Какие физические явления сопровождают протекание дугового разряда
Перейти к содержимому

Какие физические явления сопровождают протекание дугового разряда

Физические процессы в электрической дуге

Размыкание электрической цепи при наличии в ней тока сопровождается электрическим разрядом между контактами. Если в отключаемой цепи ток и напряжение между контактами больше, чем критические для данных условий, то между контактами возникает дуга, продолжительность горения которой зависит от параметров цепи и условий деионизации дугового промежутка. Образование дуги при размыкании медных контактов возможно уже при токе 0,4—0,5 А и напряжении 15 В.

Рис. 2.1. Расположение в стационарной дуге постоянного тока напряжения U(a)

и напряженности Е(б).

В дуге различают околокатодное пространство, ствол дуги и околоанодное пространство (рис.2.1). Всё напряжение распределяется между этими областями Uк, Uсд, Uа. Катодное падение напряжения в дуге постоянного тока 10—20 В, а длина этого участка составляет 10 –4 —10 –5 см, таким образом, около катода наблюдается высокая напряженность электрического поля (10 5 —10 6 В/см). При таких высоких напряженностях происходит ударная ионизация. Суть ее заключается в том, что электроны, вырванные из катода силами электрического поля (автоэлектронная эмиссия) или за счет нагрева катода (термоэлектронная эмиссия), разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать один электрон с оболочки нейтрального атома, то произойдет ионизация. Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги.

Проводимость плазмы приближается к проводимости металлов [у= 2500 1/(Ом×см)]. В стволе дуги проходит большой ток и создается высокая температура. Плотность тока может достигать 10 000 А/см 2 и более, а температура — от 6000 К при атмосферном давлении до 18000 К и более при повышенных давлениях.

Высокие температуры в стволе дуги приводят к интенсивной термоионизации, которая поддерживает большую проводимость плазмы.

Термоионизация — процесс образования ионов за счет соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения.

Чем больше ток в дуге, тем меньше ее сопротивление, а поэтому требуется меньшее напряжение для горения дуги, т. е. дугу с большим током погасить труднее.

Физические явления, протекающие в сварочной дуге

Сварочная дуга представляет собой один из видов устойчи­вого электрического разряда через газовый промежуток, в котором на­ходится смесь нейтральных атомов, электронов и ионов. Этот разряд ха­рактеризуется высокими плотностью тока и температурой. Электрод, соединенный с отрицатель­ным зажимом источника, называется катодом, а электрод, соединенный с положительным зажимом — анодом. Под действием напряжения, имею­щегося между электродами, электроны и отрицательно заряженные ионы перемещаются к аноду, а положительно заряженные ионы — к катоду. В дуговом разряде наблюдается неравномерное распределение электриче­ского поля в межэлектродном пространстве, состоящем из трех областей: катодной, анодной и столба дуги (рис. 1.4). Такая структура связана с тем, что столб дуги не может граничить непосредственно с металлом электродов, так как в большинстве случаев точка кипения последних значительно ниже температуры столба. В приэлектродных областях, соединяющих столб дуги с электродами, происходит постепенное снижение температуры и степени термической ионизации газа. На поверхности электродов часто наблюдаются пятна — катодное и анодное, на границе которых с соответ­ствующими областями дуги наблюдаются скачки потенциалов. Поэтому процессы образования заряженных частиц и переноса тока в этих обла­стях существенно отличаются от соответствующих процессов в столбе, причем основные свойства столба мало зависят от процессов в катодной и анодной областях.

Рис. 1.4. Структура сварочной дуги и распределение электриче­ского поля в межэлектродном пространстве

Катодная область. Большую роль в обеспечении проводимости дуго­вого промежутка играет поток эмитированных катодом электронов. Этот процесс обеспечивается как за счет нагрева поверхности катода (термо­электронная эмиссия), так и за счет создания у его поверхности электри­ческого поля высокой напряженности (автоэлектронная эмиссия). При термоэлектронной эмиссии электроны за счет нагрева приобретают необ­ходимый запас кинетической энергии для преодоления потенциального барьера, ограждающего поверхность катода. Эту энергию характеризу­ют работой выхода электрона UBЫX, величина которой для разных ме­таллов составляет от 2 до 5 В. При автоэлектронной эмиссии энергия, необходимая для вырывания электронов из катода, сообщается внешним электрическим полем, которое вытягивает их за пределы воздействия электростатического поля металла. Определенный вклад вносит и бом­бардировка катода движущимися частицами. Электроны, прошедшие барьер, ускоряются в поле катодного потенциала в сторону столба дуги и, отдавая свою кинетическую энергию в столкновениях с нейтральными атомами, поддерживают ионизацию и нагрев газа на гра­нице между столбом дуги и катодной областью. Внешнее электрическое поле положительных ионов, скопившихся в катодной области, умень­шает работу выхода электронов UBЫX на 1-2 В. Данное явление называ­ется эффектом Шоттки. Поскольку реальная работа выхода электронов UBЫXР и катодное падение напряжения UKАТ имеют разные знаки, то в об­щем случае потенциальный барьер для выхода электронов уменьшается, что может быть выражено так; UKАТ — UBЫXР. При малых размерах катод­ной области экспериментально можно определить именно эту величину, которая и принимается за катодное падение напряжения. Протяжен­ность lKАТ катодной области электрической дуги очень мала и составляет 10-4-10-3 мм. Величина катодного падения напряжения UKАТ лежит в пределах 5-20 В. Тогда градиент падения напряжения (UKАТ / lKАТ) равен 104-105 В/мм. Исследования показывают, что в катодной области доля электронного тока составляет около 60% от полного тока Iд, а плотность тока на стальном катоде близка к 25 А/мм 2 .

Анодная область. Анод не эмитирует положительно заряженных ио­нов, поэтому анодный ток обусловлен переносом к нему отрицательно заряженных частиц — электронов. В связи с этим вблизи анода образуется избыток отрицательных зарядов, в результате чего у поверх­ности анода возникает дополнительный потенциальный барьер, величина напряжения которого равна работе выхода электронов UBЫX. Электроны не могут выйти из анода и за счет энергии теплового движения, так как анодное падение напряжения Uан создает для них непреодолимый барьер. Общее значение потенциала в анодной области равно UАН + UBЫX. Электро­ны, выходящие из плазмы столба дуги и попадающие в анодную область, ускоряются в поле анодного падения потенциала и приобретают допол­нительную энергию, которой оказывается достаточно для ионизации ато­мов, сталкивающихся с электронами. Появившиеся ионы также ускоря­ются под действием анодного падения напряжения в сторону столба дуги и отдают плазме свою избыточную энергию посредством деионизации и соударений. Протяженность анодной области сопоставима с длиной сво­бодного пробега электрона и составляет около 10-3 мм. В зависимости от материала анода и типа ионизирующих присадок Uан ле­жит в пределах 2-10 В. Градиент напряжения имеет порядок 104 В/мм, т. е. ниже, чем в катодной области. Доля ионного тока в анодной области составляет около 20% от общего тока IД , а плотность тока для стальных электродов в анодной области приблизительно равна 15 А/мм2.

Столб дуги. Эта часть дуги расположена между катодной и анодной областями и имеет длину, на несколько порядков превышающую размеры указанных областей, lСТ = 1-40 мм. Заряженные частицы поступают в столб дуги из катодной и анодной областей, а также возникают в нем за счет термической ионизации нейтральных частиц. Последний процесс играет подчиненную роль. Так, степень диссоциации в парах железа у сварочных дуг не превышает 4%, что свидетельствуете слабой ионизации плазмы столба дуги. В столбе электронная составляющая тока намного больше ионной. Падение напряжения в столбе UCT достигает 40 В, что обеспечивает градиент напряжения εСТ = 1 – 4 В/мм. При этом падение напряжения прямо пропорционально длине столба lСТ. Плотность тока в столбе дуги со стальными электродами достигает 20 А/мм 2 .

Поскольку протяженность приэлектродных областей мала по сравне­нию с длиной столба, то длину дуги считают равной длине столба

Распределение потенциала в дуге имеет вид, показанный на рис. 2.1. Из приведенного графика следует, что падение напряжения на дуге для точных расчетов можно записать так:

При использовании экспериментальных данных зависи­мость упрощается:

Вся мощность, выделяемая в катодной области РКАТ = IД (UKАТ — UBЫXР), идет в катод на плавление, испарение и теплоотвод. Мощность тепловыделения на аноде вычисляется по соотношению РАН = 1Д(UАН + UBЫX). Знание соотношения мощностей, выделяемых на ка­тоде и аноде, необходимо для выбора полярности дуги при сварке на по­стоянном токе. Для большинства покрытых электродов РАН больше РКАТ в 1,3-1,5 раза. Поэтому при ручной дуговой сварке для увеличения ско­рости плавления электрода используют обратную полярность (+ на элек­троде). Такая же полярность используется при механизированной свар­ке плавящимся электродом. При сварке неплавящимся вольфрамовым электродом для уменьшения его перегрева и износа применяют прямую полярность (– на электроде).

ТЕМА 2

ОСОБЕННОСТИ ГОРЕНИЯ СВАРОЧНОЙ ДУГИ ПЕРЕМЕННОГО ТОКА

Устойчивость горения дуги при сварке на переменном токе ниже, чем на постоянном. Действительно, при частоте переменного напряжения сети 50 Гц сварочный ток 100 раз в секунду снижается до нуля и меняет направление на обратное, причем после каждого такого обрыва дуга должна возбуждаться снова. Таким образом, при сварке на переменном токе источник должен обладать специфическим свойством — обеспечи­вать многократное повторное зажигание дуги.

Процесс повторного зажигания дуги при переходе тока через нуль рассмотрим по осциллограммам (рис. 2.1,а). В конце предыдущего полупериода с момента t1напряжение трансформатора становится недоста­точным для питания дуги, в результате дуга угасает, а ток резко снижается. С момента угасания t1температура межэлектродного промежутка ТМЭ падает, а его сопротивление RМЭ резко возрастает (рис. 2.1,6).

Рис.2.1. Типичные осциллограммы дуги переменного тока: а — свароч­ные ток iд и напряжение ид, б — температура Тмэ и сопротивление RMЭ межэлектрод-ного промежутка

После перехода тока через нуль в момент t0 анод и катод меняются местами, т.е. направление тока изменяется на обратное. Дуговой разряд мгновенно в момент t0 восстановиться не может, для этого мало напряжение источника. Небольшой преддуговой ток, существующий при этом, создается за счет остаточной плазмы межэлектродного промежутка (не более 0,1 мс после угасания дуги) и термоэлектронной эмиссии с не остывшего еще катода (в течение 1-10мс). Таким образом, электриче­ский разряд в переходном периоде t1–t2не является дуговым, поскольку не обеспечивает генерирования заряженных частиц в количестве, доста­точном для самостоятельного существования дуги. По мере нарастания напряжения источника растет и преддуговой ток, но скорость его увели­чения diд/dt, вплоть до момента t2, существенно ниже, чем скорость сни­жения в момент времени t1. В переходном периоде идут два встречных процесса: с одной стороны, ионизация межэлектродного газа и его на­грев нарастающим током, с другой стороны, деионизация и охлаждение за счет теплоизлучения и теплоотвода в электрод и изделие. Рассмотрим три варианта развития процессов в зависимости от условий сварки.

При достаточно благоприятных условиях (большой объем и высокая степень ионизации остаточной плазмы, мощная термоэлектронная эмис­сия с горячих неплавящихся электродов) из двух процессов существенно преобладает ионизация, поэтому при достижении напряжением источ­ника величины Uд дуговой разряд легко восстанавливается. Менее благо­приятные условия повторного зажигания (рис. 2.1) наблюдаются в большинстве случаев сварки (покрытыми электродами, под флюсом и т.д.). Термоэлектронная эмиссия со сравнительно холодных плавящихся элек­тродов не обеспечивает необходимого количества заряженных частиц. Поэтому дуга возобновляется только в момент t2 при достижении напря­жением источника довольно высокой величины напряжения повторного зажигания U3, достаточной для развития автоэлектронной эмиссии. На­конец, в неблагоприятных условиях (малая мощность дуги, большая ее длина, обдув газовыми потоками) из двух процессов преобладает деионизация, при этом температура Тмэмежэлектродного промежутка резко снижается, а его сопротивление RMЭтакже резко возрастает, как показано пунктиром на рис. 2.1, б, и дуга обрывается.

После зажигания напряжение на дуге снижается от U3 до прибли­зительно постоянной величины Uд и сохраняется на этом уровне до сле­дующего угасания в момент t4. Ток после зажигания резко возрастает и далее меняется по кривой, близкой к синусоиде, достигая максимума в момент t3. Оценивая осциллограммы (рис. 2.1,а) в целом, заметим, что кривые тока и напряжения дуги отличаются от синусоидальных. Как по­казано выше, это объясняется нелинейностью нагрузки, т. е. непостоянством активного сопротивления дуги, а также непостоянством характера разряда.

Рис. 2.2. Динамическая ха­рактеристика дуги перемен­ного тока

Динамическая вольт-амперная характеристика дуги ид = f(iд), от­ражающая связь мгновенных значений напряжения и тока при их быстром изменении, характерном для сварки на переменном токе частотой 50 Гц, показана на рис. 2.2. Ее можно построить по данным осциллограм­мы (рис. 2.1, а) или получить на осциллографе, подавая на горизонталь­ную развертку сигнал, пропорциональный току, а на вертикальную — напряжение дуги. Номера характерных точек на рис. 2.2 совпадают с ин­дексами точек осциллограммы (рис. 2.1,а). Здесь на участке 1-0 изобра­жен процесс угасания дуги в полупериоде обратной полярности, 0-2 — процесс зажигания в полупериоде прямой полярности, 2-3 — дуговой разряд при нарастании тока, 3-4 — дуговой разряд при спаде тока, 4-— угасание дуги и т. д.

На динамической характеристике легко фиксируются напряжение U3 и ток I3 повторного зажигания. Обращает на себя внимание большой пик напряжения зажигания обратной полярности U3.ОБР. Дело в том, что в этот момент катодом является сравнительно холодная сварочная ванна с невысокой эмиссионной способностью. Заметно также, что максималь­ное значение тока в полупериоде прямой полярности выше, а напряжение ниже соответствующих величин для полупериода обратной полярности. Следовательно, дуга частично выпрямляет ток, наблюдается так называ­емый вентильный эффект. Динамическая характеристика на участке 2-3 нарастания тока проходит выше, чем на участке спада 3-4. Таким обра­зом, при частоте 50 Гц проявляется инерционность тепловых процессов в дуге. На участке 2-3 температура столба дуги ниже, чем на участке 3-4 (рис. 2.1, б), поэтому сопротивление дуги больше и напряжение дуги также выше.

Статическая вольт-амперная характеристика дуги переменного тока Uд = f(Iд) строится не для мгновенных, а для действующих, т. е. среднеквадратичных значений. По рис. 2.1,а

В эксперименте такая характеристика получается при использовании приборов электромагнитной системы — вольтметра и амперметра. Ха­рактеристика Uд = f(Iд) подобна той, что была ранее описана для дуги постоянного тока (рис. 2.2). Поэтому для обеспечения устойчивого про­цесса последовательно со вторичной обмоткой трансформатора должен быть включен элемент, формирующий падающую характеристику ис­точника — резистор, катушка индуктивности или конденсатор.

Явление электрической дуги

Электрическая дуга представляет собой электрический разряд в среде (воздух, вакуум, элегаз, трансформаторное масло) с большим током, низким напряжением, высокой температурой. Это явление как электрическое, так и тепловое.

Может возникать между двумя контактами при их размыкании.

Обратимся к ВАХ-диаграмме:

переход от тлеющего заряда к дуговому

На данном графике у нас зависимость тока от напряжения, немного не в масштабе, но так нагляднее. Значит, есть три области:

  • в первой области у нас высокое падение напряжения у катода и малые токи — это область тлеющего разряда
  • во второй области у нас падение напряжения резко снижается, а ток продолжает увеличиваться — это переходная область между тлеющим и дуговым разрядом
  • третья область характеризует дуговой разряд — малое падение напряжения и высокая плотность тока и следовательно высокая температура.

Механизм возникновения дуги может быть следующий: контакты размыкаются и между ними возникает разряд. В процессе размыкания воздух между контактами ионизируется, обретая свойства проводника, затем возникает дуга. Зажигание дуги — это процессы ионизации воздушного промежутка, гашение дуги — явления деионизации воздушного промежутка.

Явления ионизации и деионизации

В начале горения дуги преобладают процессы ионизации, когда дуга устойчива, то процессы ионизации и деионизации происходят одинаково часто, как-только процессы деионизации начинают преобладать над процессами ионизации — дуга гаснет.

  • термоэлектронная эмиссия — электроны отрываются от раскаленной поверхности катодного пятна;
  • автоэлектронная эмиссия — электроны вырываются с поверхности из-за высокой напряженности электрического поля.
  • ионизация толчком — электрон вылетает с достаточной скоростью и в пути сталкивается с нейтральной частицей, в результате образуется электрон и ион.
  • термическая ионизация — основной вид ионизации, поддерживает дугу после её зажигания. Температура дуги может достигать тысяч кельвинов, а в такой среде увеличивается число частиц и их скорости, что способствует активным процессам ионизации.
  • рекомбинация — образование нейтральных частиц из противоположно заряженных при взаимодействии
  • диффузия — положительно заряженные частицы отправляются “за борт”, из-за действия электрического поля дуги от середины к границе

Бывают ситуации, когда при размыкании контактов дуга не загорается, тогда говорят о безыскровом разрыве. Такое возможно при малых значениях тока и напряжения, или при отключении в момент, когда значение тока проходит через ноль.

Свойства дуги постоянного тока

Дуга может возникать как при постоянном токе-напряжении, так и при переменном. Начнем рассмотрение с постоянки:

строение дуги постоянного тока

Анодная и катодная области — размер=10 -4 см; суммарное падение напряжения=15-30В; напряженность=10 5 -10 6 В/см; в катодной области происходит процесс ударной ионизации из-за высокой напряженности, образовавшиеся в результате ионизации электроны и ионы образуют плазму дуги, которая обладает высокой проводимостью, данная область отвечает за разжигание дуги.

Ствол дуги — падение напряжения пропорционально длине дуги; плотность тока порядка 10кА на см 2 , за счет чего и температура порядка 6000К и выше. В данной области дуги происходят процессы термоионизации, данная область отвечает за поддержание горения.

ВАХ дугового разряда постоянного тока

ВАХ дуги постоянного тока DC

Эта кривая соответствует кривой 3 на самом верхнем рисунке. Тут есть:

  • Uз — напряжение зажигания
  • Uг — напряжение гашения

Если ток уменьшить от Io до 0 мгновенно, то получится прямая, которая лежит снизу. Эти кривые характеризуют дуговой промежуток как проводник, показывают какое напряжение нужно приложить, чтобы создать в промежутке дугу.

Чтобы погасить дугу постоянного тока, необходимо, чтобы процессы деионизации преобладали над процессами ионизации.

  • можно определить из ВАХ дуги
  • активное, независимо от рода тока
  • переменная величина
  • падает с ростом тока

Если разорвать цепь амперметра под нагрузкой, то тоже можно увидеть дугу.

Свойства дуги переменного тока

Особенностью дуги переменного тока является её поведение во времени. Если посмотреть на график ниже, то видно, что дуга каждый полупериод проходит через ноль.

вольтамперная и временная характеристики дуги переменного тока

Видно, что ток отстает от напряжения примерно на 90 градусов. Вначале появляется ток и резко повышается напряжение до величины зажигания (Uз). Далее ток продолжает расти, а падение напряжения снижается. В точке максимального амплитудного значения тока, значение напряжения дуги минимальное. Далее ток стремится к нулю, а падение напряжения опять возрастает до значения гашения (Uг), которое соответствует моменту, когда ток переходит через ноль. Далее всё повторяется опять. Слева от временной характеристики приведена вольт-амперная характеристика.

Особенностью переменной дуги, кроме её зажигания и гашения на протяжении полупериода, является то, как ток пересекает ноль. Это происходит не по форме синусоиды, а более резко. Образуется бестоковая пауза, во время которой происходят знакомые нам процессы деионизации. То есть возрастает сопротивление дугового промежутка. И чем больше возрастет сопротивление, тем сложнее будет дуге обратно зажечься.

Если дуге дать гореть достаточно долго, то уничтожению подлежат не только контакты, но и само электрооборудование. Условия для гашения дуги заложены на стадии проектирования, постоянно внедряются новые методы борьбы с этим вредным явлением в коммутационных аппаратах.

Само по себе явление дуги не является полезным для электрооборудования, так как ведет к ухудшению эксплуатационных свойств контактов: выгорание, коррозия, механическое повреждение.

Но не всё так печально, потому что светлые умы нашли полезное применение дуговому разряду — использование в дуговой сварке, металлургии, осветительной технике, ртутных выпрямителях.

Электрическая дуга.

Отключение цепи контактным аппаратом характеризуется возникновением плазмы, которая проходит разные стадии газового разряда в процессе преобразования межконтактного промежутка из проводника электрического тока в изолятор.

При токах выше 0,5-1 А возникает стадия дугового разряда (область 1 )(рис. 1.); при снижении тока возникает стадия тлеющего разряда у катода (область 2 ); следующая стадия (область 3 ) – таунсендовский разряд, и наконец, область 4 – стадия изоляции, в которой носители электричества – электроны и ионы – не образуются за счет ионизации, а могут поступать только из окружающей среды.

Рис. 1. Вольтамперная характеристика стадий электрического разряда в газах

Первый участок кривой – дуговой разряд (область 1) – характе­ризуется малым падением напряжения у электродов и большой плотностью тока. С ростом тока напряжение на дуговом промежутке сначала резко падает, а затем изменяется незначительно.

Второй участок (область 2 ) кривой, представляющий собой область тлеющего разряда, характеризуется высоким падением напряжения у катода (250 – 300 В) и малыми токами. С ростом тока возрастет падение напряжения на разрядном промежутке.

Таунсендовский разряд (область 3 ) характеризуется чрезвычайно малыми значениями тока при высоких напряжениях.

Электрическая дуга сопровождается высокой температурой и связана с этой температурой. Поэтому дуга – явление не только электрическое, но и тепловое.

В обычных условиях воздух является хорошим изолятором. Так, для пробоя воздушного промежутка в 1 см требуется приложить напряжение не менее 30 кВ. Для того чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц: отрицатель­ных – в основном свободных электронов, и положительных – ионов. Процесс отделения от нейтральной частицы одного или нескольких электронов с обра­зованием свободных электронов и ионов называется ионизацией.

Ионизация газа может происходить под действием света, рентгеновских лучей, высокой температуры, под влиянием электрического поля и ряда дру­гих факторов. Для дуговых процессов в электрических аппаратах наибольшее значение имеют: из процессов, происходящих у электродов, – термоэлектрон­ная и автоэлектронная эмиссии, а из процессов, происходящих в дуговом промежутке, – термическая ионизация и ионизация толчком.

В коммутационных электрических аппаратах, предна­значенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250 – 300 В. Такой разряд встречается либо на контактах ма­ломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

Основные свойства дугового разряда.

1) Дуговой разряд имеет место только при токах большой величины; минимальный ток дуги для металлов со­ставляет примерно 0,5 А;

2) Температура центральной части дуги очень вели­ка и в аппаратах может достигать 6000 – 18000 К;

3) Плотность тока на катоде чрезвычайно велика и достигает 10 2 – 10 3 А/мм 2 ;

4) Падение напряжения у катода составляет всего 10 – 20 В и практически не зависит от тока.

В дуговом разряде можно различить три характер­ные области: околокатодную, область столба дуги (ствол дуги) и околоанодную (рис. 2.).

В каждой из этих областей процессы ионизации и деионизации протекают по-разному в зависимо­сти от условий, которые там существуют. Поскольку ре­зультирующий ток, проходящий через эти три области, одинаков, в каждой из них происходят процессы, обес­печивающие возникновение необходимого количества за­рядов.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайВ каждой из этих областей процессы ионизации и деионизации протекают по-разному в зависимо­сти от условий, которые там существуют. Поскольку ре­зультирующий ток, проходящий через эти три области, одинаков, в каждой из них происходят процессы, обес­печивающие возникновение необходимого количества за­рядов.

Рис. 2. Распределение напряжения и напряжённости электрического поля в стационарной дуге постоянного тока

Термоэлектронная эмиссия. Термоэлектронной эмиссией называется явление испускания электронов из накаленной поверхности.

При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в последней площадке контактирования. Эта площадка нагревается до температуры плавления и образования контактного перешейка из расплавленного металла, который при дальнейшем расхождении контактов рвется. Здесь происходит испарение металла контактов. На отрицательном электроде образуется так назы­ваемое катодное пятно (раскаленная площадка), которое служит основа­нием дуги и очагом излучения элект­ронов в первый момент расхождения контактов. Плотность тока термо­электронной эмиссии зависит от тем­пературы и материала электрода. Она невелика и может быть достаточной для возникновения электрической ду­ги, но она недостаточна для ее го­рения.

Автоэлектронная эмиссия. Это –явление испускания электронов из катода под воздействием сильного электрического поля.

Место разрыва электрической цепи может быть представлено как конденсатор переменной емкости. Емкость в начальный момент равна бесконеч­ности, затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, и напряжение на нем растет постепенно от нуля до напряжения сети. Одновременно увеличивается расстояние между контактами. Напряженность поля между контактами во время нарастания напряжения проходит через значения, превышающие 100 МВ/см. Такие значения напряженности электрического поля достаточны для вырывания электронов из холодного катода.

Ток автоэлектронной эмиссии также весьма мал и может служить только началом развития дугового разряда.

Таким образом, возникновение дугового разряда на расходящихся контактах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Преобладание того или иного фактора зависит от значения отключаемого тока, материала и чистоты поверхности контактов, скорости их расхождения и от ряда других факторов.

Ионизация толчком. Если свободный электрон будет обладать достаточной скоростью, то при столкновении с нейтральной частицей (атом, а иногда и молекула) он может выбить из неё электрон. В результате получатся новый свободный электрон и положительный ион. Вновь полученный электрон может, в свою очередь, ионизировать следующую частицу. Такая ионизация носит название ионизации толчком.

Для того чтобы электрон мог ионизировать частицу газа, он должен двигаться с некоторой определенной скоростью. Скорость электрона зависит от разности потенциалов на длине его свободного пробега. Поэтому обычно указывается не скорость движения электрона, а то минимальное значение разности потенциалов, какое необходимо иметь на длине свободного пути, чтобы электрон к концу пути приобрел необходимую скорость. Эта разность потенциалов носит название потенциала ионизации .

Потенциал ионизации для газов составляет 13 – 16 В (азот, кислород, водород) и до 24,5 В (гелий), для паров металла он примерно в два раза ниже (7,7 В для паров меди).

Термическая ионизация. Это – процесс ионизации под воздействием высокой температуры. Поддержание дуги после ее возникновения, т.е. обеспечение возникшего дугового разряда достаточным числом свободных зарядов, объяс­няется основным и практически единственным видом ионизации – термической ионизацией.

Температура столба дуги с среднем равна 6000 – 10000 К, но может достигать и более высоких значений – до 18000 К. При такой температуре сильно возрастает как число быстро движущихся частиц газа, так и скорость их движения. При столкновении быстро движущихся атомов или молекул большая часть их разрушается, образуя заряженные частицы, т.е. происходит иони­зация газа. Основной характеристикой термической ионизации является сте­пень ионизации , представляющая собой отношение числа ионизированных атомов в дуговом промежутке к общему числу атомов в этом промежутке. Одновременно с процессами ионизации в дуге происходят обратные процессы, т. е. воссоединение заряженных частиц и образование нейтральных частиц. Эти процессы носят название деионизации .

Деионизация происходит главным образом за счет рекомбинации и диф­фузии .

Рекомбинация. Процесс, при котором различно заряженные частицы, при­ходя во взаимное соприкосновение, образуют нейтральные частицы, называется рекомбинацией.

В электрической дуге отрицательными частицами являются в основном электроны. Непосредственное соединение электронов с положительным ионом ввиду большой разности скоростей маловероятно. Обычно рекомбинация происходит при помощи нейтральной частицы, которую электрон заряжает. При соударении этой отрицательно заряженной частицы с положительным ионом образуется одна или две нейтральные частицы.

Диффузия. Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги.

Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в столбе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур столба дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожно малую роль.

Падение напряжения на стационарной дуге распределяется неравномерно вдоль дуги. Картина изменения падения напряжения U Д и напряжённости электрического поля (продольного градиента напряжения) Е Д = dU/dx вдоль дуги приведена на рисунке (рис. 2). Под градиентом напряжения Е Д по­нимается падение напряжения на единицу длины дуги. Как видно из рисунка, ход харак­теристик U Д и Е Д в приэлектродных областях резко отличается от хода характе­ристик на остальной части дуги. У электродов, в прикатодной и прианодной об­ластях, на промежутке дли­ны порядка 10 – 4 см имеет место резкое падение напря­жения, называемое катод­ным U к и анодным U а. Значение этого падения на­пряжения зависит от мате­риала электродов и окружа­ющего газа. Суммарное зна­чение прианодного и прикатодного падений напряжений составляет 15 – 30 В, градиент напряжения достигает 10 5 – 10 6 В/см.

В остальной части дуги, называемой столбом дуги, падение напряжения U Д практически прямо пропорционально длине дуги. Градиент здесь приблизительно постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100 – 200 В/см.

Околоэлектродное падение напряжения U Э не зависит от длины дуги, падение напряжения в столбе дуги пропорционально длине дуги. Таким образом, падение напряжения на дуговом промежутке

U Д = U Э + Е Д l Д,

где: Е Д – напряжённость электрического поля в столбе дуги;

l Д – длина дуги; U Э = U к + U а.

В заключение следует ещё раз отметить, что в стадии дугового разряда преобладает термическая ионизация – разбиение атомов на электроны и положительные ионы за счёт энергии теплового поля. При тлеющем – возникает ударная ионизация у катода за счет соударения с электронами, разгоняемыми электри­ческим полем, а при таунсендовском разряде ударная ионизация пре­обладает на всём промежутке газового разряда.

Статическая вольтамперная характеристика электрической

дуги постоянного тока.

Важнейшей характеристикой дуги является зависимость напряжения на ней от величины тока. Эта характерис­тика называется вольтамперной. С ростом тока i уве­личивается температура дуги, усиливается термическая ионизация, возрастает число ионизированных частиц в разряде и падает электрическое сопротивление дуги r д.

Напряжение на дуге равно ir д.При увеличении тока сопротивление дуги уменьшается так резко, что напря­жение на дуге падает, несмотря на то, что ток в це­пи возрастает. Каждому значению тока в установившем­ся режиме соответствует свой динамический баланс числа заряженных частиц.

При переходе от одного значения тока к другому тепловое состояние дуги не изменяется мгновенно. Дуго­вой промежуток обладает тепловой инерцией . Если ток изменяется во времени медленно, то тепловая инерция разряда не сказывается. Каждому значению тока со­ответствует однозначное значение сопротивления дуги или напряжения на ней.

Зависимость напряжения на дуге от тока при мед­ленном его изменении называется статической вольтамперной характеристикой дуги.

Статическая характеристика дуги зависит от рас­стояния между электродами (длины дуги), материала электродов и параметров среды, в которой горит дуга.

Статические вольтамперные характеристи­ки дуги имеют вид кривых, изображенных на рис. 3.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайСтатическая характеристика дуги зависит от рас­стояния между электродами (длины дуги), материала электродов и параметров среды, в которой горит дуга.

Рис. 3. Статические вольтамперные характеристики дуги

Чем больше длина дуги, тем выше лежит ее статическая вольтамперная характеристика. С ростом давления среды, в которой горит дуга, также увеличивается на­пряженность Е Д и поднимается вольтамперная характеристика аналогично рис. 3.

Охлаждение дуги существенно влияет на эту ха­рактеристику. Чем интенсивнее охлаждение дуги, тем больше от нее отводится мощность. При этом должна возрасти мощность, выделяемая дугой. При заданном токе это возможно за счет увеличения напряжения на дуге. Таким образом, с ростом охлаждения вольтампер­ная характеристика располагается выше. Этим широко поль­зуются в дугогасительных устройствах аппаратов.

Динамическая вольтамперная характеристика электрической

дуги постоянного тока.

Если ток в цепи изменяется медленно, то току i 1 со­ответствует сопротивление дуги r Д1 ,абольшему току i 2 соответствует меньшее сопротивление r Д2 , что отражено на рис. 4. (см. статичес­кую характеристику дуги – кривая А ).

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайЕсли ток в цепи изменяется медленно, то току i 1 со­ответствует сопротивление дуги r Д1 ,абольшему току i 2 соответствует меньшее сопротивление r Д2 , что отражено на рис.

Рис. 4. Динамическая вольтамперная характеристика дуги.

В реальных установках ток может меняться довольно быстро. Вследствие тепловой инерции дугового столба изменение сопротивления дуги отстает от изменения то­ка.

Зависимость напряжения на дуге от тока при быст­ром его изменении называется динамической вольтамперной характеристикой .

При резком возрастании тока динамическая характеристика идет выше статической (кривая В ), так как при быстром росте тока сопротивление дуги падает мед­леннее, чем растет ток. При уменьшении – ниже, по­скольку в этом режиме сопротивление дуги меньше, чем при медленном изменении тока (кривая С ).

Динамическая характеристика в значительной степе­ни определяется скоростью изменения тока в дуге. Если в цепь ввести очень большое сопротивление за время, бес­конечно малое по сравнению с тепловой постоянной вре­мени дуги, то в течение времени спада тока до нуля со­противление дуги останется постоянным. В этом случае динамическая характеристика изобразится прямой, про­ходящей из точки 2 в начало координат (прямая D ),т. е. дуга ведет себя как металлический проводник, так как напряжение на дуге пропорционально току.

Условия гашения дуги постоянного тока.

Чтобы погасить электрическую дугу постоянного тока, необходимо создать такие условия, чтобы в дуговом промежутке при всех значениях тока процессы деионизации протекали бы интенсивнее, чем процессы ионизации.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайЧтобы погасить электрическую дугу постоянного тока, необходимо создать такие условия, чтобы в дуговом промежутке при всех значениях тока процессы деионизации протекали бы интенсивнее, чем процессы ионизации.

Рис. 5. Баланс напряжений в цепи с электрической дугой.

Рассмотрим электрическую цепь, содержащую сопротивление R , индуктивность L и дуговой промежуток с падением напряжения U Д, к которой приложено напряжение U (рис. 5, а ). При дуге, имеющей неизменную длину, для любого момента времени будет справедливо уравнение баланса напряжений в этой цепи:

Рассмотрим электрическую цепь, содержащую сопротивление R , индуктивность L и дуговой промежуток с падением напряжения U Д, к которой приложено напряжение U (рис.

где падение напряжения на индуктивности при изменении тока.

Стационарным режимом будет такой, при котором ток в цепи не меняется, т.е. а уравнение баланса напряжений примет вид:

Для погасания электрической дуги необходимо, чтобы ток в ней всё время уменьшался, т.е. , а

Графическое решение уравнения баланса напряжений представлено на рис. 5, б . Здесь прямая 1 представляет собой напряжение источника U ; наклонная прямая 2 – падение напряжения на сопротивлении R (реостатная характеристика цепи), вычитаемое из напряжения U , т.е. U – iR ; кривая 3 – вольтамперную характеристику дугового промежутка U Д.

Особенности электрической дуги переменного тока.

Если для гашения дуги постоянного тока необходимо создать такие усло­вия, при которых ток упал бы до нуля, то при переменном токе ток в дуге независимо от степени ионизации дугового промежутка переходит через нуль каждый полупериод, т.е. каждый полупериод дуга гаснет и зажигается вновь. Задача гашения дуги существенно облегчается. Здесь необходимо создать условия, при которых ток не восстановился бы после прохождения через нуль.

Вольтамперная характеристика дуги переменного тока за один период приведена на рис. 6. Поскольку, даже при промышленной частоте 50 Гц, ток в дуге меняется достаточно быстро, то представленная характеристика является динамической. При синусоидальном токе напряжение на дуге сначала увеличивается на участке 1, а затем, в связи с ростом тока, падает на участке 2 (участки 1 и 2 относятся к первой половине полупериода). После прохождения тока через максимум динамическая ВАХ возрастает по кривой 3 в связи с уменьшением тока, а затем уменьшается на участке 4 в связи с приближением напряжения к нулю (участки 3 и 4 относятся ко второй половине этого же полупериода).

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайВольтамперная характеристика дуги переменного тока за один период приведена на рис. 6. Поскольку, даже при промышленной частоте 50 Гц, ток в дуге меняется достаточно быстро, то представленная характеристика является динамической.

Рис. 6. Вольтамперная характеристика дуги переменного тока

При переменном токе температура дуги является величиной переменной. Однако тепловая инерция газа оказывается довольно значительной, и к моменту перехода тока через нуль температура дуги хотя и уменьшается, но остаётся достаточно высокой. Всё же имеющее место снижение температуры при переходе тока через нуль способствует деионизации промежутка и облегчает гашение электрической дуги переменного тока.

Электрическая дуга в магнитном поле.

Электрическая дуга является газообразным про­водником тока. На этот проводник, так же как на метал­лический, действует магнитное поле, создавая силу, про­порциональную индукции поля и току в дуге. Магнитное поле, действуя на дугу, увеличивает ее длину и переме­щает элементы дуги в пространстве. Поперечное перемещение элементов дуги создает ин­тенсивное охлаждение, что приводит к повышению гради­ента напряжения на столбе дуги. При движении дуги в среде газа с большой скоро­стью возникает расслоение дуги на отдельные парал­лельные волокна. Чем длиннее дуга, тем сильнее проис­ходит расслоение дуги.

Дуга является чрезвычайно подвижным проводником. Известно, что на токоведущую часть действуют такие силы, которые стремятся увеличить электромагнит­ную энергию контура. Поскольку энергия пропорцио­нальна индуктивности, то дуга под действием своего собственного поля стремится образовывать витки, петли, так как при этом возрастает индуктивность цепи. Эта способность дуги тем сильнее, чем больше ее длина.

Движущаяся в воздухе дуга преодолевает аэродина­мическое сопротивление воздуха, которое зависит от ди­аметра дуги, расстояния между электродами, плотности газа и скорости движения. Опыт показывает, что во всех случаях в равномерном магнитном поле дуга движется с постоянной скоростью. Следовательно, электродинами­ческая сила уравновешивается силой аэродинамического сопротивления.

С целью создания эффективного охлаждения дуга с помощью магнитного поля втягивается в узкую (диаметр дуги больше ширины щели) щель между стен­ками из дугостойкого материала с высокой теплопровод­ностью. Из-за увеличения теплоотдачи стенкам щели гра­диент напряжения в столбе дуги при наличии узкой щели значительно выше, чем у дуги, свободно перемещающей­ся между электродами. Это дает возможность сократить необходимую для гашения длину и время гашения.

Способы воздействия на электрическую дугу в коммутационных аппаратах.

Цель воздействия на столб возникающей в аппарате дуги состоит в увеличении её активного электрического сопротивления вплоть до бесконечности, когда коммутационный орган переходит в изоляционное состояние. Практически всегда это достигается путем интенсивного охлаждения столба дуги, уменьшения её температуры и теплосодержания, в результате чего снижается степень ионизации и количество носителей электричества и ионизированных частиц и повышается электрическое сопротивление плазмы.

Для успешного гашения электрической дуги в коммутационных низковольтных аппаратах необходимо выполнить следующие условия:

1) увеличить длину дуги путем её растяжения или увели­чения числа разрывов на полюс выключателя;

2) переместить дугу на металлические пластины дугогасительной решётки, которые являются как радиаторами, поглощающими тепловую энергию столба дуги, так и разбивают её на ряд последовательно соединённых дуг;

3) переместить столб дуги магнитным полем в щелевую камеру из дугостойкого изоляционного материала с большой теплопроводностью, где дуга интенсивно охлаж­дается, соприкасаясь со стенками;

4) образовывать дугу в закрытой трубке из газогенерирующего материала – фибры; выделяемые под воздействием температуры газы создают высокое давление, что способствует гашению дуги;

5) уменьшить концентрацию паров металлов в дуге, для чего на этапе проектирования аппаратов использовать соответствующие материалы;

6) гасить дугу в вакууме; при очень низком давлении газа недо­статочно атомов газа, чтобы ионизировать их и поддержать проведение тока в дуге; электрическое сопротивление канала столба дуги стано­вится очень высоким и дуга гаснет;

7) размыкать контакты синхронно перед переходом переменно­го тока через нуль, что существенно снижает выделение тепловой энергии в образовавшейся дуге, т.е. способствует гашению дуги;

8) применять чисто активные сопротивления, шунтирующие дугу и облегчающие условия её гашения;

9) применять шунтирующие межконтактный промежуток полу­проводниковые элементы, переключающие на себя ток дуги, что практиче­ски исключает образование дуги на контактах.

    Электри́ческая дуга́ (во́льтова дуга́, дугово́й разря́д) — физическое явление, один из видов электрического разряда в газе.

Впервые была описана в 1802 году русским учёным В. Петровым в книге «Известие о гальвани-вольтовских опытах посредством огромной батареи, состоявшей иногда из 4200 медных и цинковых кружков» (Санкт-Петербург, 1803). Электрическая дуга является частным случаем четвёртой формы состояния вещества — плазмы — и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.

Электрическая дуга между двумя электродами в воздухе при атмосферном давлении образуется следующим образом:

При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами и других факторов. Потенциал ионизации первого электрона атомов металлов составляет приблизительно 4,5 — 5 В, а напряжение дугообразования — в два раза больше (9 — 10 В). Требуется затратить энергию на выход электрона из атома металла одного электрода и на ионизацию атома второго электрода. Процесс приводит к образованию плазмы между электродами и горению дуги (для сравнения: минимальное напряжение для образования искрового разряда немногим превышает потенциал выхода электрона — до 6 В).

Для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь.

Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения в воздушном промежутке образуется достаточное количество плазмы для значительного падения напряжения пробоя или сопротивления воздушного промежутка. При этом искровые разряды превращаются в дуговой разряд — плазменный шнур между электродами, являющийся плазменным тоннелем. Возникающая дуга является, по сути, проводником и замыкает электрическую цепь между электродами. В результате средний ток увеличивается ещё больше, нагревая дугу до 5000-50000 K. При этом считается, что поджиг дуги завершён. После поджига устойчивое горение дуги обеспечивается термоэлектронной эмиссией с катода, разогреваемого током и ионной бомбардировкой.

Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.

После поджига дуга может оставаться устойчивой при разведении электрических контактов до некоторого расстояния.

При эксплуатации высоковольтных электроустановок, в которых неизбежно появление электрической дуги, борьба с ней осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами. Среди других способов известны использование вакуумных, воздушных, элегазовых и масляных выключателей, а также методы отвода тока на временную нагрузку, самостоятельно разрывающую электрическую цепь.

Принцип электродуговой сварки основан на использовании температуры электрического разряда, возникающего между сварочным электродом и металлической заготовкой.

Дуговой разряд образуется вследствие электрического пробоя воздушного промежутка. При возникновении этого явления происходит ионизация молекул газа, повышение его температуры и электропроводности, переход в состояние плазмы.

Горение сварочной дуги сопровождается выделением большого количества световой и особенно тепловой энергии, вследствие чего резко повышается температура, и происходит локальное плавление металла заготовки. Это и есть сварка.

В процессе работы, для того, чтобы возбудить дуговой разряд, производится кратковременное касание заготовки электродом, то есть, создание короткого замыкания с последующим разрывом металлического контакта и установлением требуемого воздушного зазора. Таким способом выбирается оптимальная длина сварочной дуги.

При очень коротком разряде электрод может прилипать к заготовке, плавление происходит чересчур интенсивно, что может привести к образованию наплывов. Длинная дуга отличается неустойчивостью горения и недостаточно высокой температурой в зоне сварки.

Неустойчивость и видимое искривление формы сварочной дуги часто можно наблюдать при работе промышленных сварочных агрегатов с достаточно массивными деталями. Это явление называется магнитным дутьем.

Суть его заключается в том, что сварочный ток дуги создает некоторое магнитное поле, которое взаимодействует с магнитным полем, создаваемым током, протекающим через массивную заготовку.

То есть, отклонение дуги вызывается магнитными силами. Дутьем процесс назван потому, что дуга отклоняется, как будто под воздействием ветра.

Радикальных способов борьбы с этим явлением нет. Для уменьшения влияния магнитного дутья применяют сварку укороченной дугой, а также располагают электрод под определенным углом.

Среда горения

Существует несколько различных сварочных технологий, использующих электродуговые разряды, отличающиеся свойствами и параметрами. Электрическая сварочная дуга имеет следующие разновидности:

  • открытая. Горение разряда происходит непосредственно в атмосфере;
  • закрытая. Образующаяся при горении высокая температура вызывает обильное выделение газов от сгорающего флюса. Флюс содержится в обмазке сварочных электродов;
  • в среде защитных газов. В этом варианте, в зону сварки подается газ, чаще всего, это гелий, аргон или углекислый газ.

Защита зоны сварки необходима для предотвращения активного окисления плавящегося металла под воздействием кислорода воздуха.

Слой окисла препятствует образованию сплошного сварного шва, металл в месте соединения приобретает пористость, в результате чего снижается прочность и герметичность стыка.

В какой-то мере дуга сама способна создавать микроклимат в зоне горения за счет образования области повышенного давления, препятствующего притоку атмосферного воздуха.

Применение флюса позволяет более активно выдавливать воздух из зоны сварки. Использование среды защитных газов, подаваемых под давлением, решает эту задачу практически полностью.

Продолжительность разряда

Кроме критериев защищенности, дуговой разряд классифицируется по продолжительности. Существуют процессы, в которых горение дуги происходит в импульсном режиме.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайКроме критериев защищенности, дуговой разряд классифицируется по продолжительности. Существуют процессы, в которых горение дуги происходит в импульсном режиме.

В таких устройствах сварка осуществляется короткими вспышками. За время вспышки, температура успевает возрасти до величины, достаточной для локального расплавления небольшой зоны, в которой образуется точечное соединение.

Большинство же применяемых сварочных технологий использует относительно продолжительное по времени горение дуги. В течение сварочного процесса происходит постоянное перемещение электрода вдоль соединяемых кромок.

Область повышенной температуры, создающая , перемещается вслед за электродом. После перемещения сварочного электрода, следовательно, и дугового разряда, температура пройденного участка снижается, происходит кристаллизация сварочной ванны и образование прочного сварного шва.

Структура дугового разряда

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайОбласть дугового разряда условно принято делить на три участка. Участки, непосредственно прилегающие к полюсам (аноду и катоду), называют соответственно, анодным и катодным.

Центральную часть дугового разряда, расположенную между анодной и катодной областями, называют столбом дуги. Температура в зоне сварочной дуги может достигать нескольких тысяч градусов (до 7000 °C).

Хотя тепло не полностью передается металлу, его вполне хватает для расплавления. Так, температура плавления стали для сравнения составляет 1300-1500 °C.

Для обеспечения устойчивого горения дугового разряда необходимы следующие условия: наличие тока порядка 10 Ампер (это минимальное значение, максимум может достигать 1000 Ампер), при поддержании напряжения дуги от 15 до 40 Вольт .

Падение этого напряжения происходит в дуговом разряде. Распределение напряжения по зонам дуги происходит неравномерно. Падение большей части приложенного напряжения происходит в анодной и катодной зонах.

Экспериментальным путем установлено, что при , наибольшее падение напряжения наблюдается в катодной зоне. В этой же части дуги наблюдается наиболее высокий градиент температуры.

Поэтому, при выборе полярности сварочного процесса, катод соединяют с электродом, когда хотят добиться наибольшего его плавления, повысив его температуру. Наоборот, для более глубокого провара заготовки, катод присоединяют к ней. В столбе дуги падает наименьшая часть напряжения.

При производстве сварочных работ неплавящимся электродом, катодное падение напряжения меньше анодного, то есть, зона повышенной температуры смещена к аноду.

Поэтому, при этой технологии, заготовка подключается к аноду, чем обеспечивается хороший ее прогрев и защита неплавящегося электрода от излишней температуры.

Температурные зоны

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайСледует заметить, что при любом виде сварки, как плавящимся, так и неплавящимся электродом, столб дуги (его центр) имеет самую высокую температуру – порядка 5000-7000 °C, а иногда и выше.

Зоны наиболее низкой температуры располагаются в одной из активных областей, катодной или анодной. В этих зонах может выделяться 60-70% тепла дуги.

Кроме интенсивного повышения температуры заготовки и сварочного электрода, разряд излучает инфракрасные и ультрафиолетовые волны, способные оказывать вредное влияние на организм сварщика. Это обусловливает необходимость применения защитных мер.

Что касается сварки переменным током, понятие полярности там не существует, так как положение анода и катода изменяется с промышленной частотой 50 колебаний в секунду.

Дуга в этом процессе обладает меньшей устойчивостью по сравнению с постоянным током, ее температура скачет. К преимуществам сварочных процессов на переменном токе, можно отнести только более простое и дешевое оборудование, да еще практически полное отсутствие такого явления, как магнитное дутье, о котором сказано выше.

Вольт-амперная характеристика

На графике представлены кривые зависимости напряжения источника питания от величины сварочного тока, называемые вольт–амперными характеристиками сварочного процесса.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случай

Кривые красного цвета отображают изменение напряжения между электродом и заготовкой в фазах возбуждения сварочной дуги и устойчивого ее горения. Начальные точки кривых соответствуют напряжению холостого хода источника питания.

В момент возбуждения сварщиком дугового разряда, напряжение резко снижается вплоть до того периода, когда параметры дуги стабилизируются, устанавливается значение тока сварки, зависящее от диаметра применяемого электрода, мощности источника питания и установленной длины дуги.

С наступлением этого периода, напряжение и температура дуги стабилизируются, и весь процесс приобретает устойчивый характер.

Электрическая дуга — это электрический разряд в газах. Газ сам по себе является изолятором, в нем нет носителей тока. При образовании в газе большого количества электрически заряженных частиц — свободных электронов с отрицательным знаком заряда и положительно и отрицательно заряженных ионов газ начинает проводить ток.

При контакте торца электрода с основным металлом выделяется большое количество тепла, в результате чего ускоряется движение свободных электронов.

При отрыве электрода от основного металла в межэлектродном промежутке электроны сталкиваются с нейтральными атомами газа и ионизируют их, т.е. разделяют на ионы с разными знаками заряда. В результате газ становится электропроводным. Виды эмиссии (выхода) электронов с поверхности торца электрода:

  • термоэлектронная эмиссия;
  • автоэлектронная эмиссия;
  • фотоэлектронная эмиссия;
  • эмиссия электронов за счет потоков тяжелых ионов.

На стабильное горение дуги оказывают влияние процессы образования (ионизации) свободных электронов и ионов в объеме нейтрального газа электрической дуги. Рассмотрим виды ионизации в электрическом разряде.

Ионизация соударением. Движение электронов сильно ускоряется под действием электрического поля в катодной области. Они встречают на своем пути нейтральные атомы газов, ударяются о них и выбивают электроны. Ионизация нагревом (термическая ионизация). Образование ионов в газовой среде наблюдается при температуре выше 1750°С. Ионизация нагревом протекает за счет неупругих столкновений частиц газа с большим запасом кинетической энергии. Ионизация облучения (фотоионизация). При этом ионизация газов в электрической дуге вызывает воздействие на газовый промежуток энергии светового излучения. Ионизация излучением будет происходить в том случае, если энергия световых квантов превысит энергию, необходимую для ионизации частиц газа.

Свойства сварочной дуги

Зажигание сварочной дуги начинается с момента касания электродом свариваемого металла, т.е. с короткого замыкания.

На рис. 1 приведена последовательность процессов при зажигании сварочной дуги.

Так как торец электрода и поверхность свариваемого металла имеют неровности, то контакт между ними при коротком замыкании происходит в отдельных точках (рис. 1а).

Рис.1. Последовательность зажигания сварочной дуги
а — короткое замыкание; б — образование перемычки из жидкого металла; в — возникновение дуги

Поэтому плотность тока в точках контакта достигает больших значений, металл мгновенно расплавляется, образуя перемычку из жидкого металла между электродом и свариваемым металлом (рис. 1б).

При отводе электрода от поверхности металла на некоторую длину, называемую длиной дуги L, жидкая перемычка растягивается с уменьшение сечения, затем в момент достижения металлом перемычки температура кипения испаряется и происходит разрыв перемычки (рис. 1в).

Образуется разрядный промежуток, который заполняется заряженными частицами паров металла, покрытия электрода и газов. Так возникает сварочная дуга, которая представляет собой светящийся столб нагретого газа, состоящего из электронов, ионов и нейтральных атомов.

Это состояние газа называется плазмой, которая электрически нейтральна, так как в ней количество положительных и отрицательных частиц одинаково.

Температура столба дуги выше температуры точки кипения металла электрода и изделия, и конец электрода и изделие отделены от столба дуги промежуточными газовыми слоями, называемыми приэлектродными областями дуги, (рис. 2).

Рис. 2. Схема сварочной дуги.
1 — электроды; 2 — катодное пятно; 3 — катодная область; 4 — столб дуги; 5 — анодная область; 6 — анодное пятно; 7 — сварочная ванна; 8 — свариваемая деталь.

В катодной области 3 из катодного пятна 2 происходит эмиссия электронов в столб дуги 4, где они ионизируют нейтральные атомы.

В катодной области на длине в доли миллиметра сосредоточена значительная часть напряжения дуги, которое называется катодным падением напряжения и достигает 10…16 В.

В анодной области 5 около анодного пятна 6 происходит резкое падение напряжения на длине свободного пробега электрона. Это падение напряжения называется анодным падением напряжения, величина которого составляет 6…8 В. На этом участке электроны резко увеличивают скорость своего движения и нейтрализуются на анодном пятне. Анод получает энергию от дуги в виде потока электронов и теплового излучения, поэтому температура анодной области выше температуры катодной области, и на аноде выделяется большое количество тепла.

При сварке на постоянном токе прямой полярности температура в различных зонах сварочной дуги:

  • в середине столба дуги — около 6000°С;
  • в анодной области — 2600°С;
  • в катодной области — 2400°С;
  • в сварочной ванне – 1700…2000 °С.

При сварке на переменном токе распределение тепла дуги и температура в катодной и анодной областях примерно одинаково (катодная область на электроде).

Вам также может понравиться

Что лучше МДФ или ДСП для производства мебели?

Что лучше МДФ или ДСП для производства мебели?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *