:

  • в колбе имеются пары ртути. При нарушении целостности стеклянной колбы они выделяются в окружающее пространство. Ртуть способна накапливаться в человеческом организме и вызывать хронические заболевания (при достаточном накоплении);
  • кроме этого осколки колбы также несут опасность, особенно для маленьких детей и животных (черепах). Они могут нанести микропорезы, через которые в организм человека могут проникнуть болезнетворные микроорганизмы.

Также нарушение правил эксплуатации может привести к преждевременному выходу лампы из строя.

Какие имеются проблемы в работе

Как и любая осветительная продукция, ультрафиолетовые осветительные приборы также выходят из строя. Поломка может произойти по самым разнообразным причинам:

  • перегорание вольфрамовой нити;
  • выход из строя определенных элементов устройства лампы;
  • перегорание контактов;
  • выход из строя электродов;
  • повреждение элементов самого светильника.

Кроме этого такая лампа может не работать по причине неисправности электропроводки в помещении, а также выхода из строя розеток или выключателей.
Если проблема кроется в самой ультрафиолетовой лампе, то проверить это можно мультиметром. Если проблемы не в ней, то нужно искать другую причину.
О том, что источник света работает неправильно, свидетельствует следующее:

  • полное отсутствие свечение паров ртути при подключении лампы к источнику питания;
  • мигание во время работы. Причем мигание может проявляться как редко, так и довольно часто;
  • различные световые эффекты, которые не характерны для нормальной работы светильника;
  • наличие нехарактерного запаха во время работы осветительного прибора (например, запаха гари). Он появляется в ситуации, когда имеется перегорание проводов внутри корпуса светильника.

При наличии таких эффектов первое, что нужно проверить – работоспособность источника света.

Как проверить работоспособность

Измерительный прибор – мультиметр

Поскольку устройство и принцип работы такой продукции подобен люминесцентным источникам света, то и алгоритм проверки здесь так же будет аналогичным. Здесь в качестве измерительного прибора тоже следует использовать мультиметр.

Для проверки следует провести следующие манипуляции:

  • разобрать светильник;
  • извлечь из него источник света;
  • подсоединить к нему мультиметр и определить, проходит ли напряжение через лампу.

Если на табло прибора появится значение, то лампа исправно функционирует и причину нужно искать в другом. А вот если напряжение на выходе будет равняться нулю, то причина кроется именно в источнике света.
В такой ситуации причиной может быть обрыв контакта. Если причина в этом, то контакт можно установить на место самостоятельно. А вот если неисправность кроется внутри стеклянной колбы, то тут уже ничего не поделаешь. Придется покупать новую лампу и устанавливать ее на место испорченной.

Заключение

Широкое применение ультрафиолетовых ламп в различных сферах человеческой деятельности делает необходимым знание и понимание их устройства. В некоторых ситуациях эти знания помогут выявить, работает ли источник света как надо и, в случае надобности, провести необходимые ремонтные работы.

В естественных условиях УФ-излучение вырабатывается из солнечного света и позволяет получить витамин D, необходимый детям и взрослым. Принимая солнечные ванны, человек увеличивает защиту организма, делая его выносливым к разным инфекциям.

Изначально УФ-лампа создавалась для дезинфекции различных помещений, но позже ей стали пользоваться и в других сферах быта. Из-за этого на рынке появилось много ламп разных конструкции, типов пользования.

Что это такое

Ультрафиолетовая лампа – искусственный источник света, излучающий необычное свечение. Неоново-синий цвет появляется в колбе из-за контакта ртути с электричеством. Спектральный диапазон ультрафиолета находится между видимым и рентгеновскими излучениями.

Применение УФ-ламп

Ниже рассмотрим основные сферы использования ультрафиолетовых ламп.

Изменение физических свойств материалов

При воздействии ультрафиолета многие краски могут становиться твердыми или наоборот мягкими и способны менять цвет.

Например, в стоматологии, мягкая фотополимерная пломба становится крепкой, когда ее подсветят УФ-лучами. В косметологических целях они применяются для наращивания ногтей, которые покрывают особым лаком, твердеющим под излучением.

Криминалистика и уголовное право

Ультрафиолетовыми лучами проверяют подлинность ценных бумаг и купюр. В криминалистике УФ-излучатели используют для нахождения пятен крови. Она не светится и выглядит черной под воздействием лучей.

При дефиците естественного ультрафиолета

Когда не хватает естественного УФ – излучения иммунная система слабеет, а цвет кожи становится бледным. Комнатные растения под обычными источниками света много болеют и медленно растут. Там, где недостаточно света, улучшить их состояние помогут ультрафиолетовые приборы.

Для дезинфекции

Ультрафиолет диапазона С способен уничтожить бактерии, проникая в их структуру. Поэтому излучатели типа В и С применяют для очищения воздуха, воды, а также при инфекционных заболеваний.

Устройство и принцип работы

Прибор создают в виде колбы, ее заполняют газом вместе со ртутью. На противоположных концах колбы расположены электроды, через которые поступает напряжение, создается заряд и при взаимодействии со ртутью исходит ультрафиолет. Его диапазон зависит от материала, из которого была сделана колба. Например, через эритемное стекло проходят УФ-лучи А, а через увиолевое – В, но только не С.

Если колба кварцевая, то она будет пропускать все три спектральных диапазона. Ультрафиолетовые лампы – газоразрядные и включаются с помощью электронного пускорегулирующего аппарата, иначе при большем напряжении разряд внутри колбы станет дуговым.

Длина волны

Основной принцип выбора ультрафиолетовых светильников зависит от его диапазона, который состоит из трех групп:

  • тип А, длинноволновой интервал составляет 315–400 нанометров;
  • тип В, средневолновой интервал составляет 280–315 нанометров;
  • тип С, коротковолновой интервал составляет 100280 нанометров.

Срок службы

Принцип работы и строение УФ-ламп схож с люминесцентными, кажется, что и срок эксплуатации тоже одинаковый, однако, это не так. Во время долгой работы световое излучение прибора становится меньше.

У лампы накаливания — это сразу заметно, но у ультрафиолетовой определить срок службы сложно. Обычно ее срок работы составляет 1000–9000 часов.

Что светится под ультрафиолетом

Давайте разберемся, что на самом деле светится под ультрафиолетом.

Невидимые красители

Подтверждение подлинности купюр, ценных бумаг, лабораторные исследования — это все, в чем требуется ультрафиолетовое излучение. Под ультрафиолетом от разных веществ исходит разное свечение: от светло-голубого до желтого, и даже красноватого оттенка. Но некоторые соединения по-разному реагируют на длины волн: они могут поглощать УФ-лучи в 365 нанометров и излучать свет в 400 нанометров, а могут и наоборот.

Есть вещества, нейтральные к искусственному излучению. Например, пятна крови, поглощающие ультрафиолет различного диапазона.

Минералы

Есть много минералов, начинающих излучать свет при попадании на них ультрафиолета. Чтобы это увидеть, следует выключить лампочку накаливания, а затем подсветить минерал ультрафиолетом.

Тогда он начнет светиться и переливаться красивыми узорами.

Какие бывают виды и типы

В домашних условиях лампы используют для дезинфекции комнат, потому что лучи в 100–320 нанометров уничтожают все вредные микробы, но это происходит внутри излучения. Вредная микрофлора его выдерживает, поэтому для их уничтожения требуется оставить прибор включенным на большее время.

Есть два типа ультрафиолетовых ламп:

  • Открытые. Колбы делают из кварцевого стекла, пропускающие излучение в 315 нанометров, из-за чего уничтожаются бактерии. Однако, вред ультрафиолета состоит в том, что излучение губительно влияет на живые организмы. Необходимо, чтобы в комнате никто не находился, когда работает прибор.
  • Закрытые. Колба создается из увиолевого стекла, так как оно задерживает лучи типа С и обеззараживание происходит безопасно в присутствие людей, но тогда лампа должна работать дольше.

В медицинских центрах кварцевые лампы работают все время, но тогда их накрывают кожухом, чтобы свечение лампы было вверх. Это нужно, чтобы обезопасить глаза сотрудников и посетителей. Если долго смотреть на прибор, это приведет к ожогу глаз и зрение ухудшится, поэтому их нужно защищать очками.

Свойства ультрафиолета и его воздействие на человека

Ультрафиолетовое излучение есть трех спектральных типов:

  • Ультрафиолет А. Интервал излучения расположен между 400 и 315 нанометров, которое называют длинноволновым. При правильном применении ультрафиолет типа А даже полезен: он искусственно создает витамин D и улучшает кожу. Однако, переизбыток излучения вреден, потому что провоцирует ожог роговой оболочки глаза и может сильно повредить кожу.
  • Ультрафиолет В. Интервал этого излучения расположен между 315 и 280 нанометров, которое называют средневолновым. Оно проникает в структуру живых тканей, повреждая ДНК. Даже маленькое облучение вызывает ожог глаза, кожи в ее глубоких слоях, а также смертельно влияет на вирусы и бактерии.
  • Ультрафиолет С. Интервал излучения расположен между 280 и 100 нанометров, которое называют коротковолновым. Оно очень опасно, потому что малая доза разрушает ДНК, а у человека вызывает рак кожи. Излучение проникает в глубокие слои ткани и провоцирует заболевания глаз.

Рекомендуем посмотреть видео:

Возможна ли аллергия

На появление аллергических реакций влияют фотосенсибилизаторы – вещества, повышающую чувствительность кожи к источникам света. Признаки аллергии на загар из солярия похожи на обычные раздражения кожи, поэтому надо знать, чем они отличаются. К симптомам относятся шелушение, красные пятна и отеки.

Аллергия на ультрафиолет проявляется на любом участке кожи через несколько секунд, часов и даже дней. Если аллергию сразу обнаружить, то есть возможность быстрого и успешного лечения.

Смягчить чесотку и другие признаки аллергической реакции помогут цинкосодержащие мази, Фенистил гель, а также капли Зиртек. Не стоит лечиться самостоятельно, так как это вызовет только еще большие последствия аллергии.

Немного о преимуществе и недостатке УФ-лампы в доме

Если Уф-лампами правильно пользоваться, то они принесут пользу. Например, ультрафиолетовый светильник используют для нанесения загара, но при переизбытке излучения, кожу можно повредить. Независимо от интенсивности лучей и использования, каждая из ламп негативно влияет на зрение. Чтобы его защитить, нужно надевать очки, которые не пропускают излучение.

Приборы широко применяются в быту из-за их преимуществ:

  • простой монтаж и мобильность позволяют поместить прибор там, где хочется;
  • одна обработка уничтожает все вредоносные микробы и полностью обеззараживает помещение;
  • кварцевая лампа повышает иммунитет, излучатель применяют для профилактики.

Недостаток ультрафиолетовых ламп состоит в том, что в них есть ртутные пары. Когда заканчивается срок службы, от лампы нужно правильно избавиться, иначе можно получить повреждения и отравление. Если стекло колбы повредилось, то излучатель необходимо утилизировать, а комнату обработать от ртутных паров.

Для чего нужна УФ-лампа в больницах и офисах

УФ-лампы необходимы для очистки воздуха и уничтожения микробов. Излучатели используют для лечения кожных заболеваний, проявившиеся из-за недостатка витамина D, а также в банковской сфере и во многих других областях.

Основные нюансы выбора

Перед покупкой УФ-лампы надо подумать так ли она нужна. Прибор приносит пользу семьям, где дети часто болеют, а также лежачим больным, так как излучатель избавляет комнату от неприятных запахов, борется с пролежнями. Лампа действует против инфекционных заболеваний, устраняет проблемы с кожей.

Самые популярные модели УФ-ламп и стоимость

А вот две самые популярные модели:

    «Солнышко». Излучатели под такой маркой необходимы для обеззараживания помещения, не более 15 кв.м. Также они используются для терапевтического лечения взрослых и детей. На корпусе есть экран, применяемый для лечения заболеваний, очистки воздуха. В комплекте есть разные насадки, тубусы, а также защитные очки и биодозиметр. Цена излучателя составляет от 1500 до 4000 рублей.

Как сделать УФ-лампу самому

Чтобы сделать ультрафиолетовый излучатель, нужно разбить другую лампу ДРЛ. Колбу обернуть тряпкой – защитив себя – а затем стукнуть по ней молотком. Внутри будет находиться трубка, которая будет излучать ультрафиолетовые волны. Ее нужно подключить к дросселю и включить в сеть.

Самодельный источник света будет открытого типа, поэтому при его работе нужно выходить из помещения. Но лучше не рисковать своим здоровьем, а купить готовый прибор.

Заключение

Ультрафиолетовый свет нужен всему живому, но его не всегда бывает достаточно. УФ-лучи помогают в борьбе с разными микроорганизмами. Покупая прибор нужно обращать внимание на его мощность, диапазон волн, срок службы и аккуратно им пользоваться, чтобы не было неприятностей. Необходимо следовать советам врачей и не превышать дозу облучения, так как это опасно.

Установка ультрафиолетовых ламп, проверка, замена, ремонт и обработка.

Ультрафиолетовое излучение, использование которого лежит в основе работы облучателей-стерилизаторов, способно уничтожить большинство болезнетворных организмов в вегетативной форме (вирусов, грибков, бактерий, простейших). Поэтому установка ультрафиолетовых ламп так необходима в ЛПУ.

Благодаря этому свойству УФ-стерилизаторы широко применяются для дезинфекции помещений лечебно-профилактических учреждений различного профиля. В частности, установка УФ ламп является основным условием нормальной работы таких подразделений:

  • операционные блоки;
  • смотровые кабинеты;
  • стоматологические;
  • перевязочные и т. д.

Типовой УФ-облучатель состоит из следующих частей:

  • УФ-лампы;
  • отражателя;
  • пускорегулирующего механизма.

Благодаря высокой бактерицидной эффективности устройства, у руководителей ЛПЗ не возникает вопрос, чем заменить старую добрую ультрафиолетовую лампу, объединяющую в себе функциональность с энергосбережением, безопасность с надежностью.

Установка УФ-облучателя

Аппарат извлекают из тары, в которой он был привезен либо хранился, снимают с него полиэтилен. Все поверхности прибора, которые были обработаны консервационной смазкой, следует очистить при помощи тампонов из марли, пропитанных либо раствором этилового спирта, либо бензином и отжатых. После этого следует проверить комплектность устройства.

Если транспортировка УФ-облучателя происходила при отрицательной температуре, то прежде, чем включать, его нужно выдержать на протяжении суток в помещении, где поддерживается комнатная температура.

Отдельные правила существуют для установки рециркуляторов:

  • высота размещения на стене либо передвижной опоре составляет от одного до полутора метров, считая от нижней кромки корпуса прибора;
  • обеспечение беспрепятственного забора и выброса воздуха, при этом их направления должны соответствовать ходу потоков конвекции;
  • не допускается монтаж рециркулятора в углу помещения, поскольку в таких местах часто воздух застаивается без заметного движения.

До того, как подключить стерилизатор к сети, в помещении, где он будет располагаться должна быть проведена соответствующая санитарно-гигиеническая обработка всех поверхностей.

Чтобы включить прибор, вилку его питающего электрокабеля нужно включить в розетку, после чего активировать устройство, нажав кнопку «Сеть». По окончании работы выключение стерилизатора выполняют в обратном порядке.

Проверка работоспособности УФ-лампы

Перед тем, как проверить работоспособность устройства, следует выполнить следующие действия:

  1. осмотреть его внешние поверхности;
  2. ознакомится с инструкцией к нему;
  3. разобраться с работой дополнительного оборудования, которое может понадобиться для контроля исправности УФ-облучателя.

Внешняя проверка любой ультрафиолетовой лампы поможет выявить следующее:

  1. механические повреждения, способные повлиять на нормальную работу устройства;
  2. имеются ли в наличии и насколько качественно закреплены шнуры, вилки, разъемы, сенсорные панели, кнопки и прочее;
  3. нет ли отсоединившихся либо плохо закрепленных составных частей;
  4. исправность элементов крепежа.

Выполняя проверку, ремонт либо любые другие работы с УФ-облучателем, следует придерживаться всех соответствующих правил безопасности.

К отдельным элементам конструкции прибора применяются следующие требования:

  • шнур не должен иметь разрывов поверхностного покрытия, сквозь которые были бы видны жилы, проводящие электрический ток;
  • штыри вилки, которая вставляется в сетевую розетку должны быть ровными;
  • крепления прибора без трещин и прочих видимых механических дефектов;
  • подставка без люфтов, а ее колеса вращаются легко, закусы при этом не происходят.

КИП, которые используются для контроля работоспособности излучателя, обязательно предварительно аттестуются. Если любое из этих правил не выполняется, значит необходим ремонт или замена ультрафиолетовой лампы, к эксплуатации, даже кратковременной ее допускать запрещено.

Обработка УФ-ламп

Профилактическое обслуживание облучателей выполняется в оговоренный для каждой модели срок и включает в себя несколько процессов:

  1. Удаление пыли с колбы излучателя и всех плоскостей аппарата;
  2. Смена фильтра (в стерилизаторах-рециркуляторах) проводится ежеквартально, либо раньше, при наличии критической степени загрязнения. Во время выполнения этой манипуляции, следует обеззараживать решетки, держащие фильтр, протирая их специальным раствором либо погружая их в него.
  3. Дезинфекция прибора проводится в соответствии с требованиями МУ287-113.
  4. Прежде, чем включить прибор, его наружные поверхности, лампы и отражатели обрабатываются в соответствии с теми же Методическими рекомендациями.

Утилизация УФ-ламп

В случае невозможности дальнейшей эксплуатации облучателя в связи с непригодностью, его утилизируют по Правилам, приведенным в СанПин2.1.7.728-99 для Б-класса. Перегоревшие лампы подлежат утилизации по тому же СанПин, но только применительно к Г-классу.

Срок службы УФ-излучателя

Большинство ультрафиолетовых ламп имеют срок службы в пределах 9000 ч свечения, после чего проводится их замена.

Ремонт УФ-лампы

Рассмотрим, как можно отремонтировать различные поломки УФ-облучателя на примере двухлампового рециркулятора «РБ-06-Я-ФП». Причины, по которым может выйти из строя данный прибор:

  • перегорела вольфрамовая нить;
  • вышли из строя определенные рабочие блоки устройства;
  • перегорела контактная группа;
  • пришли в негодность электроды;
  • повреждены некоторые конструкционные элементы устройства.

Также нельзя исключить и внешние причины, такие как неисправность электропроводки, выключателя либо розетки. Любые поломки составных частей облучателя выявляются при помощи мультиметра.Внешние признаки неисправности таковы:

  • в подключенной к электричеству УФ-лампе не наблюдается свечение ртутных паров;
  • имеет место мигание излучателя, которое может повторяться реже или чаще;
  • проявляется ряд светоэффектов не характерных для правильной работы оборудования;
  • при включении прибора ощущается необычных запах (к примеру, гари).

Проверка работоспособности светильника

Для этого необходимо наличие такого прибора, как мультиметр. Чтобы выполнить проверку, выполняют следующие манипуляции:

  1. Разбирают прибор.
  2. Извлекают лампу.
  3. При помощи мультиметра проверяют есть ли напряжение на контактах лампы.

Если напряжения нет, то в первую очередь стоит заподозрить, что один из контактов оборвался, а если и там все нормально, то пройтись мультиметром по всей цепи, определить неисправное звено и заменить его на запасное.

В случае наличия напряжения на контактах причина поломки кроется в самой лампе, излучающей ультрафиолет, которую отремонтировать невозможно, ее можно только поменять. Поскольку стерилизаторы-облучатели настолько сильно распространены, то с их устройством следует ознакомиться всему обслуживающему персоналу ЛПЗ, дабы своевременно и точно выявлять возможные поломки в этом оборудовании.

Замена УФ-лампы

В качестве образца возьмем однокамерный стерилизатор профессионального типа GERMIX SB-1002. Замена излучателя в нем предусмотрена каждые 6 месяцев. Сделать это довольно просто, но нужно знать алгоритм:

  1. потянуть на себя выдвижной ящик;
  2. выкрутить при помощи небольшой крестовидной отвертки, длина которой не превышает 130 мм, саморезы (четыре штуки), вкрученные внутри аппарата в его верхнюю сторону;
  3. снять верх прибора;
  4. выкрутить саморезы (четыре штуки), удерживающие на своем месте лампу;
  5. поддеть контакты лампы (четыре штуки) при помощи плоской отвертки. Таким образом отсоединив их;
  6. вынуть излучатель и сменить его.

По окончании процесса, собрать прибор в обратной последовательности.

Как определить, что перегорела УФ-лампа

Обычный срок работы, на протяжении которого может держаться средняя ртутная УФ-лампа, составляет 9000 часов, что в разы уступает современным УФ-светодиодам. Но и такой срок возможен при условии непрерывного горения при соблюдении оптимальных характеристик питающего лампу электрического тока. В реальности же срок жизни излучателя может быть намного меньшим.

Конечно, ртутные бактерицидные лампы, в том числе и, пользующаяся большой популярностью в нашей стране, Philips TUV15, не страдают от того, что может выгореть люминофор, по причине отсутствия в них такового. Причина потери эффективности устройства кроется в другом, а именно, в оседании паров ртути на внутренней поверхности колбы, что ведет к потере ее прозрачности. Разницу в этом показателе между новыми и, отработавшими ощутимый срок, излучателями можно заметить даже невооруженным глазом.

Еще одна причина падения прозрачности кроется в частичках испаряющегося с нитей накаливания вольфрама, который также, как и ртутные пары, оседает на внутренней поверхности колбы.

В итоге, лампа работает, но ее эффективность стремительно падает. Поэтому излучатель считается непригодным к эксплуатации не тогда, когда он перестанет гореть совсем, а тогда, когда его эффективность упадет до граничного уровня, оговоренного в инструкции по эксплуатации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *