Как распространяется свет в оптически однородной среде
Перейти к содержимому

Как распространяется свет в оптически однородной среде

помогите с конртрольными вопросами по физике

1. как распространяется свет в оптически однородной среде?
прямолинейно
2. могут ли разноцветные излучения иметь одинаковые частоты, длины?
разноцветные — это разных частот. одинаковая длина волны да, может быть, в средах с разным показателем преломления
3. почему не наступает темнота сразу же после того как солнце скроется за горизонт?
потому что остается существенный источник света — небо (слой атмосферы над наблюдателем) , все еще подсвеченное солнцем.
4. почему туман состоящий из прозрачных капелек воды, оказывается непрозрачным?
потому что каждая капелька преломляет и рассеивает свет, и у него нет возможности распространяться прямолинейно, как в однородной среде
1. почему обычные источники света не излучают когерентные волны?
потому что нет соответствующих условий для такого излучения — множества возбужденных атомов с большим временем жизни, и резонатора, где бы поддерживалось резонансное излучение
2. почему дифракцию звука можно наблюдать более отчетливо, чем дифракцию света?
чушь какая-то. все эти явления можно наблюдать отчетливо, каждый в своих условиях
3. каким спосабом можно получитькогерентные волны от обычного источника спонтанного излучения света?
осветить его когерентной волной. либо поставить резонатор. короче, создать лазер (с соответствующими условиями) . дурацкий вопрос
1. как направлен вектор магнитной индукции относительно плоскости фотографии треков частиц?
перпендикулярно
2. почему атомные массы химических элементов имеют дробные значения?
потому что это смесь изотопов, где каждый учитывается пропорционально стандартному содержанию в природе
3.при каком условии ядерная реакция протекает с выделением энергии, с поглащением энергии?
все дело в разности энергии частиц до и после распада, обусловленной дефектом массы
4. что такое естественная радиоактивность?
природный радиоактивный фон, вызванный космическим излучением, излучением земной коры и радона

Оптика. Распространение света.

Отдельные законы оптики были сформулированы задолго до того, как была определена сущность света. Одним из таких законов будет закон прямолинейного распространения света. Согласно ему в однородной прозрачной среде свет распространяется прямолинейно. Он был определен в еще III в. до н. э. древнегреческим ученым Евклидом.

Если среда не прозрачная, то свет не будет распространяться.

Прямолинейностью распространения света в однородной среде объясняет формирование тени. Тенью именуют фрагмент пространства за непрозрачным объектом, куда не проходит свет. Форма резкой тени на экране идентична форме некоторого сечения предмета, параллельного плоскости экрана; размеры же тени обусловлены взаимным размещением источника, объекта и экрана.

В случае источников конечных размеров на экране образуется резкая тень, обрамленная полутенью — частично освещенной областью пространства.

Закон прямолинейного света можно получить, применив принцип Ферма. Эту концепцию, выразил в 1660 г. П. Ферма, она является обобщением законов геометрической оптики. Согласно ей: в пространстве между двумя точками свет пойдет по тому пути, вдоль которого время его прохождения минимально. В однородной среде скорость света величина неизменная. Следовательно, наименьшее время прохождения светом дистанции между двумя точками совпадает с движением по самому короткому расстоянию, значит по прямой линии.

Закон о прямолинейном распространении света применяют для объяснения таких явлений, как затмение.

Практически местоположении окружающих нас объектов мы определяем, подразумевая, что свет от объекта попадает в наш глаз по прямолинейным траекториям. Наша ориентация во внешнем мире полностью опирается на закон о прямолинейном распространении света.

Основные законы геометрической оптики

Оптика – один из разделов физики, который изучает свойства и физическую природу света, а также его взаимодействия с веществами.

Данный раздел делят на три, приведенные ниже, части:

  • геометрическая или, как ее еще называют, лучевая оптика, которая базируется на понятии о световых лучах, откуда и исходит ее название;
  • волновая оптика, исследует явления, в которых проявляются волновые свойства света;
  • квантовая оптика, рассматривает такие взаимодействия света с веществами, при которых о себе дают знать корпускулярные свойства света.

В текущей главе нами будут рассмотрены два подраздела оптики. Корпускулярные свойства света будут рассматриваться в пятой главе.

Геометрическая оптика. Основные законы геометрической оптики

Задолго до возникновения понимания истинной физической природы света человечеству уже были известны основные законы геометрической оптики.

Закон прямолинейного распространения света

Закон прямолинейного распространения света гласит, что в оптически однородной среде свет распространяется прямолинейно.

Подтверждением этому служат резкие тени, которые отбрасываются непрозрачными телами при освещении с помощью источника света сравнительно малых размеров, то есть так называемым «точечным источником».

Иное доказательство заключается в достаточно известном эксперименте по прохождению света далекого источника сквозь малое отверстие, с образующимся в результате узким световым пучком. Данный опыт подводит нас к представлению светового луча в виде геометрической линии, вдоль которой распространяется свет.

Стоит отметить тот факт, что само понятие светового луча вместе с законом прямолинейного распространения света утрачивают весь свой смысл, в случае если свет проходит через отверстия, размеры которых аналогичны с длиной волны.

Исходя из этого, геометрическая оптика, которая опирается на определение световых лучей – это предельный случай волновой оптики при λ → 0 , рамки применения которой рассмотрим в разделе, посвященном дифракции света.

На грани раздела двух прозрачных сред свет может частично отразиться таким образом, что некоторая часть световой энергии будет рассеиваться после отражения по уже новому направлению, а другая пересечет границу и продолжит свое распространение во второй среде.

Закон отражения света

Закон отражения света, основывается на том, что падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, находятся в одной плоскости (плоскость падения). При этом углы отражения и падения, γ и α – соответственно, являются равными величинами.

Закон преломления света

Закон преломления света, базируется на том, что падающий и преломленный лучи, также как перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение sin угла падения α к sin угла преломления β является величиной, неизменной для двух приведенных сред:

Ученый В. Снеллиус экспериментально установил закон преломления в 1621 году.

Постоянная величина n – является относительным показателем преломления второй среды относительно первой.

Показатель преломления среды относительно вакуума имеет название – абсолютный показатель преломления.

Относительный показатель преломления двух сред – это отношение абсолютных показателей преломления данных сред, т.е.:

Свое значение законы преломления и отражения находят в волновой физике. Исходя из ее определений, преломление является результатом преобразования скорости распространения волн в процессе перехода между двумя средами.

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости во второй υ 2 :

Абсолютный показатель преломления эквивалентен отношению скорости света в вакууме c к скорости света υ в среде:

На рисунке 3 . 1 . 1 проиллюстрированы законы отражения и преломления света.

Геометрическая оптика. Основные законы геометрической оптики

Рисунок 3 . 1 . 1 . Законы отражения υ преломления: γ = α ; n 1 sin α = n 2 sin β .

Среда, абсолютный показатель преломления которой является меньшим, является оптически менее плотной.

В условиях перехода света из одной среды, уступающей в оптической плотности другой ( n 2 < n 1 ) мы получаем возможность наблюдать явление исчезновения преломленного луча.

Данное явление можно наблюдать при углах падения, которые превышают некий критический угол α п р . Этот угол носит название предельного угла полного внутреннего отражения (см. рис. 3 . 1 . 2 ).

Для угла падения α = α п р sin β = 1 ; значение sin α п р = n 2 n 1 < 1 .

При условии, что второй средой будет воздух ( n 2 ≈ 1 ) , то равенство будет допустимо переписать в вид: sin α п р = 1 n , где n = n 1 > 1 – абсолютный показатель преломления первой среды.

В условиях границы раздела «стекло–воздух», где n = 1 , 5 , критический угол равен α п р = 42 ° , в то время как для границы «вода–воздух» n = 1 , 33 , а α п р = 48 , 7 ° .

Геометрическая оптика. Основные законы геометрической оптики

Рисунок 3 . 1 . 2 . Полное внутреннее отражение света на границе вода–воздух; S – точечный источник света.

Практическое применение явления полного отражения

Феномен полного внутреннего отражения широко используется во многих оптических устройствах. Одним из таких устройств является волоконный световод – тонкие, изогнутые случайным образом, нити из оптически прозрачного материала, внутри которых свет, попавший на торец, может распространяться на огромные расстояния. Данное изобретение стало возможным только благодаря правильному применению феномена полного внутреннего отражения от боковых поверхностей (рис 3 . 1 . 3 ).

Волоконная оптика – это научно-техническое направление, основывающееся на разработке и использовании оптических световодов.

Практическое применение явления полного отражения

Рисунок 3 . 1 . 3 . Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность.

Оптика

Оптика – это раздел физики, в котором изучаются закономерности световых явлений, природа света и его взаимодействие с веществом.

Световой луч – это линия, вдоль которой распространяется свет.

Закон независимости световых лучей:
при пересечении световых лучей каждый из них продолжает распространяться в прежнем направлении.

Источник света – это тело, которое излучает свет.

При излучении света источник теряет энергию, при поглощении его внутренняя энергия увеличивается, т. е. распространение света сопровождается переносом энергии.

Виды источников света:

  • тепловые – это источники, в которых излучение света происходит в результате нагревания тела до высокой температуры;
  • люминисцентные – это тела, излучающие свет при облучении их светом, рентгеновскими лучами, радиоактивным излучением и т. д.

Точечный источник света – это источник, представляющий собой светящуюся материальную точку, т. е. источник, размеры которого малы по сравнению с расстоянием до освещаемого предмета.

Если источник света находится в бесконечности, то его лучи падают на поверхность параллельным пучком.

Свет – это электромагнитная волна с частотой от 1,5·10 11 Гц до 3·10 16 Гц.

Скорость света в вакууме: ​ \( c \) ​ = 3·10 8 м/с.

Прямолинейное распространение света

Закон распространения света:
свет в прозрачной однородной среде распространяется прямолинейно.

Экспериментальным доказательством прямолинейности распространения света является образование тени.

Тень – это область пространства, куда не попадает свет от источника.

Полутень – это область пространства, куда частично попадает свет от источника.

Если источник света точечный, то на экране образуется четкая тень предмета.

Если источник неточечный, то на экране образуется размытая тень (области тени и полутени).

Образованием тени при падении света на непрозрачный предмет объясняются такие явления, как солнечное и лунное затмения.

Закон отражения света

Отражение – это явление, при котором при падении световых лучей на непрозрачную гладкую поверхность они меняют направление распространения, возвращаясь в прежнюю среду.

АО – падающий луч, ОВ – отраженный луч, СО – перпендикуляр

Угол падения – это угол между падающим лучом и перпендикуляром к отражающей поверхности.

Угол отражения – это угол между отраженным лучом и перпендикуляром к отражающей поверхности.

Законы отражения света

  • Лучи падающий и отраженный лежат в одной плоскости с перпендикуляром, восстановленным в точку падения луча к отражающей поверхности.
  • Угол отражения равен углу падения. ​ \( \angle\beta=\angle\alpha \) ​, где ​ \( \alpha \) ​ – угол падения, ​ \( \beta \) ​ – угол отражения.

Виды отражения

  • Зеркальное – это отражение, при котором лучи, падающие на поверхность параллельным пучком, после отражения остаются параллельны.

  • Рассеянное – это отражение, при котором лучи, падающие на поверхность параллельным пучком, после отражения отклоняются в различных направлениях.

Если луч падает перпендикулярно отражающей поверхности, то угол падения равен нулю, и угол отражения тоже равен нулю. Поэтому луч отражается в обратном направлении.

Важно!
В оптике все углы отсчитываются от перпендикуляра к отражающей поверхности или к границе раздела сред.

Построение изображений в плоском зеркале

Построение изображения в плоском зеркале основано на законах отражения света.

Алгоритм построения изображения в плоском зеркале

  1. Проведите из данной точки на поверхность луч под произвольным углом. В точке падения луча на границу раздела сред проведите перпендикуляр.
  2. Отметьте угол падения ​ \( \alpha \) ​.
  3. Постройте равный ему угол отражения ​ \( \beta \) ​.
  4. Проведите из данной точки перпендикуляр к поверхности зеркала ​ \( (\alpha=0) \) ​.
  5. Постройте равный ему угол отражения ​ \( (\beta=0) \) ​ (эти лучи совпадают).
  6. Проведите пунктирной линией продолжения отраженных лучей за зеркало.
  7. Найдите точку пересечения продолжений отраженных лучей (эта точка является изображением данной точки в плоском зеркале).
  8. Аналогично постройте изображение второй точки.
  9. Соедините полученные изображения точек пунктирной линией.

Изображение предмета в плоском зеркале мнимое, прямое, по размерам равное предмету, находящееся за зеркалом на таком же расстоянии, на каком предмет находится перед зеркалом.

Важно!
Если на поверхность плоского зеркала падает сходящийся пучок лучей, то изображение получается действительным.

Если поверхность двух плоских зеркал образует угол ​ \( \varphi \) ​, то количество изображений в такой системе зеркал можно определить по формуле:

где ​ \( N \) ​ – количество изображений.

Закон преломления света

Преломление света – это изменение направления распространения светового луча на границе раздела двух сред.

Угол преломления – это угол между преломленным лучом и перпендикуляром к границе раздела двух сред.

​ \( \gamma \) ​ – угол преломления

Законы преломления света

  • Лучи падающий и преломленный лежат в одной плоскости с перпендикуляром, восстановленным в точку падения луча к преломляющей поверхности.
  • Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред и равная относительному показателю преломления двух сред:

где ​ \( n_ <21>\) ​ – относительный показатель преломления.

Первой является среда, в которой распространяется падающий луч, второй является среда, в которой распространяется преломленный луч.

Относительный показатель преломления равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой среды:

где ​ \( n_1 \) ​ – абсолютный показатель преломления первой среды; ​ \( n_2 \) ​ – абсолютный показатель преломления второй среды.

Абсолютный показатель преломления показывает, во сколько раз скорость света в вакууме больше, чем в данной среде:

где ​ \( c \) ​ – скорость света в вакууме, ​ \( v \) ​ – скорость распространения света в данной среде.

Относительный показатель преломления показывает, во сколько раз скорость распространения света в первой среде больше, чем во второй:

Среда, у которой абсолютный показатель преломления больше, является оптически более плотной средой.

Среда, у которой абсолютный показатель преломления меньше, является оптически менее плотной средой.

Следствия закона преломления света

  • Если свет падает из оптически менее плотной среды в оптически более плотную, то угол падения больше угла преломления:

  • Если свет падает из оптически более плотной среды в оптически менее плотную, то угол падения меньше угла преломления:

Если луч падает на плоско параллельную пластину, изготовленную из оптически более плотного вещества, чем окружающая среда, то луч не изменяет своего направления, а лишь смещается на некоторое расстояние.

​ \( x \) ​ – смещение луча от первоначального направления:

где ​ \( d \) ​ – толщина пластины.

Важно!
Если в условии задачи говорится, что «кажется, что луч падает под углом ​ \( \varphi_1 \) ​ к поверхности воды», то имеют в виду не кажущийся угол падения ​ \( \alpha_1 \) ​, а угол между кажущимся падающим лучом и поверхностью воды \( \varphi_1 \) .

Полное внутреннее отражение

Если свет падает из оптически более плотной среды в оптически менее плотную среду, то с увеличением угла падения увеличивается угол преломления. При некотором значении угла падения угол преломления становится равным 90°. Преломленный луч будет скользить по поверхности раздела двух сред.

Предельный угол полного отражения – это угол падения, при котором угол преломления становится равным 90°:

Если вторая среда – воздух, ​ \( n_2 \) ​ = 1, то ​ \( \sin\alpha_<пр.>=\frac<1>. \) ​.

При дальнейшем увеличении угла падения угол преломления тоже увеличивается и наблюдается только отражение света. Это явление называется полным отражением света.

Применение явления полного внутреннего отражения

Треугольная призма – прозрачное тело, ограниченное с трех сторон плоскими поверхностями так, что линии их пересечения взаимно параллельны.

Если призма изготовлена из оптически более плотного вещества, чем окружающая среда, то луч, дважды преломляясь, отклоняется к основанию призмы, а мнимое изображение источника света смещается к вершине призмы.

Преломляющий угол призмы – это угол, лежащий против основания.

Угол отклонения луча призмой – это угол между направлениями падающего на призму и вышедшего из призмы лучей.

​ \( \varphi \) ​ – преломляющий угол,

​ \( \theta \) ​ – угол отклонения луча призмой.

Важно!
С помощью треугольной равнобедренной призмы с преломляющим углом 90° можно:

  • повернуть луч на 90° (поворотная призма, используется в перископах);

  • изменить направление луча на 180° (оборотная призма, используется в биноклях);

  • изменить относительное расположение лучей.

Линзы. Оптическая сила линзы

Линза – это прозрачное тело, ограниченное двумя сферическими или криволинейными поверхностями, одна из которых может быть плоской.

Тонкая линза – физическая модель линзы, в которой ее толщиной можно пренебречь по сравнению с диаметром линзы.

Классификация линз

  • выпуклые – это линзы, у которых средняя часть толще, чем края;
  • вогнутые – это линзы, у которых края толще, чем средняя часть.

2. По оптическим свойствам:

  • собирающие – это линзы, после прохождения которых параллельный пучок лучей собирается в одной точке;

  • рассеивающие – это линзы, после прохождения которых параллельный пучок лучей рассеивается.

Величины, характеризующие линзу

Главная оптическая ось – это прямая, проходящая через центры сферических поверхностей линзы.

Оптический центр линзы – это точка пересечения главной оптической оси с линзой, проходя через которую луч не изменяет своего направления.

Побочная оптическая ось – это любая прямая, проходящая через оптический центр линзы под произвольным углом к главной оптической оси.

Фокус линзы – это точка, в которой пересекаются после преломления лучи, падающие на линзу параллельно главной оптической оси.

Фокусное расстояние – это расстояние от оптического центра линзы до ее фокуса. Обозначение – \( F \) , единица измерения – м.

Фокальная плоскость – это плоскость, проходящая через фокус линзы перпендикулярно ее главной оптической оси.

Побочный фокус – это точка пересечения побочной оптической оси с фокальной плоскостью.

Оптическая сила линзы – это величина, обратная фокусному расстоянию.

Обозначение – ​ \( D \) ​, единица измерения – диоптрия (дптр):

1 дптр – это оптическая сила линзы с фокусным расстоянием 1 м.

Важно!
Оптическая сила линзы зависит от показателя преломления линзы и от радиусов кривизны сферических поверхностей, ограничивающих линзу:

где ​ \( n_л \) ​ – показатель преломления линзы, ​ \( n_ <ср>\) ​ – показатель преломления среды, ​ \( R_1 \) ​ и \( R_2 \) – радиусы сферических поверхностей.

Если поверхности выпуклые, то ​ \( R_1 \) ​ > 0 и \( R_2 \) > 0, если поверхности вогнутые, то \( R_1 \) < 0 и \( R_2 \) < 0.

Если одна из поверхностей линзы плоская, например первая, то ​ \( R_1\to\infty \) ​, а вторая поверхность выпуклая: \( R_2 \) > 0, то

Формула тонкой линзы

где ​ \( F \) ​ – фокусное расстояние линзы, ​ \( d \) ​ – расстояние от предмета до линзы, ​ \( f \) ​ – расстояние от линзы до изображения.

Правило знаков:

  • ​ \( F \) ​ > 0, если линза собирающая; \( F \) < 0, если линза рассеивающая;
  • ​ \( d \) ​ > 0, если предмет действительный; \( d \) < 0, если предмет мнимый (если на линзу падает сходящийся пучок лучей);
  • ​ \( f \) ​ > 0, если изображение действительное; ​ \( f \) ​ < 0, если изображение мнимое.

Линза собирающая, предмет действительный, изображение действительное:

Линза собирающая, предмет действительный, изображение мнимо:

Линза собирающая, предмет мнимый, изображение действительное:

Линза рассеивающая, предмет действительный, изображение мнимое:

Линза рассеивающая, предмет мнимый, изображение мнимое:

Увеличение линзы – это величина, равная отношению линейных размеров изображения к линейным размерам предмета.

Обозначение – ​ \( \mathit <\Gamma>\) ​, единицы измерения – нет.

где ​ \( H \) ​ – линейный размер изображения, ​ \( h \) ​ – линейный размер предмета.

где ​ \( f \) ​ – расстояние от линзы до изображения, ​ \( d \) ​ – расстояние от предмета до линзы.

Важно!
При расчете увеличения линзы знаки ​ \( f \) ​ и ​ \( d \) ​ не учитываются.

Построение изображений в линзах

Для построения изображения в линзах следует помнить:

  1. луч, идущий вдоль главной оптической оси линзы, не преломляется;
  2. луч, проходящий через оптический центр линзы, не преломляется;
  3. луч, падающий на собирающую линзу параллельно главной оптической оси, после преломления пройдет через фокус линзы;
  4. луч, падающий на рассеивающую линзу параллельно главной оптической оси, преломится так, что его мнимое продолжение пройдет через фокус линзы, а сам луч – противоположно мнимому продолжению;
  5. луч, падающий на собирающую линзу через фокус, после преломления пройдет параллельно главной оптической оси линзы;
  6. произвольный луч после преломления в собирающей линзе пойдет через побочный фокус (точку фокальной плоскости, в которой ее пересечет параллельная произвольному лучу побочная оптическая ось);
  7. произвольный луч, падающий на рассеивающую линзу, преломится так, что его мнимое продолжение пройдет через точку, в которой пересечет фокальную плоскость линзы побочная оптическая ось, параллельная произвольному лучу.

Изображение, даваемое тонкой линзой, может быть действительным или мнимым.

Действительное изображение получается в результате пересечения преломленных в линзе лучей, исходящих из данной точки.

Мнимое изображение получается в результате пересечения продолжений преломленных в линзе лучей, исходящих из данной точки.

Построение изображений точки, даваемых собирающей линзой

  • Если точка находится за двойным фокусом линзы, то ее действительное изображение получается между фокусом и двойным фокусом по другую сторону от линзы.

  • Если точка находится в двойном фокусе линзы, то его действительное изображение получается в двойном фокусе по другую сторону от линзы.

  • Если точка находится между фокусом и двойным фокусом линзы, то его действительное изображение получается за двойным фокусом по другую сторону от линзы.

  • Если точка находится в фокусе линзы, то его изображение находится в бесконечности.

  • Если точка находится между линзой и фокусом, то его мнимое изображение получается по ту же сторону от линзы.

Построение изображений предмета, даваемых собирающей линзой

  • Если предмет находится за двойным фокусом линзы, то его изображение получается действительным, перевернутым, уменьшенным, по другую сторону от линзы.

  • Если предмет находится в двойном фокусе линзы, то его изображение получается действительным, перевернутым, равным по размерам предмету, в двойном фокусе по другую сторону от линзы.

  • Если предмет находится между фокусом и двойным фокусом линзы, то его изображение получается действительным, перевернутым, увеличенным, по другую сторону от линзы.

  • Если предмет находится в фокусе линзы, то его изображение находится в бесконечности.

  • Если предмет находится между линзой и фокусом, то его изображение получается мнимым, прямым, увеличенным, по ту же сторону от линзы.

Построение изображений точки, даваемых рассеивающей линзой

В рассеивающей линзе изображение точки всегда получается мнимым, по ту же сторону от линзы.

Построение изображений предмета, даваемых рассеивающей линзой

Изображение предмета в рассеивающей линзе всегда получается мнимым, прямым, уменьшенным, по ту же сторону от линзы.

Важно!
При решении задач на прохождение световых лучей сквозь линзы и получение изображений в них прежде всего выясните, о какой линзе идет речь: собирающей или рассеивающей. Обязательно сделайте чертеж, на котором соответствующими буквами укажите все основные расстояния: расстояние от предмета до линзы, расстояние от линзы до изображения, фокусное расстояние. Также обязательно укажите оптический центр линзы и оба фокуса по разные стороны от линзы.

При построении изображения следует заранее выучить, каким оно должно быть при соответствующем расположении предмета относительно линзы и где находиться (действительным или мнимым, увеличенным или уменьшенным, прямым или обратным). В противном случае при неверном построении, когда вы чуть-чуть искривите луч или он пойдет неточно через фокус или центр, изображение может оказаться не там, где надо, или вместо увеличенного уменьшенным, и тогда в решении появится ошибка.

Оптические приборы. Глаз как оптическая система

Оптические приборы – это устройства, предназначенные для получения на экране, светочувствительных пленках, фотопленках и в глазу изображений различных предметов.

Лупа – это короткофокусная двояковыпуклая линза, предназначенная для относительно небольшого увеличения изображения.

Увеличение лупы рассчитывается по формуле:

где ​ \( d_0 \) ​ – расстояние наилучшего зрения, ​ \( d_0 \) ​ = 0,25 м.

Для получения увеличенного изображения предмет помещают перед линзой на расстоянии немного меньше фокусного. Изображение получается мнимым.

Микроскоп – это оптический прибор, предназначенный для рассматривания очень мелких предметов под большим углом зрения.

Микроскоп состоит из двух собирающих линз – короткофокусного объектива и длиннофокусного окуляра, расстояние между которыми может изменяться:

где ​ \( F_1 \) ​ – фокусное расстояние объектива; ​ \( F_2 \) ​ – фокусное расстояние окуляра.

Фотоаппарат – прибор, предназначенный для получения действительных, уменьшенных, перевернутых изображений предметов на фотопленке.

Предметы могут находиться на разных расстояниях.

Мультимедийный проектор – оптическое устройство, с помощью которого на экране получают действительное, увеличенное изображение, снятое с источника видеосигнала.

Человеческий глаз – оптическая система, подобная фотоаппарату.

Зрачок регулирует доступ света в глаз. Диаметр зрачка уменьшается при ярком освещении и увеличивается при слабом.

Хрусталик имеет форму двояковыпуклой линзы с показателем преломления 1,41. Он может изменять свою форму, в результате чего меняется его фокусное расстояние. При рассмотрении близких предметов хрусталик становится более выпуклым, при рассмотрении удаленных предметов – более плоским.

На сетчатке глаза образуется действительное, уменьшенное, перевернутое изображение предмета. Благодаря большому количеству нервных окончаний, находящихся на сетчатке, их раздражение передается в мозг и вызывает зрительные ощущения.

Зрение двумя глазами позволяет видеть предмет с разных сторон, т. е. осуществлять объемное зрение.

Если смотреть на предмет одним глазом, то, начиная с 10 м, он будет казаться плоским, если смотреть на предмет двумя глазами, то это расстояние увеличивается до 500 м.

Угол зрения – это угол, образованный лучами, идущими от краев предмета в оптический центр глаза.

​ \( \varphi \) ​ – угол зрения.

Аккомодация глаза – это свойство глаза, обеспечивающее четкое восприятие равноудаленных предметов путем изменения фокусного расстояния оптической системы.

Предел аккомодации – от ​ \( \infty \) ​ до 10 см.

Расстояние наилучшего зрения – это наименьшее расстояние, с которого глаз может без особого напряжения рассматривать предметы:

Дефекты зрения

  • Близорукость – это дефект оптической системы глаза, при котором ее фокус находится перед сетчаткой. Близорукий глаз плохо видит отдаленные предметы.
  • Дальнозоркость – это дефект оптической системы глаза, при котором ее фокус находится за сетчаткой. Дальнозоркий глаз плохо видит близкие предметы.

Очки – это простейший прибор для коррекции оптических недостатков зрения.

Близорукость исправляют с помощью рассеивающих линз.

Дальнозоркость исправляют с помощью собирающих линз.

Интерференция света

Интерференция света – это явление перераспределения энергии в пространстве, происходящее в результате сложения когерентных волн, вследствие чего в одних местах возникают максимумы, а в других минимумы.

Когерентные волны – это волны, имеющие одинаковую частоту и постоянную во времени разность фаз.

Когерентные волны можно получить от одного источника в результате отражения, преломления или дифракции.

Два независимых источника света не могут быть когерентными, поэтому в опытах с интерференцией света световые пучки от одного источника разделяют на два пучка, заставляют их проходить разные расстояния, а потом соединяют.

Когерентными могут быть:

  • волны, одна из которых падает на экран непосредственно от источника света, а другая создается его отражением в зеркале (зеркало Ллойда);

  • волны, образованные отражением одной и той же волны от двух сдвинутых относительно друг друга поверхностей (тонкие пленки);

  • волны, падающие от точечного источника на непрозрачную преграду с двумя узкими щелями, которые разделяют исходный пучок света на два когерентных пучка (опыт Юнга).

Интерференционная картина представляет собой чередование светлых (цветных) и темных полос.

Источником когерентных волн является лазер.

Геометрическая разность хода волн – это разность путей волн от двух когерентных источников ​ \( S_1 \) ​ и \( S_2 \) до точки пространства ​ \( M \) ​, в которой наблюдается интерференция.

Обозначение – ​ \( \Delta r \) ​, единица измерения в СИ – м.

Условие максимума интерференции

Если геометрическая разность хода содержит целое число длин волн или четное число длин полуволн, то в месте их наложения друг на друга наблюдается усиление света – максимум:

где ​ \( k \) ​ = 0; 1; 2; 3… – порядок интерференционного максимума.

Условие минимума интерференции

Если геометрическая разность хода содержит нечетное число длин полуволн, то в месте их наложения друг на друга наблюдается ослабление света – минимум:

где \( k \) = 0; 1; 2; 3… – порядок интерференционного минимума.

Если свет распространяется в прозрачной среде с показателем преломления ​ \( n \) ​, то применяют понятие оптической разности хода.

Оптическая разность хода – это величина, равная произведению показателя преломления и геометрической разности хода волн.

Обозначение – ​ \( \Delta \) ​, единица измерения в СИ – м.

Интерференция в тонких пленках

Наблюдаемое в природе радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленки на металлах) объясняется интерференцией света, возникающей в результате отражения света от передней и задней поверхностей пленки. На тонкую прозрачную пленку толщиной ​ \( h \) ​ падает световая волна, ограниченная лучами 1 и 2. В точке О свет частично отразится от верхней поверхности пленки (волна 1′), а частично преломится и отразится от задней ее поверхности в точке С, преломившись в точке В, выйдет в воздух параллельно волне 1′. Волны 1′ и 1″ когерентны. (То же самое справедливо и для луча 2.)

Если на пути этих лучей поставить собирающую линзу, то они будут накладываться в ее фокальной плоскости и давать интерференционную картину. ( То же самое справедливо и для луча 2.)

Максимум освещенности поверхности тонкой пленки в отраженном свете:

где ​ \( \Delta=2k\frac<\lambda> <2>\) ​ – оптическая разность хода световых волн при отражении от верхней и нижней поверхности, ​ \( k \) ​ = 1; 2; 3… – целое число длин полуволн, укладывающихся в этой разности хода, ​ \( \beta \) ​ – угол преломления.

Минимум освещенности поверхности тонкой пленки в отраженном свете:

Максимум освещенности поверхности тонкой пленки в проходящем свете:

Минимум освещенности поверхности тонкой пленки в проходящем свете:

Примером интерференции являются кольца Ньютона, которые наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны. Воздушная прослойка постепенно утолщается от точки соприкосновения линзы к краям. Отраженные от верхней и нижней границ воздушной прослойки световые волны интерферируют между собой. При этом получается следующая картина: в точке соприкосновения наблюдается черное пятно, окруженное рядом концентрических светлых и темных колец убывающей ширины.

Радиус светлого кольца Ньютона в отраженном свете:

где ​ \( R \) ​ – радиус кривизны линзы, ​ \( k \) ​ – номер кольца, считая от центра интерференционной картины.

Радиус темного кольца Ньютона в отраженном свете:

Радиус светлого кольца Ньютона в проходящем свете:

Радиус темного кольца Ньютона в проходящем свете:

Важно!
При решении задач следует учитывать, в каком свете наблюдается интерференция: в отраженном или проходящем.

Использование интерференции света

  • Интерферометры – это приборы, которые контролируют качество обработки поверхностей зеркал, точность изготовления деталей оптических инструментов и измерительных приборов.
  • Просветление оптики – на поверхность линз наносят тонкую пленку с показателем преломления меньше, чем показатель преломления стекла. Подбирая толщину пленки и величину показателя преломления, добиваются «гашения отраженных волн», вследствие чего возрастает интенсивность света, пропускаемого линзой.

Дифракция света

Дифракция света – это явление отклонения волны от прямолинейного распространения при прохождении через малые отверстия и огибании волной малых препятствий.

Наилучшее условие для наблюдения дифракции создается, когда размеры отверстий или препятствий – порядка длины волны. Чтобы определить распределение интенсивности световой волны, распространяющейся в среде с неоднородностями, используют принцип Гюйгенса–Френеля.

Принцип Гюйгенса–Френеля

Каждая точка фронта волны является источником вторичных волн, которые интерферируют между собой. Поверхность, касательная ко всем вторичным волнам, представляет новое положение фронта волны в следующий момент времени.

Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой, поэтому амплитуда и фаза волны в любой точке пространства – это результат интерференции волн, излучаемых вторичными источниками.

Дифракционная решетка

Дифракционная решетка – это оптический прибор, предназначенный для наблюдения дифракции света.

Дифракционная решетка представляет собой систему параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками.

Дифракционную решетку применяют для разложения света в спектр и измерения длин световых волн.

Период решетки – это величина, равная сумме ширины прозрачной и непрозрачной полос решетки.

Обозначение – ​ \( d \) ​, единица измерения в СИ – м.

где ​ \( a \) ​ – ширина прозрачной полосы; ​ \( b \) ​ – ширина непрозрачной полосы.

Если решетка регулярна, т. е. ее прозрачные и непрозрачные полосы имеют одинаковую ширину, то период решетки можно рассчитать, разделив ее длину на число штрихов:

где ​ \( l \) ​ – длина решетки, ​ \( N \) ​ – число штрихов.

Формула дифракционной решетки

где ​ \( d \) ​ – период решетки; ​ \( \varphi \) ​ – угол дифракции; ​ \( k \) ​ = 0; 1; 2… – порядок максимума, считая от центрального ​ \( k \) ​ = 0 и расположенного напротив центра решетки; ​ \( \lambda \) ​ – длина волны, падающей на решетку нормально к ней.

Если дифракционная решетка освещается белым светом, то при ​ \( k \) ​ ≠ 0 разным длинам волн будут соответствовать разные дифракционные углы. Поэтому положение главных максимумов ненулевого порядка будет различным. Центральный максимум (​ \( k \) ​ = 0) остается белым, т. к. при ​ \( k \) ​ = 0 для всех длин волн ​ \( \varphi \) ​ = 0, т. е. положение главного максимума для всех длин волн одинаково. Все остальные максимумы имеют вид радужных полос, называемых дифракционными спектрами первого порядка (​ \( k \) ​ = 1), второго порядка (​ \( k \) ​ = 2) и т. д. Ближе к центральному максимуму находится фиолетовый край спектра, дальше всего – красный, т. к. ​ \( \lambda_<фиол><\lambda_ <кр>\) ​, то и ​ \( \varphi_<фиол><\varphi_ <кр>\) ​.

Важно!
Поскольку углы, под которыми наблюдаются максимумы первого и второго порядка, не превышают 5°, можно вместо синусов углов использовать их тангенсы.

Дисперсия света

Дисперсия света – это зависимость показателя преломления среды от длины волны (частоты) падающего на вещество света.

Опыт Ньютона (1672)

Из-за дисперсии световые волны с различной длиной волны поразному преломляются веществом, что приводит к разложению белого света на цветные монохроматические лучи – спектр.

Для лучей света различной цветности показатели преломления данного вещества различны, т. к. различны скорости распространения электромагнитных волн, у которых разная длина волны. Луч красного света преломляется меньше из-за того, что красный свет имеет в веществе наибольшую скорость, а луч фиолетового цвета преломляется больше, так как скорость для фиолетового цвета наименьшая. Это объясняется особенностями взаимодействия этих волн с электронами, входящими в состав атомов и молекул вещества среды, где они движутся.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *