Как проверить танталовый конденсатор
Перейти к содержимому

Как проверить танталовый конденсатор

Как проверить конденсатор?

Проверка конденсаторов

При конструировании и ремонте электронной техники часто возникает необходимость в проверке радиоэлементов, в том числе и конденсаторов.

В сети много рекомендаций о том, как проверить конденсатор омметром. Когда-то я и сам применял такую методику. О ней я ещё расскажу.

Но на данный момент могу утверждать точно, что достоверно определить исправность конденсатора можно лишь с помощью прибора, который способен измерить его электрическую ёмкость.

Перед тем, как начать проверку конденсатора необходимо определить его тип. Все они делятся на две группы:

Неполярные. К ним относятся конденсаторы, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух. Как правило, их ёмкость невелика и лежит в пределах от нескольких пикофарад до единиц микрофарад.

Неполярные конденсаторы

Полярные. К полярным конденсаторам относятся все электролитические конденсаторы, как с жидким электролитом, так и твёрдым. Их ёмкость уже лежит в диапазоне от 0,1 до 100000 микрофарад.

Полярные конденсаторы

Среди неисправностей конденсаторов можно выделить три основных:

Электрический пробой. Как правило, пробой вызван превышением допустимого рабочего напряжения на обкладках конденсатора.

Обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости. Обычно обрыв образуется вследствие механического воздействия, тряски или вибрации. Его причиной может быть некачественная конструкция элемента, а также нарушение допустимых режимов эксплуатации.

Повышенная утечка. Изменение сопротивления диэлектрика между обкладками. При такой неисправности ёмкость конденсатора становится заметно ниже, он не способен сохранять заряд.

Список неисправностей у электролитических конденсаторов заметно шире. В основном это касается алюминиевых электролитических конденсаторов, которые очень активно используются для фильтрации пульсирующего напряжения во всевозможных выпрямителях.

Потеря ёмкости, повышенная утечка.

Как уже говорил, достоверно проверить исправность конденсатора можно лишь с помощью прибора, который способен измерить его ёмкость. Как правило, для этих целей применяются измерители индуктивности и ёмкости (LC-метры). Они довольно дороги.

Но, несмотря на это, можно найти доступный по цене мультиметр с функцией LC-метра. Например, в моей мастерской имеется мультитестер Victor VC9805A+.

Он имеет 5 пределов измерения и способен определить ёмкость в диапазоне от 20 нанофарад (20nF) до 200 микрофарад (200μF). С его помощью можно измерить ёмкость, как обычных неполярных конденсаторов, так и полярных электролитических.

Пределы измерения ёмкости мультиметра

20 нФ (20nF)

200 нФ (200nF)

2 мкФ (2μF)

20 мкФ (20μF)

200 мкФ (200μF)

Максимальный предел измерения ограничен значением в 200 микрофарад (мкФ), что не так уж и много, если учесть, что ёмкость электролитических конденсаторов порой доходит и до 10000 мкФ.

Измерительные щупы прибора подключаются к гнёздам измерения ёмкости (обозначается как Cx). При этом нужно соблюдать полярность их подключения.

Измерение ёмкости Сх
Разъём измерения ёмкости (Сх)

На фото показан процесс измерения ёмкости конденсатора номиналом 100nF (0,1 мкФ). Для измерения выбран предел в 200 нанофарад.

Замер ёмкости конденсатора 0,1 мкФ

Как видим, ёмкость соответствует той, что указана в маркировке на корпусе – 104,7nF. Конденсатор исправен.

А вот пример неисправного металлоплёночного конденсатора К73-17 на 100nF. Я его выявил совершенно случайно, полагал, что он полностью исправен.

Конденсатор с потерей ёмкости

Отмечу лишь то, что изначально я проверял данный конденсатор мультиметром в режиме омметра. Тогда я не обнаружил ничего подозрительного. На деле же он оказался неисправен, имел очень маленькую ёмкость, всего 737 пикофарад.

На следующем фото проверка этого же конденсатора универсальным тестером.

Неисправный конденсатор серии К73-17

Именно поэтому для проверки конденсаторов стоит использовать тестер с функцией замера ёмкости. Это даст наиболее достоверный результат.

Исключением может быть электрический пробой, который легко обнаружить с помощью омметра, а порой и чисто визуально при внешнем осмотре. Вот пример.

На фото пробитый неполярный конденсатор на рабочее напряжение 1,2kV.

Пробитый высоковольтный конденсатор

При значительном превышении рабочего напряжения на конденсаторе, между его обкладками происходит электрический пробой. На корпусе пробитых конденсаторов можно обнаружить потемнения, вздутия, тёмные пятна и другие внешние признаки повреждения элемента.

Корпус может быть расколотым или иметь на поверхности сколы и трещины.

Электрический пробой конденсатора в электронной схеме преобразователя может стать причиной выхода из строя компактной люминесцентной лампы. Об этом я упоминал на странице про устройство ламп КЛЛ.

Стоит отметить тот факт, что пробой у алюминиевых электролитических конденсаторов встречается довольно редко. Обратная ситуация наблюдается у танталовых конденсаторов, которые в силу своих особенностей плохо выдерживают даже незначительное превышение рабочего напряжения.

При измерении ёмкости у электролитического конденсатора стоит знать одну особенность. Так как допуск у них очень большой, порой достигающий 30%, то разброс значения ёмкости может быть весьма приличный. В таком случае не стоит считать конденсатор негодным. Кроме этого, многое зависит от того, каким прибором пользуетесь.

Вот список реальной ёмкости новых конденсаторов. Измерения проводились универсальным тестером LCR-T4:

2200 μF (35V) — реальная 2155μF (Jamicon);

470 μF (25V) — реальная 420,9μF (EPCOS);

220 μF (400V) — реальная 217,7μF (SAMWHA);

100 μF (450V) — реальная 98,79μF (Jamicon);

100 μF (400V) — реальная 101,1μF (SAMWHA);

82 μF (400V) — реальная 75,65μF (Jamicon);

82 μF (450V) — реальная 77,46μF (SAMWHA);

82 μF (450V) — реальная 77,05μF (CapXon);

68 μF (450V) — реальная 66,43μF (Jamicon);

33 μF (160V) — реальная 31,99μF (SAMWHA);

22 μF (250V) — реальная 22,21μF (SAMWHA);

Как видим, самым некачественным оказался конденсатор EPCOS B41828 105°C 470μF(M)25V.

Эти же конденсаторы были проверены мультиметром Victor VC9805A+. Так вот, он показал ёмкость конденсаторов меньше. Для кондёра 220μF (400V) он вообще намерил 187μF!

Неисправность электролитического конденсатора можно определить при внешнем осмотре. Если корпус его имеет разрыв насечки в верхней части корпуса – 100% его надо менять. Разрыв защитной насечки на корпусе свидетельствует о том, что на конденсатор действовало завышенное напряжение, вследствие чего и произошёл, так называемый, «взрыв».

Как уже говорилось, пробой алюминиевых электролитических конденсаторов явление достаточно редкое. Вместо этого имеет место такой вот "взрыв" или "вздутие". Происходит это от того, что при превышении допустимого напряжения или при переполюсовке, в конденсаторе начинается бурная химическая реакция. Она приводит к нагреву и испарению электролита, пары которого давят на стенки корпуса и разрывают защитный клапан.

"Взорвавшийся" конденсатор
"Взорвавшийся" электролитический конденсатор

Такие дефекты конденсаторов появляются, например, при воздействии мощного электрического разряда на электронный прибор во время грозы или сильных скачков напряжения в электроосветительной сети 220V.

Аналогичный эффект "вздутия" алюминиевого электролитического конденсатора проявляется и при его длительной эксплуатации. Так как электролит жидкий, то он имеет свойство испаряться при нагреве и длительной эксплуатации.

Стоит отметить, что конденсатор нагревается не только снаружи, но и изнутри. Связано это с наличием эквивалентного последовательного сопротивления (ESR). При испарении электролита ёмкость конденсатора заметно снижается. Со временем он всё сильнее "вздувается". Про такой конденсатор говорят, что он высох.

При ремонте электронной аппаратуры порой бывают случаи, что в блоке питания прибора, отслужившего не один год, можно обнаружить целую грядку таких "дутышей".

Потеря ёмкости может быть причиной поломки телевизора. Такая неисправность не редкость. Об одной из них я уже рассказывал здесь.

Современные ЖК-телевизоры «конденсаторная чума» также не обходит стороной. Ознакомьтесь.

В современных условиях, когда имеет место широкое распространение импульсной техники, такой параметр, как ESR необходимо учитывать при тестировании электролитических конденсаторов. На сайте имеется таблица со значениями ESR новых конденсаторов разной ёмкости. В некоторых случаях, можно ориентироваться на неё.

Но, стоит знать, что в этой таблице приведены величины ESR преимущественно для одной серии конденсаторов (Jamicon, серия TK). Эта серия не относится к конденсаторам с низким ESR или низким импедансом (Low ESR/Low Impedance). Отличительным её свойством является широкий температурный диапазон эксплуатации, а данные о ESR в даташите на серию вообще не приводятся.

Так как большинство мультиметров не поддерживают функцию замера ESR, то при необходимости лучше приобрести специализированный тестер или универсальный тестер радиокомпонентов. Это незаменимый прибор в мастерской радиолюбителя и любого радиомеханика.

Меры предосторожности при проверке электролитических конденсаторов.

При проверке электролитического конденсатора необходимо полностью его разрядить! Особенно этого правила стоит придерживаться при проверке конденсаторов, имеющих большую ёмкость и высокое рабочее напряжение. Если этого не сделать, то можно испортить измерительный прибор высоким остаточным напряжением.

Например, часто приходиться проверять исправность конденсаторов, которые применяются в импульсных блоках питания. Их ёмкость и рабочее напряжение достаточно велики и при неполном разряде могут привести к порче мультиметра.

Поэтому перед проверкой их следует обязательно разрядить, закоротив выводы накоротко (для низковольтных конденсаторов с малой ёмкостью). Сделать это можно обычной отвёрткой.

Электролитический конденсатор 220 мкФ * 400V
Электролитический конденсатор ёмкостью 220 мкФ и рабочим напряжением 400 вольт

Конденсаторы с ёмкостью более 100 мкФ и рабочим напряжением от 63V желательно разряжать уже через резистор сопротивлением 5-20 килоОм и мощностью 1 – 2 Вт. Для этого выводы резистора соединяют с выводами конденсатора на несколько секунд, чтобы убрать остаточный заряд с его обкладок. Разряд конденсатора через резистор применяется для того, чтобы исключить появление мощной искры.

При проведении данной операции не стоит касаться руками выводов конденсатора и резистора, иначе можно получить неприятный удар током при разряде обкладок. Резистор лучше зажать пассатижами в изоляции и уже тогда соединить его с выводами конденсатора.

При закорачивании выводов заряженного электролитического конденсатора проскакивает искра, иногда очень мощная.

Поэтому следует позаботиться о защите лица и глаз. По возможности применять защитные очки или держатся от конденсатора при проведении таких работ подальше.

Проверка конденсаторов с помощью омметра.

Самым доступным и распространённым прибором, с помощью которого можно провести тестирование конденсатора, является цифровой мультиметр, включенный в режим омметра.

Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальном конденсаторе диэлектрик, несмотря на то, что он является изолятором, всё-таки пропускает незначительный ток. Обычно, этот ток очень мал и не учитывается. Он называется током утечки.

Данный способ подходит для проверки неполярных конденсаторов. У них сопротивление утечки бесконечно большое и, если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое значение.

Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.

На практике проверить на пробой любой неполярный конденсатор можно так:

Переключаем мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов. Для цифровых мультитестеров серий DT-83x, MAS83x, M83x, это будет предел 2M (2000k), то бишь, 2 мегаома.

Далее подключаем измерительные щупы к выводам проверяемого конденсатора. Если он исправен, то прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки более 2 мегаом.

Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, которое меньше 2 мегаом, то, скорее всего, конденсатор имеет большую утечку.

Следует учесть, что держаться обеими руками выводов конденсатора и металлических щупов мультиметра при измерении нельзя! В таком случае прибор зафиксирует сопротивление вашего тела, а не сопротивление конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Результат измерения будет некорректный. Об этом простом правиле стоит помнить при проверке и других радиодеталей.

Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.

Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 килоОм. Для более качественных конденсаторов это значение составляет не менее 1 мегаома.

При проверке таких конденсаторов омметром следует сначала их разрядить, замкнув выводы накоротко. Если этого не сделать, то есть риск сжечь мультиметр.

Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки.

Так как электролитический конденсатор имеют довольно большую емкость, то при проверке он начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти – показания на нём будут увеличиваться. Это будет продолжаться до тех пор, пока конденсатор полностью не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности проверяемого элемента.

Одной из рядовых неисправностей электролитических конденсаторов является частичная потеря ёмкости. В таких случаях его ёмкость заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра сложно. Я бы сказал, что невозможно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.

Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв.

Для полярных электролитических конденсаторов косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления.

Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор имеет очень высокое сопротивление. Заряд ёмкости такого конденсатора проходит очень быстро и из-за этого невозможно определить имеет ли конденсатор хоть какую-то ёмкость. На дисплее мультиметра показания меняться не будут, как это происходит при заряде ёмкого электролитического конденсатора.

Как вы уже поняли, обнаружить обрыв в неполярном конденсаторе можно лишь с помощью прибора для измерения ёмкости.

На практике обрыв в конденсаторах встречается довольно редко, в основном такое бывает при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.

Проверка конденсатора стрелочным омметром.

Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась похожим образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелкой прибора, росло. В конечном итоге величина его достигала значения сопротивления утечки.

По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали и емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем, соответственно, была больше ёмкость. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости, а вот при проверке конденсаторов с ёмкостью от 1000 мкф и более, стрелка отклонялась значительно медленнее.

Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения электрической ёмкости.

Smd конденсатор как проверить мультиметром?

Как проверить конденсатор мультиметром не Выпаивая?

Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора. Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным.

Как проверить Танталовый конденсатор мультиметром?

Чтобы проверить конденсатор мультиметром, используя постоянное напряжение, нужно:

  1. Взять адаптер и, соблюдая полярность, подключить его к выводам детали (ее нужно отпаять от платы). Через несколько секунд она зарядится.
  2. Затем подсоедините щупы тестера к детали и измерьте напряжение.

Как измерить емкость SMD конденсатора мультиметром?

Проверить емкость конденсатора мультиметром

  1. Подключаем в режиме измерения сопротивления клеммы к контактам разряженного конденсатора.
  2. Образуется зарядная цепь, сформированная внутренним сопротивлением мультиметра, емкости. …
  3. Попутно сопротивлению начнёт расти от нуля до бесконечности.

Как измерить Микрофарады мультиметром?

Для того чтобы узнать емкость необходимо иметь мультиметр с функцией измерения параметра «Сх». Определить емкость с помощью такого мультиметра просто: установить его в режим «Сх» и указать минимальный предел измерения, которым должен обладать данный конденсатор.

Как проверить конденсатор с помощью мультиметра?

Способ №1 – Мультиметр в помощь Если конденсатор не работает, то лучше всего проверить его работоспособность мультиметром либо цешкой. Этот прибор позволяет определить емкость «кондера», наличие обрыва внутри бочонка либо возникновение короткого замыкания в цепи.

Как проверить емкость керамических конденсаторов?

Померить емкость конденсатора можно следующим образом:

  1. Настраиваем мультиметр на режим измерения емкости.
  2. Подключаем щупы конденсатора к выводам мультиметра дважды (во время второго подключения выводы нужно поменять местами).
  3. Ждем результата измерений и сравниваем их.

Как проверить детали на плате мультиметром?

Включаем мультиметр на замер сопротивления. Красный щуп на анод детали, черный на катод – показание на шкале должно быть от 10 до 100 Ом. Переставляем щупы мультиметра, теперь минус (черный щуп) на аноде – показание, стремящееся к бесконечности.

Как определить емкость конденсатора?

По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.

Как можно увеличить общую емкость конденсаторов?

Для увеличения ёмкости конденсаторы соединяются параллельно. Для увеличения сопротивления резисторы соединяются последовательно. Вода через трубу с двумя валенками течёт хуже, чем через трубу с одним валенком.

Как определить емкость конденсатора по маркировке?

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

Как проверить твердотельный или электролитический конденсатор

Конденсаторы широко применяются в электротехнике в качестве элементов, сглаживающих пульсации переменного тока, фильтров частоты, или накопителей энергии. Кроме того, эти радиодетали можно применять в качестве гальванической развязки. Технологий изготовление множество, принцип общий: между двумя обкладками кроме диэлектрика размещается особое химическое вещество, определяющее характеристики. Для электроустановок постоянного тока, применяются электролиты. Это недорогая технология, которая имеет серьезный недостаток: жидкость может закипеть от перегрузки или высокой температуры, и тогда конденсатор буквально взрывается. К счастью, такой «экстрим» случается редко: в большинстве случаев корпус просто разрушается, теряет герметичность, и электролит вытекает на монтажную плату.

Твердотельный конденсатор 1

Поэтому в ответственных узлах применяются конденсаторы, изготовленные по иной технологии. Вместо жидкого электролита применяется токопроводящий органический полимер. Он имеет фактически твердую консистенцию, поэтому при экстремальных нагрузках (включая температурные) опасности не представляет. Такие конденсаторы называются твердотельными (по причине отсутствия жидких фракций). Характеристики этих элементов не уступают традиционным «электролитам», однако стоимость деталей существенно выше. Есть еще один недостаток твердотельной конструкции — ограничения по вольтажу. Верхний предел напряжения не более 35 Вольт. Учитывая область применения (компьютеры, бытовая техника, автомобили), это не является большой проблемой.

По причине высокой стоимости, домашние мастера стараются избегать покупки дорогих деталей, используя б/у компоненты для замены. В любом случае, чтобы не тратить лишние деньги, необходимо знать, как проверить твердотельный конденсатор.

Как работает полимерный конденсатор

Чтобы проверить любой прибор, желательно понимать механизм его работы. Поскольку тема нашего материала — твердотельные конденсаторы (аналоги электролитических), значит речь пойдет о радиоэлементах для постоянного тока, то есть полярных. Все со школьной скамьи помнят эту иллюстрацию:

Твердотельный конденсатор 2

Две металлические пластины с диэлектриком между ними (для лаборатории подойдет даже воздух). Если на контакты подать потенциал, между пластинами накапливается разноименные заряды, и в пространстве между ними возникает электрическое поле. При отсутствии электрической цепи это поле может сохраняться достаточно долго (современные элементы обеспечивают утечку заряда, стремящуюся к нулю). Именно это свойство лежит в основе применения конденсаторов.

Элемент имеет определенные основные характеристики:

  • Рабочее напряжение определяется величиной, при которой не наступает пробой диэлектрика. Конденсаторы выглядят совсем не так, как мы привыкли видеть на лабораторном столе в классе физики. Детали весьма компактны, соответственно расстояние между пластинами минимально. Отсюда ограничение по предельному напряжению.
  • Емкость конденсатора — его главный параметр. Он определяет, сколько электрической энергии деталь может накопить и удерживать в себе. Величина напрямую зависит от площади пластин.
  • Параметры утечки. Могут определяться током потери накопленного заряда, либо сопротивлением диэлектрика. Идеальные показатели возможны только в вакууме, но такие конденсаторы для бытового использования не выпускаются.
  • Температурный коэффициент: определяется дельтой изменения емкости в зависимости от температуры.
  • Точность — указывается в процентах. Показывает разброс параметров емкости от эталонной (маркировочной) величины.

Важно: несмотря на большое количество параметров, измерению (проверке) подлежат лишь два из них: емкость и сопротивление диэлектрика.

Устройство электролитических и твердотельных конденсаторов

Радиокомпоненты такого класса применяются в электронных устройствах с высокими требованиями по габаритам. Поэтому вопрос компромисса между площадью обкладок (от этого зависит емкость) и размерами корпуса — головная боль разработчиков. Проблема решается технологически просто:

Твердотельный конденсатор 3

Изготавливается так называемых сэндвич, стоящий из двух тончайших обкладок, между которыми прокладывается слой пропитанной электролитом бумаги (в электролитических моделях) или токопроводящий полимер (твердотельные конденсаторы). Обычно используется танталовая или алюминиевая фольга. В качестве диэлектрика применяется естественный оксидный слой одной из пластин. У него низкая проводимость, которая определяет ток утечки емкости.

Такая конструкция может занимать достаточно большую (по меркам радиодеталей) емкость. Поэтому ее сворачивают в плотный рулон, где в качестве разделителя между слоями выступает тонкая электро-бумага (смотрим иллюстрацию). Она не участвует в схеме работы конденсатора.

Наружная оболочка выполнена из алюминия, на нее наносится информация о характеристиках.

Твердотельный конденсатор 4

Преимущества твердотельных конденсаторов

  • В сравнение с электролитической конструкцией, существенно снижено эквивалентное последовательное сопротивление. Благодаря этому деталь практически не нагревается на высоких частотах.
  • Значительная величина тока пульсаций делает работу более стабильной, особенно в схемах обеспечения электропитанием.
  • Твердотельные конденсаторы практически не зависят от температуры. Кроме физической защиты от раздувания корпуса, это свойство позволяет сохранять параметры при нагреве.
  • Продолжительность жизни. Если принять за эталон рабочую температуру 85 °C, срок эксплуатации (без потери характеристик) в 6 раз больше, чем у электролитов. Обычно эти детали без проблем работают не менее 5 лет.

Самостоятельная диагностика конденсатора

Поскольку мы говорим о деталях для работы с постоянным током, не имеет значения, какая применяется технология: электролитическая или полимерная. Проверка полярных конденсаторов выполняется одинаково.

Прежде всего, выполняется внешний осмотр. Электролиты не должны иметь следов вздутия, особенно на торце, где есть насечка в виде креста. При осмотре твердотельных корпусов можно увидеть термические повреждения с нарушением геометрии.

Твердотельный конденсатор 5

Разумеется, необходимо проверить крепление ножек. Компактная конструкция подразумевает небольшие размеры всех компонентов. Ножки могут банально оторваться еще на стадии сборки.

Если внешний осмотр не дал результатов, проводим тестирование с помощью мультиметра

В любом случае, для выполнения этих работ необходимо выпаять деталь из платы. Делать это надо осторожно, чтобы не выдернуть контактные ножки из корпуса.

Если ваш прибор имеет специализированный разъем для проверки, диагностика выполняется в соответствии с инструкцией к мультиметру. Обязательно проводится весь комплекс тестирования (если такой алгоритм имеется). Подключать нужно правильно, соблюдая полярность. Маркировка обязательно присутствует на корпусе детали. При такой проверке вы не только проверите исправность, но и увидите значение емкости.

Твердотельный конденсатор 6

    Проверка работоспособности конденсатора начинается с измерения сопротивления. Делается это не так, как на резисторах или диодах. Чтобы понять принцип проверки, вспомним основные свойства конденсатора. При накоплении заряда сопротивление между обкладками увеличивается. Для начала необходимо разрядить элемент (снять остаточный заряд). Разумеется, это справедливо лишь для исправной детали. Надо просто замкнуть ножки любым проводником, или сомкнуть их между собой.

Важно: электролитические конденсаторы могут работать с напряжением до 600 Вольт и более, поэтому их разряжают только инструментом с изолированной рукояткой.

Проверка межобкладочного замыкания

Даже такой надежный конденсатор, как твердотельный, может иметь банальные физические повреждения. Например, замыкание между обкладками или на корпус. В первом случае сопротивление не увеличится до бесконечности, хотя первое время будет плавно увеличиваться. При пробое на корпус, сопротивление между одной из ножек и внешней оболочкой будет критически маленьким.

В обоих случаях, такие конденсаторы следует отнести к браку, восстановлению они не подлежат.

Проверка истинных значений емкости

Как проверять детали с помощью специализированного мультиметра, мы уже рассматривали. Однако для проверки твердотельного (электролитического) конденсатора недостаточно просто зафиксировать факт исправности. Особенно, если радиоэлемент под подозрением, либо вы хотите использовать деталь, бывшую в употреблении. Необходимо использовать прибор, с достаточным диапазоном измерения емкости.

Твердотельный конденсатор 8

Тестирование проводится в несколько этапов:

  • несколько раз соединяем конденсатор с клеммами прибора, затем разряжаем его замыканием, и снова проверяем;
  • нагреваем радиодеталь с помощью термофена до температуры 60–85°C, и проверяем значение емкости: разброс параметров не должен превышать допустимую погрешность (указано на корпусе).

Важно: обязательно соблюдайте полярность при проведении измерений. Это необходимо не только для получения истинного значения. При напряжении питания прибора хотя бы 9 вольт (такие мультиметры встречаются часто), конденсатор может выйти из строя из-за переполюсовки.

Практическое применение на автомобиле

Далеко не все домашние мастера будут тестировать элементную базу материнских плат компьютеров. А вот навыки, как проверить конденсатор трамблера, пригодятся любому автолюбителю. Изучим методику на примере классики ВАЗ.

Твердотельный конденсатор 9

  • Для проверки необходимо отсоединить кабель, идущий от трамблера до конденсатора. Он обычно соединен с одним контактом прерывателя. Между контактами закрепляем лампу мощностью 35–50 Вт (разумеется, с напряжением 12 вольт). Если при включении зажигания лампа загорелась, конденсатор неисправен, то есть «пробит» (это самая характерная поломка). Если «контролька» не светится — конденсатор исправен.
  • Второй способ можно применять в крайнем случае, если у вас не нашлось лишней лампы. После включения зажигания, необходимо быстро и вскользь коснуться контактами друг к другу. Если ничего не происходит — конденсатор в порядке. При наличии искрения — радиоэлемент «пробит».

Для того, чтобы проверить твердотельные либо электролитические конденсаторы, не обязательно иметь образование радиоинженера. Руководствуясь нашими советами, вы сможете точно определить исправность радиодеталей, и сэкономить средства на покупку новых элементов. Учитывая высокую стоимость именно таких конденсаторов, снижение затрат на ремонт будет ощутимым.

Как проверить танталовые конденсаторы

Конденсаторы относятся к категории электронных компонентов, наиболее часто выходящих из строя. Поэтому при ремонте аппаратуры в первую очередь тестируются именно эти элементы. Перед выполнением процедуры необходимо ознакомиться, как проверить конденсатор мультиметром и какие типы этой детали встречаются чаще всего.

Измерение емкости мультиметром

Как проверить без приборов

Видео «Проверка конденсатора мультиметром»

Комментарии и Отзывы

Виды конденсаторов

  1. Электролитические. Это полярные элементы с «плюсом» и «минусом». Паять их нужно только определенным образом — плюсовый контакт конденсатора к плюсу схемы, минусовый контакт — к минусу.
  2. Неполярные — это все остальные конденсаторы (керамические, танталовые, SMD-конденсаторы). Они монтируются на поверхность платы, что соответствует современным технологиям.

О том, как проверить конденсаторы на плате, не выпаивая их, рассказывается на видео от канала Радиолюбитель TV.

Что понадобится

В процессе выполнения измерения необходим мультиметр. Желательно, чтобы он измерял емкость.

Кроме этого, понадобится:

  • адаптер на 9 Вольт;
  • отвертка;
  • пинцет;
  • если конденсатор в плате, то понадобится паяльник с припоем и флюсом.

Измерение сопротивления

Измерение сопротивления будет отличаться в зависимости от вида конденсатора.

Электрический конденсатор

Для того чтобы прозвонить электролитический конденсатор мультиметром, следует выполнить действия:

  1. Разрядите деталь, замкнув оба полюса пинцетом или отверткой.
  2. Поставьте мультиметр (шкалу омметра) на максимальный предел измерений и подсоедините к конденсатору, соблюдая полярность. Стрелка прибора должна отклониться на определенное значение, а затем «уйти» на бесконечность.
Керамический конденсатор

Для проверки керамического конденсатора выставьте наибольший предел измерений. Мультиметр покажет значение более 2 МоМ. Если оно меньше, прибор неисправен.

Танталовый конденсатор

Чтобы убедиться в исправности танталового элемента, подсоедините щуп к контактам конденсатора, предел поставьте максимальный. Измерять нужно в омах. Если прозвонка покажет «0», значит, компонент пробит и его нужно заменить.

SMD-конденсаторы

SMD-элементы проверяются по аналогии с керамическими деталями.

Измерение емкости мультиметром

Здесь также хорошую помощь окажет мультиметр, способный определять значение емкости конденсатора.

Для измерения следует выполнить:

  1. Переключите прибор в режим измерения.
  2. Установите соответствующий предел и присоедините щупы к контактам. Показания прибора должны соответствовать надписи на корпусе элемента.

Измерение напряжения

Чтобы проверить конденсатор мультиметром, используя постоянное напряжение, нужно:

  1. Взять адаптер и, соблюдая полярность, подключить его к выводам детали (ее нужно отпаять от платы). Через несколько секунд она зарядится.
  2. Затем подсоедините щупы тестера к детали и измерьте напряжение. В первый момент оно должно соответствовать тому, что указано на адаптере.

Как проверить без приборов

Осмотрите конденсатор, наличие следующих признаков свидетельствует о пробое элемента:

  • темные пятна;
  • вздутие и разрывы оболочки;
  • протечка электролита.

Вздувшиеся электролитические конденсаторы

Есть и другой способ проверки работоспособности, для реализации которого понадобится источник тока, а также провода и низковольтная лампочка. Зарядите конденсатор и подключите к его выводам лампочку. Она должна гореть в течение нескольких секунд, а затем погаснуть. Это говорит об исправности элемента.

Фотогалерея

Видео «Проверка конденсатора мультиметром»

На видео от пользователя Влад ЧЩ можно узнать о том, как проверить конденсатор мультиметром.

Дорожки и контактные площадки на современных платах становятся все меньше, а сами платы зачастую являются многослойными.

Все это значительно усложняет процесс отсоединения элемента с целью контроля его работоспособности.

Потому актуальным становится вопрос: как проверить конденсатор мультиметром не выпаивая его? Попробуем найти решение.

Сложности проверки

В первую очередь это относится к элементам с малым сопротивлением постоянному току: предохранителям, индуктивностям, обмоткам трансформаторов.

Определение емкости конденсатора без выпаивания возможно только при отсутствии упомянутых компонентов.

Оказывают влияние и полупроводниковые приборы — диоды и транзисторы.

Проверка мультиметром

При помощи мультиметра проверяют два параметра конденсатора: внутреннее сопротивление и емкость.

Внутреннее сопротивление (проверка на пробой и обрыв цепи)

Мультиметр переводят в режим измерения сопротивления путем установки переключателя в сектор «Ω» на верхнюю позицию — у разных моделей это 2 или 20 МОм.

Далее касаются щупами выводов конденсатора. Если тот исправен, происходит следующее:

  • вначале мультиметр показывает низкое сопротивление — конденсатор заряжается подаваемым на щупы напряжением;
  • по мере увеличения заряда в конденсаторе, сопротивление постепенно возрастает и в конце концов достигает очень высокой величины: на дисплее — значение свыше 2 МОм или «1» (символ бесконечности).

Иное поведение прибора свидетельствует о неисправности элемента, когда сопротивление:

  1. оказалось ниже 2 МОм: конденсатор пробит (появилась проводимость в диэлектрике между обкладками);
  2. сразу стало бесконечно большим: обрыв вывода.

Конденсаторы делятся на два типа: полярные и неполярные. Первые чувствительны к полярности измерений и если ее перепутать, подав на «минусовый» вывод положительный потенциал, а на «плюсовой» — отрицательный, выходят из строя. «Минусовый» вывод распознают по отметке в виде «птички» на корпусе конденсатора.

В мультиметре потенциалы распределяются так:

  • порт «COM» — отрицательный: по негласному правилу сюда включают черный щуп;
  • порт «V/ Ω» — положительный: принято включать красный щуп.

При наличии заведомо исправного конденсатора той же марки, состояние исследуемого проверяют методом сравнения:

  • замеряют сопротивление исправного конденсатора;
  • то же самое выполняют для исследуемого элемента;
  • сравнивают скорость изменения показаний на мультиметре.

Для этого метода более подходит аналоговый (стрелочный) тестер: плавно отклоняющаяся стрелка четко отражает изменение сопротивления в режиме реального времени.

Конденсатор проверяется в разряженном состоянии, иначе возможна электротравма или повреждение мультиметра.

Способ разряда зависит от емкости:

  • малая (низкое напряжение): закорачивают выводы отверткой;
  • большая (высокое напряжение): замыкают выводы резистором сопротивлением 10 кОм.

Резистор удерживают инструментом с изолированными ручками.

Емкость

Измерение емкости возможно при наличии в мультиметре специальной функции. У таких приборов на лицевой панели имеется сектор «CX».

Конденсатор подключается двумя способами:

  1. у некоторых моделей имеются разъемы для щупов с пометкой «CX»;
  2. у других в сектор «CX» выведены две контактные площадки с пометками «+» и «-».

При контакте щупов или площадок с выводами конденсатора на дисплее отображается значение емкости. Полученные данные сравнивают с числовым показателем, указанным на корпусе конденсатора, после чего делают вывод о его пригодности.

Переключатель должен быть установлен в секторе «CX» на позиции с ближайшим большим значением по отношению к ожидаемой емкости. Обычно в секторе имеется 5 позиций со данными от 20 нФ до 200 мкФ.

Данный способ контроля не подходит для конденсаторов емкостью менее 0,25 мкФ. Их проверяют специальным устройством — LC-метром.

При отсутствии функции определения емкости, конденсатор проверяют так:

  1. Заряжают его от источника постоянного тока. Напряжение источника — примерно вдвое меньше напряжения конденсатора. Для элемента на 25 В достаточно источника на 9 – 12 В.
  2. Выждав несколько секунд, чего обычно достаточно для полной зарядки, радиодеталь отключают от питания и мультиметром замеряют напряжение на ее выводах.

Измеритель настраивается следующим образом:

  • черный щуп включен в порт «COM»;
  • красный — в порт «V/Ω»;
  • переключатель: в сектор измерения постоянного напряжения («DCV» или «V-») на позицию с ближайшим большим значением относительно ожидаемого напряжения конденсатора.

Как проверить не выпаивая

Для проверки без демонтажа применяются специальные тестеры. От обычных они отличаются пониженным напряжением на щупах, что сводит к минимуму риск повреждения прочих компонентов цепи.

Если такого прибора в наличии нет, можно превратить в него обычный мультиметр, подключив через приставку. Разнообразные схемы таких приставок опубликованы в Интернете и специализированных журналах.

Независимо от того, какой прибор применяется для измерения параметров конденсатора, вопрос о влиянии прочих элементов остается актуальным. Так, если параллельно с исследуемым, к цепи подключено еще несколько конденсаторов, тестер покажет их суммарную емкость.

Как работать с мультиметром

Параллельное включение в схему исправного компонента

Еще один способ проверить конденсатор без выпаивания состоит в подключении параллельно ему заведомо исправного аналога той же емкости. Если устройство заработает, значит проблема действительно была в конденсаторе и его необходимо заменить.

В схемах с высоким напряжением этот способ проверки применять нельзя.

Проверка на искру

При отсутствии измерительного прибора под рукой либо в случае большой емкости конденсатора его можно проверить «на глазок».

Элемент заряжают, затем металлическим инструментом с изолированными ручками замыкают его выводы. На руки следует надеть резиновые перчатки.

Яркая искра в сопровождении характерного звука свидетельствует об исправности конденсатора. Если разряд получился вялым, радиодеталь пора утилизировать.

Для получения исчерпывающей информации о состоянии конденсатора требуется мультиметр с функцией замера емкости (на панели управления имеется сектор «CX»).

Но и не оснащенный такой опцией тестер немало расскажет о данном элементе. Демонтаж конденсатора с платы требуется не всегда, но следует быть готовым к тому, что при измерениях на плате, точность окажется далеко не идеальной.

Емкость: 470uF;

Напряжение: 10V;

Допустимое отклонение емкости: ±10%;

Типоразмер: (D).

Описание товара Конденсатор танталовый SMD 470 мкФ 10V (D) ±10%

Конденсатор танталовый SMD 470uF 10V (D) ±10% – компактный SMD-компонент, обладает довольно большой емкостью – 470uF, отличается долговременной и стабильной работой в широком диапазоне частот, почти не склонен к ""высыханию"" электролита и устанавливается в цепях с напряжением до 10V.

Технические характеристики конденсатора танталового SMD 470uF 10V (D) ±10%

  • Емкость: 470uF;
  • Напряжение: 10V;
  • Допустимое отклонение емкости: ±10%;
  • Типоразмер: (D).

Отличительные особенности и преимущества конденсатора танталового SMD 470uF 10V (D) ±10%

Рассматриваемый танталовый SMD-конденсатор благодаря своим небольшим размерам может быть компактно установлен на печатную плату, и зачастую может заменить SMD-электролит.

Более того, танталовый SMD-конденсатор характеризуется меньшим током утечки и успешно применяется вместо SMD-электролита той же емкости и рабочего напряжения в блоках питания, в том числе импульсного типа.

Благодаря невысокой паразитной индуктивности и более широкой частотной характеристике, танталовый SMD-конденсатор может заменить рабочую пару ""электролитический конденсатор""+""керамический конденсатор"", которая устанавливается для фильтрации выпрямленного напряжения и подавления высокочастотных помех.

Танталовый SMD-конденсатор может быть установлен в высококачественной звуковоспроизводящей аппаратуре, в которой недопустимо попадание в цепь прохождения сигнала, фона и гула от некачественной фильтрации сетевого напряжения, что может произойти в случае потери обычным электролитическим конденсатором емкости из-за ""высыхания"".

Кроме этого, танталовый SMD-конденсатор применяется в промышленности, в том числе автомобильной, в военной сфере, при производстве компьютерного и сетевого оборудования и систем контроля безопасности.

При расчете параметров схемы, в которую предполагается устанавливать танталовый SMD-конденсатор, необходимо, чтобы напряжение, при котором будет работать конденсатор, составляло 50-60 % от предельного.

Причины выхода из строя танталового SMD-конденсатора

Танталовые SMD-конденсаторы отличаются чувствительностью к превышению (даже кратковременному) напряжения над максимально допустимым.

При установке на печатную плату танталового SMD-конденсатора, следите за полярностью подключения.

При пайке не допускайте перегрева.

Замена танталового SMD-конденсатора

Танталовый SMD-конденсатор может быть заменен на электролитический SMD-конденсатор той же емкости и на аналогичное рабочее напряжение.

Также возможна и обратная замена – электролитического на танталовый конденсатор.

Главное условие: соответствие габаритов, чтобы заменяющий конденсатор поместился в отведенное место на печатной плате.

Как устанавливать танталовый SMD-конденсатор

Танталовый SMD-конденсатор припаивается методом поверхностного монтажа при использовании паяльной пасты, а в качестве паяльного оборудования необходимо применять термовоздушную паяльную станцию.

Как проверить танталовый SMD-конденсатор

Проверка танталового SMD-конденсатора начинается с внешнего осмотра, в ходе которого нужно обратить внимание на факты повреждений корпуса, наличие следов потемнения, вздутия.

Однозначный вывод можно сделать только по результатам измерений.

В частности, на пробой и короткое замыкание, танталовые SMD-конденсаторы проверяются мультиметром путем прозвонки.

Чтобы точно измерить емкость танталового SMD-конденсатора мультиметром, используйте измерительный прибор с функцией измерения емкости. Удобно применять специальную приставку SMD VA3010.

Перед проведением измерений обязательно разрядите конденсатор, например путем замыкания выводов.

Купить конденсатор танталовый SMD 470uF 10V (D) ±10% Вы можете в Киеве, в Интернет-магазине Electronoff.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *