Научный форум dxdy
Последний раз редактировалось Kiev 18.11.2018, 11:36, всего редактировалось 15 раз(а).
Как получается, что индуктивность катушки пропорциональна квадрату числа витков?
где
— индуктивность одного витка.
Рассуждения:
Если есть N магнитных моментов, то сумма магнитных моментов пропорционально N, а потоки от каждого момента дают суммарный поток пропорционально N.
Индуктивность это пропорциональность между потоком и током, и можно считать что суммарный поток формируется суммой токов , а значит индуктивность одного витка равна индуктивности N витков.
1) Последовательное соединение витков.
Можно конечно предположить, что катушка это не сумма магнитных моментов, а некоторое последовательное их соединение, при котором увеличивается длина проводника в N раз, а значит растёт сопротивление, а значит ток снижается в N раз:раз. 🙁
2) Взаимная индукция.
При сближении двух одинаковых витков с током, каждый виток создаёт взаимные потоки в другом.
— симметрия,
.
Сумма потоков:
где — изолированный поток.
То есть,
Если токи не суммируются, то есть через катушку идёт такой же ток, как через один виток .
То получаем:
Подскажите, как получают квадратичную зависимость?
Достаточно просто воспользоваться определением индуктивности. Только не забыть, что в этом определении упомянут магнитный поток через контур, ограниченный проводником , а не просто поток через катушку. Если вы построите этот контур с границей на проводнике, поток через катушку пересечёт его раз. На каждом витке провода к этой поверхности добавляется ещё одна поверхность, покрывающая внутренность катушки. Т. е., в результате, магнитный поток через этот контур в
раз больше потока через катушку. Кроме того, магнитное поле через катушку является суммой магнитных полей от всех
витков с этим током, т. е. оно в
раз больше магнитного поля, создаваемого одним витком. Отсюда и
.
Последний раз редактировалось DimaM 18.11.2018, 14:48, всего редактировалось 1 раз.
Как получается, что индуктивность катушки пропорциональна квадрату числа витков?
где
— индуктивность одного витка.
Никак не получается. Это неверная формула.
Вычислить индуктивность отдельного витка — нетривиальная и достаточно трудная задача.
Кроме того, магнитное поле через катушку является суммой магнитных полей от всех alt=»$N$» />витков с этим током, т. е. оно в alt=»$N$» />раз больше магнитного поля, создаваемого одним витком.
Тем не менее, индуктивность одного витка является характеристикой ферромагнтных материалов. Точнее, не материалов, а конкретных типоразмеров конкретных марок материалов.
Это конструкция, индуктивность которой реально посчитать студенту.
Я пока что вообще не вижу связи между индуктивностью отдельного витка и ферромагнитными материалами.
Для справки приведу формулу индуктивности кольца радиуса , сделанного из провода радиуса
(Батыгин и Топтыгин, СГС)
где
— индуктивность одного витка.
То есть вы хотите сказать, что нет квадратичной зависимости от числа витков, при объединения витков в катушку?
Какая тогда зависимость от числа витков линейно от числа , как просто сумма?
Про квадратичную зависимость объединения витков в катушку я взял из Википедии, статья: Индуктивность, 4. Индуктивность одновиткового контура и индуктивность катушки.
Точное значение для индуктивности я пытался вычислить, получил неберущиеся интегралы, которые видимо решаются численно.
После чего взял приближающую зависимость .
Вычислил интеграл . Из чего решил что зависимость
от
, не просто сумма.
Что такое индуктивность, в чём измеряется, основные формулы
Индуктивность характеризует свойства элементов электрической цепи накапливать энергию магнитного поля. Также это мера связи между током и магнитным полем. Ещё её сравнивают с инерцией электричества – также, как массу с мерой инерции механических тел.
Явление самоиндукции
Если ток, идущий через проводящий контур, изменяется по величине, то возникает явление самоиндукции. В этом случае изменяется магнитный поток через контур, и на выводах рамки с током возникает ЭДС, называемая ЭДС самоиндукции. Эта ЭДС противоположна направлению тока и равна:
Очевидно, что ЭДС самоиндукции равна скорости изменения магнитного потока, вызванного изменением протекающего по контуру тока, а также пропорциональна скорости изменения тока. Коэффициент пропорциональности между ЭДС самоиндукции и скоростью изменения тока называется индуктивностью и обозначается L. Эта величина всегда положительна, и имеет единицу измерения в СИ 1 Генри (1 Гн). Также используются дробные доли – миллигенри и микрогенри. Об индуктивности в 1 Генри можно говорить, если изменение тока на 1 ампер вызывает ЭДС самоиндукции в 1 Вольт. Индуктивностью обладает не только контур, но и отдельный проводник, а также катушка, которую можно представить как множество последовательно включенных контуров.
В индуктивности запасается энергия, которую можно вычислить, как W=L*I 2 /2, где:
- W – энергия, Дж;
- L – индуктивность, Гн;
- I – ток в катушке, А.
И здесь энергия прямо пропорциональна индуктивности катушки.
Важно! В технике индуктивностью также называется устройство, в котором происходит запасание электрического поля. Реальный элемент, наиболее близкий к такому определению – катушка индуктивности.
Общая формула для расчета индуктивности физической катушки имеет сложный вид и для практических вычислений неудобна. Полезно запомнить, что индуктивность пропорциональна количеству витков, диаметру катушки и зависит от геометрической формы. Также на индуктивность влияет магнитная проницаемость сердечника, на котором расположена обмотка, но не влияет ток, протекающий по виткам. Для вычисления индуктивности каждый раз надо обращаться к приведенным формулам для конкретной конструкции. Так, для цилиндрической катушки её основная характеристика вычисляется по формуле:
- μ – относительная магнитная проницаемость сердечника катушки;
- μ – магнитная постоянная, 1,26*10-6 Гн/м;
- N – количество витков;
- S – площадь витка;
- l – геометрическая длина катушки.
Для вычисления индуктивности для цилиндрической катушки и катушек других форм лучше воспользоваться программами-калькуляторами, в том числе онлайн-калькуляторами.
Последовательное и параллельное соединение индуктивностей
Индуктивности можно соединять последовательно или параллельно, получая набор с новыми характеристиками.
Параллельное соединение
При параллельном соединении катушек напряжение на всех элементах равны, а токи (переменные) распределяются обратно пропорционально индуктивностям элементов.
- U=U1=U2=U3;
- I=I1+I2+I3.
Общая индуктивность цепи определяется, как 1/L=1/L1+1/L2+1/L3. Формула справедлива для любого количества элементов, а для двух катушек упрощается до вида L=L1*L2/(L1+L2). Очевидно, что итоговая индуктивность меньше индуктивности элемента с наименьшим значен
Последовательное соединение
При таком виде соединения через цепь, составленную из катушек, течёт один и тот же ток, а напряжение (переменное!) на каждом компоненте цепи распределяется пропорционально индуктивности каждого элемента:
- U=U1+U2+U3;
- I=I1=I2=I3.
Суммарная индуктивность равна сумме всех индуктивностей, и будет больше индуктивности элемента с наибольшим значением. Поэтому такое соединение используют при необходимости получить увеличение индуктивности.
Важно! При соединении катушек в последовательную или параллельную батарею формулы расчёта верны только для случаев, когда исключено взаимное влияние магнитных полей элементов друг на друга (экранировкой, большим расстоянием и т.д.). Если влияние существует, то общее значение индуктивности будет зависеть от взаимного расположения катушек.
Некоторые практические вопросы и конструкции катушек индуктивности
На практике применяют различные конструкции катушек индуктивности. В зависимости от назначения и области применения устройства можно выполнить различным способом, но надо учитывать эффекты, возникающие в реальных катушках.
Добротность катушки индуктивности
У реальной катушки, кроме индуктивности, есть ещё несколько параметров, и один из самых важных – добротность. Эта величина определяет потери в катушке и зависит от:
- омических потерь в проводе обмотки (чем больше сопротивление, тем ниже добротность);
- диэлектрических потерь в изоляции провода и каркасе обмотки;
- потерь в экране;
- потерь в сердечнике.
Все эти величины определяют сопротивление потерь, а добротностью называют безразмерную величину, равную Q=ωL/Rпотерь, где:
- ω = 2*π*F – круговая частота;
- L – индуктивность;
- ωL – реактивное сопротивление катушки.
Можно приближённо говорить о том, что добротность равна отношению реактивного (индуктивного) сопротивления к активному. С одной стороны, с ростом частоты растёт числитель, но в то же время за счет скин-эффекта растёт и сопротивление потерь за счет уменьшения полезного сечения провода.
Экранный эффект
Для уменьшения влияния посторонних предметов, а также электрических и магнитных полей и взаимного влияния элементов посредством этих полей, катушки (особенно высокочастотные) часто помещают в экран. Кроме полезного эффекта, экранирование вызывает снижение добротности катушки, снижение её индуктивности и повышение паразитной ёмкости. Причём чем ближе стенки экрана к виткам катушки, тем выше вредное влияние. Поэтому экранированные катушки практически всегда выполняют с возможностью подстройки параметров.
Подстроечная индуктивность
В некоторых случаях требуется точно установить значение индуктивности на месте после подключения катушки к другим элементам цепи, компенсируя отклонение параметров при настройке. Для этого применяются разные способы (переключения отводов витков и т.п.), но наиболее точный и плавный метод – подстройка с помощью сердечника. Он выполняется в виде стержня с резьбой, который можно вворачивать и выворачивать внутри каркаса, настраивая индуктивность катушки.
Переменная индуктивность (вариометр)
Там, где требуется оперативная регулировка индуктивности или индуктивной связи, применяются катушки другой конструкции. Они содержат две обмотки – подвижную и неподвижную. Общая индуктивность равна сумме индуктивностей двух катушек и взаимной индуктивности между ними.
Изменением относительного положения одной катушки к другой, регулируется общее значение индуктивности. Такое устройство называется вариометром и часто применяется в связной аппаратуре для настройки резонансных контуров в тех случаях, когда применение конденсаторов переменной ёмкости по каким-то причинам невозможно. Конструкция вариометра довольно громоздкая, что ограничивает область его применения.
Индуктивность в виде печатной спирали
Катушки с небольшой индуктивностью можно выполнять в виде спирали из печатных проводников. Достоинством такой конструкции являются:
- технологичность производства;
- высокая повторяемость параметров.
К недостаткам относят невозможность точной подстройки при регулировке и сложность получения больших значений индуктивности – чем выше индуктивность, тем больше катушка занимает места на плате.
Катушка с секционной намоткой
Индуктивность без ёмкости бывает только на бумаге. При любой физической реализации катушки сразу же возникает паразитная межвитковая ёмкость. Это во многих случаях вредное явление. Паразитная ёмкость складывается с ёмкостью LC-контура, снижая резонансную частоту и добротность колебательной системы. Также у катушки возникает собственная резонансная частота, которая провоцирует нежелательные явления.
Для снижения паразитной ёмкости применяют различные способы, самый простой из которых – намотка индуктивности в виде нескольких последовательно включенных секций. При таком включении индуктивности складываются, а суммарная ёмкость снижается.
Катушка индуктивности на тороидальном сердечнике
Линии магнитного поля цилиндрической катушки индуктивности проводят через внутреннюю часть обмотки (если там сердечник – то через него) и замыкаются снаружи через воздух. Этот факт влечёт за собой несколько недостатков:
- снижается индуктивность;
- характеристики катушки меньше поддаются расчёту;
- любой предмет, внесенный во внешнее магнитное поле, меняет параметры катушки (индуктивность, паразитная ёмкость, потери и т.п.), поэтому во многих случаях требуется экранировка.
От этих недостатков во многом свободны катушки, намотанные на тороидальных сердечниках (в виде кольца или «бублика»). Магнитные линии проходят внутри сердечника в виде замкнутых петель. Это означает, что внешние предметы практически не оказывают влияние на параметры намотанной на таком сердечнике катушки, и экранировка для такой конструкции не нужна. Также увеличивается индуктивность при прочих равных параметрах, а характеристики проще рассчитать.
К недостаткам катушек, намотанных на торах, относят невозможность плавной подстройки индуктивности на месте. Другая проблема – высокая трудоёмкость и низкая технологичность намотки. Впрочем, это относится ко всем индуктивным элементам в целом, в большей или меньшей степени.
Также общим недостатком физической реализации индуктивности являются высокие массогабаритные показатели, относительно невысокая надежность и низкая ремонтопригодность.
ИНДУКТИВНОСТЬ
ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника
(размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.
Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:
где Ф — магнитный поток через контур, I — сила тока в контуре.
Единицы измерения индуктивности в системе СИ:
Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды
Индуктивность взаимная — величина, характеризующая магнитную связь двух или более электрических цепей (контуров). Если имеется два проводящих контура , то часть линий магнитной индукции, создаваемых током в первом контуре, будет пронизывать площадь, ограниченную вторым контуром (т. е. будет сцеплена с контуром 2).
Магнитный поток Ф12 через контур 2, созданный током I1 в контуре 1, прямо пропорционален току:
Коэффициент пропорциональности M12 зависит от размеров и формы контуров 1 и 2, расстояния между ними, их взаимного расположения, а также от магнитной проницаемости окружающей среды и называется взаимной индуктивностью или коэффициентом взаимной индукции контуров 1 и 2. В системе СИ И. в. измеряется в Генри.
Трансформаторная ЭДС. Принцип действия трансформатора основан на явлении электромагнитной индукции. Линии индукции магнитного поля, создаваемого переменным током в первичной обмотке, благодаря наличию сердечника практически без потерь пронизывают витки вторичной обмотки. Поскольку магнитный поток во вторичной обмотке изменяется со временем (т.к. в первичной обмотке переменный ток), то согласно закону Фарадея в ней возбуждается ЭДС индукции. Трансформатор может работать только на переменном токе, т.к. магнитный поток, созданный постоянным током, не изменяется с течением времени.
Пусть первичная обмотка трансформатора подключена к источнику тока с переменной ЭДС E1 и с действующим значением напряжения U1. На вторичной обмотке ЭДС E2 и напряжение U2.
Из законов Ома следует, что напряжение на обмотке равно
где r — сопротивление обмотки. При изготовлении трансформатора сопротивление первичной обмотки r1 делают очень малым, поэтому часто им можно пренебречь. Тогда
Если пренебречь потерями магнитного потока в сердечнике, то в каждом витке вторичной обмотки будет индуцироваться точно такая же ЭДС индукции e1, как и ЭДС индукции e2 в каждом витке первичной обмотки, т.е. e1 = e2. Следовательно, отношение ЭДС в первичной E1 и вторичной E2 обмотках равно отношению числа витков в них:
Трансформаторный ток. Токи обмоток обратно пропорциональны числам витков (I1/I2 приблиз = w1/w2 = 1/n). С увеличением тока активно-индуктивного приемника вторичное напряжение несколько снижается.
Рис.1.11. К определению магнитного потока рассеяния в катушке с ферромагнитным сердечником
часть магнитного потока катушки замыкается не по сердечнику, а по воздуху. Эта часть потока носит название потока рассеивания Фр (рис. 1.11). Таким образом, полный поток, сцепленный с витками катушки равен
На основании закона Ома для магнитной цепи (1.7) можно написать выражение для потока рассеяния:
Так как , то .То есть поток рассеяния , в отличие от потока в сердечнике, совпадает по фазе с током и связан с ним линейной зависимостью. Следовательно, на векторной диаграмме вектор потока будет совпадать с вектором тока (рис.1.12).
Рис.1.12. Векторная диаграмма магнитных потоков, ЭДС и токов катушки с ферромагнитным сердечником
Расчет индуктивности катушек (однослойных)
Индуктивность катушки зависит от ее геометрических размеров, числа витков и способа намотки катушки. Чем больше диаметр, длина намотки и число витков катушки, тем больше ее индуктивность. То что делает катушка индуктивности в колебательных контурах является очень важным и от правильного расчета зависит добротность контура.
Если катушка индуктивности наматывается плотно виток к витку, то индуктивность ее будет больше по сравнению с катушкой, намотанной неплотно, с промежутками между витками. Когда требуется намотать катушку по заданным размерам и нет провода нужного диаметра, то при намотке ее более толстым проводом надо несколько увеличить, а тонким — уменьшить число витков катушки, чтобы получить необходимую индуктивность.
Ресчет катушек индуктивности (однослойных, цилиндрических)
Рис. 1. Пример однослойной катушки индуктивности.
Все приведенные выше соображения справедливы при намотке катушек без ферритовых сердечников. Расчет однослойных цилиндрических катушек производится по формуле:
- L — индуктивность катушки, мкГн;
- D — диаметр катушки, см;
- I — длина намотки катушки, см;
- n — число витков катушки.
При расчете катушки могут встретиться два случая:
- а) по заданным геометрическим размерам необходимо определить индуктивность катушки;
- б) при известной индуктивности определить число витков и диаметр провода катушки.
В первом случае все исходные данные, входящие в формулу, известны, и расчет не представляет затруднений.
Пример. Определим индуктивность катушки, изображенной на рис. 1; для этого подставим в формулу все необходимые величины:
Во втором случае известны диаметр катушки и длина намотки, которая, в свою очередь, зависит от числа витков и диаметра провода.
Поэтому расчет рекомендуется вести в следующей последовательности. Исходя из конструктивных соображений определяют размеры катушки, диаметр и длину намотки, а затем рассчитывают число витков по формуле:
После того как будет найдено число витков, определяют диаметр провода с изоляцией по формуле:
- d — диаметр провода, мм,
- l — длина обмотки, мм,
- n — число витков.
Пример. Нужно изготовить катушку диаметром 1 см при длине намотки 2 см, имеющую индуктивность 0,8 мкГн. Намотка рядовая виток к витку.
Подставив в последнюю формулу заданные величины, получим:
Если эту катушку наматывать проводом меньшего диаметра, то нужио полученные расчетным путем 14 витков разместить по всей длине катушки (20 мм) с равными промежутками между витками, т. е. с шагом намотки.
Индуктивность данной катушки будет на 1—2% меньше номинальной, что следует учитывать при изготовлении таких катушек. При намотке в случае необходимости более толстым проводом, чем 1,43 мм, следует сделать новый расчет, увеличив диаметр или длину намотки катушки.
Возможно, также придется увеличить и то и другое одновременно, пока не будут получепы необходимые габариты катушки, соответствующие заданной индуктивности.
Следует заметить, что по приведенным пыше формулам рекомендуется рассчитывать такие катушки, у которых длина намотки l равна или больше половины диаметра. Если же длина намотки меньше D половины диаметра то более точные результаты можно получить по формулам:
Как произвести пересчет катушек индуктивности (однослойных, цилиндрических)
Необходимость в пересчете катушек индуктивности возникает при отсутствии нужного диаметра провода, указанного в описании конструкции, и замене его проводом другого диаметра; при изменении диаметра каркаса катушки.
Если отсутствует провод нужного диаметра, что является наиболее частой причиной пересчета катушек, можно воспользоваться проводом другого диаметра.
Изменение диаметра провода в пределах до 25% в ту или другую сторону вполне допустимо и в большинстве конструкций не отражается на качестве их работы. Более того, увеличение диаметра провода допустимо во всех случаях, так как оно уменьшает омическое сопротивление катушки и повышает ее добротность.
Уменьшение же диаметра ухудшает добротность и увеличивает плотность тока на единицу сечения провода, которая не может быть больше определенной допустимой величины.
Пересчет числа витков однослойной цилиндрической катушки при замене провода одного диаметра другим производится по формуле:
- n — повое число витков катушки;
- n1 — число витков катушки, указанное в описании;
- d— диаметр имеющеюся провода;
- d1 — диаметр провода, указанный в описании.
В качестве примера произведем пересчет числа витков катушки, изображенной на рис. 1, для провода диаметром 0,8 мм:
(длина намотки l= 18 X 0,8 = 14,4 мм, или 1,44 см).
Таким образом, число витков и длина намотки несколько уменьшились. Для проверки правильности пересчета рекомендуется выполнить новый расчет катушки с измененным диаметром провода:
При пересчете катушки, связанном с изменением ее диаметра, следует пользоваться процентной зависимостью между диаметром и числом витков катушки.
Эта зависимость заключается в следующем: при увеличении диаметра катушки на определенное число процентов количество витков ее уменьшается на столько же процентов, и, наоборот, при уменьшении диаметра увеличивается число витков на равное число процентов. Для упрощения расчетов за диаметр катушки можно принимать диаметр каркаса.
Рис. 2. Катушки индуктивности. Пример.
Так, для примера произведем пересчет числа витков катушки (рис. 2, а), имеющей диаметр 1,5 см, на диаметр, равный 1,8 см (рис. 2, б). Согласно условиям пересчета диаметр каркаса увеличивается на 3 мм, или на 20%.
Следовательно, для сохранения неизменной величины индуктивности этой катушки при намотке ее на каркасе большего диаметра нужно уменьшить число витков на 20%, или на 8 витков. Таким образом, новая катушка будет иметь 32 витка.
Проверим пересчет н установим погрешность, допущенную в результате пересчета. Катушка (см. рис. 2, а) имеет индуктивность:
Новая катушка на каркасе с увеличенным диаметром:
Ошибка при пересчете составляет 0,25 мкГн, что вполне допустимо для расчетов в радиолюбительской практике.