Кто изобрел электродвигатель
В 21-ом веке электродвигатели имеют особое место в нашей жизни. Они находятся почти во всех технических агрегатах, которые мы видим каждый день, будь то пылесос, стиральная машина, система вентиляции. Это безусловно очень важное достижения прогресса, которое появилось в середине 19-го века, и было предвестником индустриальной эры.
Электродвигатель был создан в 1834 году Борисом Якоби, русским пионером электротехники, и после некоторых усовершенствований в 1838 году был установлен на лодке, которая могла с его помощью перемещаться по реке со скоростью около 4 км\ч. Но несмотря на это изобретение, электродвигатели не могли найти массового применения, до того момента, пока не был создан электрический генератор, поскольку осуществлять их питание от батареи было крайне неудобно. Первый двигатель переменного тока был сконструирован и создан Чарльзом Уитстоном в 1841 году. Началом применения переменного тока для электродвигателей принято считать 1889 год, когда инженер Доливо- Добровольский сконструировал первый трехфазный асинхронный двигатель. Первая линия трехфазного переменного тока была создана в 1891 году. Результаты использования этой линии доказали физическую возможность применения трехфазного тока, для передачи больших объемов электроэнергии с высокими показателями КПД. К началу 20-го века появились прототипы основных электромашин.
Именно с того времени началось быстрое развитие электрификации промышленных предприятий и транспорта. Одновременно с этим появляются первые турбогенераторы. Это дает толчок к увеличению мощности генераторов. Для сравнения в 1900 году пиковая мощность генератора составляла 5кВт, а в 1920 году эта величина составляла 60 тысяч кВт. Создание водного охлаждения позволило создать турбогенераторы мощностью около 550 тысяч кВт.
На данный момент электродвигатели имеют следующие характеристики. Максимальная мощность. Она как принято в физике измеряется в Ваттах. Этот параметр зависит от конструкции, материала изготовления, и технологии создания. Несколько двигателей имеющие одинаковую массу и размер могут иметь различную мощность исключительно из-за технологии производства. Как правило, именно этот параметр задает ценовую категорию для двигателя. Далее рассматривают номинальное напряжение и ток, а так же сопротивление обмотки, как вы знаете, эти параметры неизменно влияют друг на друга. При более низком сопротивлении, возрастает максимальное значение ампер. Третьей характеристикой являются номинальные обороты в минуту. Конструкция современного двигателя направлена на получение более высоких оборотов, или же наивысшего момента на валу. Следовательно, двигатель с большим диаметром имеет увеличенный высокий момент и уменьшенные обороты.
Большинство двигателей формируют два магнитных поля, переменное и неподвижное, при этом неподвижное производят постоянные магниты, в то время как переменное создается обмоткой. Неподвижное поле работает по базовым определениям механики, магнит имеет два полюса, северный и как положено южный, противоположные полюса имеют притяжение, одинаковые притягиваются и вследствие этого создается сила взаимодействия. Но для того, чтоб двигатель начал свое вращение требуется менять эти направления. Соответственно, в реальности вращение происходит из-за изменения этих параметров, полюс притягивается, полюс отталкивается. Таков основной принцип действия электродвигателя.
Электродвигатель. История создания.
Величайшим техническим достижением конца XIX века стало изобретение промышленного электродвигателя. Этот компактный, экономичный, удобный мотор вскоре сделался одним из важнейших элементов производства, вытеснив другие виды двигателей отовсюду, куда только можно было доставить электрический ток. Электрические двигатели появились еще во второй четверти XIX столетия, но прошло несколько десятилетий, прежде чем создались благоприятные условия для их повсеместного внедрения в производство.
Один из первых совершенных электродвигателей, работавших от батареи постоянного тока, создал в 1834 году русский электротехник Якоби. Этот двигатель имел две группы П-образных электромагнитов, из которых одна группа располагалась на неподвижной раме. Их полюсные наконечники были устроены асимметрично — удлинены в одну сторону. Вал двигателя представлял собой два параллельных латунных диска, соединенных четырьмя электромагнитами, поставленными на равном расстоянии один от другого. При вращении вала подвижные электромагниты проходили против полюсов неподвижных. У последних полярности шли попеременно: то положительная, то отрицательная. К электромагнитам вращающегося диска отходили проводники, укрепленные на валу машины. На вал двигателя был насажен коммутатор, который менял направление тока в движущихся электромагнитах в течение каждой четверти оборота вала. Обмотки всех электромагнитов неподвижной рамы были соединены последовательно и обтекались током батареи в одном направлении. Обмотки электромагнитов вращающегося диска были также соединены последовательно, но направление тока в них изменялось восемь раз за один оборот вала. Следовательно, полярность этих электромагнитов также менялась восемь раз за один оборот вала, и эти электромагниты поочередно притягивались и отталкивались электромагнитами неподвижной рамы.
Двигатель Якоби для своего времени был самым совершенным электротехническим устройством. В том же 1834 году подробное сообщение о принципах его работы было представлено Парижской Академии наук.
В 1838 году Якоби усовершенствовал свой электромотор и, установив его на гребном боте, с десятью спутниками совершил небольшое плавание по Неве со скоростью 4,5 км/ч. Источником тока ему служила мощная батарея гальванических элементов.
До тех пор, пока не был изобретен и внедрен в производство совершенный электрический генератор, электродвигатели не могли найти широкого применения, так как питать их от батареи было слишком дорого и невыгодно. Кроме того, в силу разных причин двигатели постоянного тока получили лишь ограниченное применение. Гораздо более важную роль играют в производстве электромоторы, работающие на переменном токе, к рассмотрению которых мы теперь переходим.
Для переменного тока необходима особая конструкция двигателя. Изобретатели не сразу смогли найти ее. Прежде всего была разработана модель так называемого синхронного двигателя переменного тока. Один из первых таких двигателей построил в 1841 году Чарльз Уитстон.
Его система обладала большими недостатками: кроме того, что синхронный двигатель требовал для своего запуска дополнительный разгонный двигатель, он имел и другой изъян — при перегрузке синхронность его хода нарушалась, магниты начинали тормозить вращение вала, и двигатель останавливался. Поэтому синхронные двигатели не получили широкого распространения. Подлинная революция в электротехнике произошла только после изобретения асинхронного двигателя. Подобное устройство в 1879 году изобрел Бейли.
Изобретение Теслы знаменовало собой начало новой эры в электротехнике и вызвало к себе живейший интерес во всем мире. Уже в июне 1888 году фирма «Вестингауз Электрик Компани» купила у него за миллион долларов все патенты на двухфазную систему и предложила организовать на своих заводах выпуск асинхронных двигателей.
Вскоре индукционный двигатель Теслы был значительно переработан и усовершенствован русским электротехником Доливо-Добровольским. Первым важным новшеством, которое внес Доливо-Добровольский в асинхронный двигатель, было создание ротора с обмоткой «в виде беличьей клетки». Во всех ранних моделях асинхронных двигателей роторы были очень неудачными, и поэтому КПД этих моторов был ниже, чем у других типов электрических двигателей. Большое значение играл здесь материал, из которого изготавливался ротор, поскольку тот должен был удовлетворять сразу двум условиям: иметь малое электрическое сопротивление и иметь хорошую магнитную проницаемость. С точки зрения уменьшения электрического сопротивления лучшим конструктивным решением мог бы стать ротор в виде медного цилиндра. Но медь плохой проводник для магнитного потока статора и, КПД такого двигателя был очень низким. Если медный цилиндр заменяли стальным, то магнитный поток резко возрастал, но, поскольку электрическая проводимость стали меньше, чем меди, КПД опять был невысоким.
Доливо-Добровольский нашел выход из этого противоречия: он выполнил ротор в виде стального цилиндра, а в просверленные по периферии последнего каналы стал закладывать медные стержни. На лобовых частях ротора эти стержни электрически соединялись друг с другом. Решение Доливо-Добровольского оказалось наилучшим. После того как он получил в 1889 году патент на свой ротор, его устройство принципиально не менялось вплоть до настоящего времени.
Вслед за тем Доливо-Добровольский стал думать над конструкцией статора — неподвижной части двигателя. Доливо-Добровольский видел перед собой две задачи: повысить КПД двигателя и добиться большей равномерности его работы.
Свой первый трехфазный асинхронный двигатель Доливо-Добровольский построил зимой 1889 года. В качестве статора в нем был использован кольцевой якорь машины постоянного тока с 24-мя полузакрытыми пазами.
Учитывая ошибки Теслы, Доливо-Добровольский рассредоточил обмотки в пазах по всей окружности статора, что делало более благоприятным распределение магнитного поля. Ротор был цилиндрическим с обмотками «в виде беличьей клетки». Воздушный зазор между ротором и статором составлял всего 1 мм, что по тем временам было смелым решением, так как обычно зазор делали больше. Стержни «беличьей клетки» не имели никакой изоляции. В качестве источника трехфазного тока был использован стандартный генератор постоянного тока, перестроенный в трехфазный генератор так, как это было описано выше.
Впечатление, произведенное первым запуском двигателя на руководство АЭГ, было огромным. Для многих стало очевидно, что долгий тернистый путь создания промышленного электродвигателя наконец пройден до конца. По своим техническим показателям двигатели Доливо-Добровольского превосходили все существовавшие тогда электромоторы — обладая очень высоким КПД, они безотказно работали в любых режимах, были надежны и просты в обращении. Поэтому они сразу получили широкое распространение по всему миру. С этого времени началось быстрое внедрение электродвигателей во все сферы производства и повсеместная электрификация промышленности.
Кто и когда изобрел первый в мире электродвигатель – история его создания
Сложно представить себе жизнь современных людей без электрических двигателей. Эта конструкция прочно вошла в разные сферы и сделала жизнь более комфортной. При этом далеко не каждому известно, кто именно изобрел электродвигатель. На самом деле свой вклад в появление этой конструкции внесли многие ученые, которые проводили значимые исследования в сфере электромеханики.
Вклады ученых в электромеханику
Первые значимые эксперименты в области электромеханики провел итальянский исследователь Вольт. Именно он создал химический источник тока. Это случилось больше 2 столетий назад – в 1800 году.
Через 20 лет датский физик Эрстед сумел открыть уникальное свойство. Он установил, что протекающий ток может вызывать отклонение магнитной стрелки в плоскости. Уже в 1821 году известный британский ученый Майкл Фарадей издал важный трактат, в котором описал новые электромагнитные движения и сформулировал теорию магнетизма. В своей работе физик детально описал, как можно стимулировать безостановочное движение магнитной стрелки вокруг фиксированного магнитного полюса.
Установка, которую сконструировал ученый, давала возможность сформировать постоянное преобразование электрической энергии в механическую. Именно эта конструкция считается первым электродвигателем в истории.
В 1822 году французский исследователь Андре Мари Ампер сделал важное открытие. Он установил, что соленоид обладает магнитным эффектом. К тому же исследователь сформулировал идею, что катушка с протекающим током и постоянный магнит полностью эквивалентны. Помимо этого, для усиления магнитного эффекта было предложено поместить в центральную часть катушки металлический сердечник. В тот же период Барлоу придумал униполярный электродвигатель. Его конструкция получила название колеса Барлоу.
В 1925 году Араго продемонстрировал общественности уникальный эксперимент. Он заключался в том, что медный диск стимулировал движение магнитной стрелки, которая подвешивалась сверху. В том же году Стерджен сделал первый электромагнит.
В 1831 году одновременно 2 знаменитых физика Фарадей и Генри сделали важное открытие. Независимо друг от друга исследователи установили существование электромагнитной индукции. Однако Фарадей первым опубликовал результаты своего исследования.
В 1832 году французский исследователь Пикси сконструировал первый генератор переменного тока. Он включал конструкцию из 2 катушек с металлическим сердечником, напротив которого находился свободно крутящийся магнит в виде подковы. После добавления коммутатора к этой конструкции она начала синтезировать пульсирующий постоянный ток.
В 1833 году широкой публике был представлен электрический двигатель на постоянном токе. Его автором стал Стреджен. Его конструкцию впервые удалось использовать на практике.
В том же году Ленц выпустил труд, в котором доказал, что электрический двигатель и генератор являются взаимозаменяемыми. Это явление получило название закона взаимности магнитоэлектрических явлений.
Появление первых электрических двигателей
Создание первых электродвигателей стало настоящим прорывом в сфере науки и техники. Это изобретение появилось благодаря вкладу целого ряда известных ученых.
Изобретение Якоби
Немецкий и русский физик Борис Якоби изобрел первый электрический двигатель с непосредственным вращением рабочего вала. Когда это произошло? Свое изобретение ученый представил в мае 1834 года. Мощность устройства составляла примерно 15 Ватт, а частота вращения ротора доходила до 80-120 оборотов в минуту. До этого момента применялись исключительно конструкции, которые отличались возвратно-поступательным или качательным перемещением якоря.
На этом Борис Якоби не прекратил свою работу. В 1839 году исследователь придумал лодку с электродвигателем, мощность которого составляла 1 лошадиную силу. В ней было предусмотрено 14 посадочных мест. В период испытаний удалось установить, что конструкция может двигаться по реке против течения. Таким образом удалось найти практическое применение электродвигателю.
В последующие 45 лет бельгийские, шотландские, немецкие и британские ученые создавали, улучшали и испытывали электродвигатели, которые предназначались для локомотивов, промышленных приводов и прочих механизмов. Благодаря перечисленным экспериментам удалось создать асинхронный электрический двигатель.
Вклад Дэвенпорта
Благодаря проведению опытов с магнитами американский ученый Томас Дэвенпорт создал свой первый электромотор. Появление этого изобретения датируется июлем 1834 года. В декабре того же года исследователь впервые вынес эту конструкцию на суд публики. В 1837 году ученый запатентовал созданную им электрическую машину.
Двигатель Дэвидсона
Шотландский исследователь Роберт Дэвидсон проводил работы по созданию электрического двигателя, начиная с 1837 года. Ученому удалось изготовить несколько приводов для токарного станка. Также изобретатель сделал ряд моделей транспортного средства. К тому же Дэвидсона считают создателем первого электрического локомотива.
Изобретения других ученых
Создание электрического двигателя связывают с именами других известных исследователей. Среди них стоит выделить следующих ученых:
- Сименс – этот немецкий инженер считается основателем компании Siemens. В 1856 году исследователь придумал электрический генератор, оснащенный двойным Т-образным якорем. Ученый стал первым, кто расположил обмотки в пазах.
- Максвелл – сумел обобщить сведения об электромагнетизме в 4 важных уравнениях. Это произошло в 1861-1864 годах. В сочетании с выражением для силы Лоренца работа Максвелла формирует полную систему уравнений классической электродинамики.
- Грамм – в 1871-1873 годах этот бельгийский исследователь устранил важный минус электрических машин, который проявлялся в виде выраженной пульсации синтезируемого тока и быстром перегревании. Грамм предложил изготовить генератор с самовозбуждением, оснащенный кольцевым якорем.
- Феррарис – этот итальянский физик придумал первый двухфазный асинхронный двигатель. Это произошло в 1885 году. Однако исследователь был уверен, что такая конструкция не будет иметь КПД больше 50 %. Потому он быстро утратил интерес к своему изобретению и не работал над его улучшением. При этом считается, что Феррарису удалось первым описать явление вращающегося магнитного поля.
- Тесла – американец сербского происхождения независимо от Феррариса придумал двухфазный асинхронный двигатель и получил патент на него. Это случилось в 1887 году. Для конструкции ученого было характерно наличие явно выраженных полюсов статора. При этом Тесла ошибочно полагал, что двухфазная система токов считается наиболее оптимальной с экономической точки зрения.
- Доливо-Добровольский – русский техник польского происхождения придумал ротор в форме так называемой беличьей клетки. Работа ученого датируется 1889-1891 годами. Последующие усилия ученого завершились созданием трехфазной системы переменных токов. К тому же исследователь придумал трехфазный асинхронный двигатель, который получил в промышленности широкое распространение и почти не изменился до настоящего времени.
Что лучше – двухфазная или трехфазная система
Доливо-Добровольский обоснованно полагал, что наращивание количества фаз в электромоторе способствует улучшению распределения намагничивающей силы по окружности статора. Переход к трехфазной системе имеет в этом отношении много преимуществ. При этом последующее увеличение количества фаз лишено целесообразности, поскольку провоцирует существенное увеличение затрат металла на провода.
Тесла же был уверен, что меньшее количество фаз сокращает потребность в проводах. Как следствие, устройство электропередачи становится более доступным по цене. При этом двухфазная система передачи нуждалась в использовании 4 проводов. Это считалось нежелательным в сравнении с 2-проводными системами постоянного или однофазного переменного токов. Потому Тесла рекомендовал использовать для двухфазной системы 3-проводную линию. При этом он предлагал делать один провод общим. Однако это не слишком существенно уменьшало затраты металла, поскольку общий провод должен был иметь большее сечение.
Таким образом предложенная Доливо-Добровольским трехфазная система токов считалась оптимальной для передачи энергии. Она почти сразу стала широко использоваться в промышленности и до настоящего времени остается основной системой передачи электроэнергии.
Создание электродвигателя стало настоящим прорывом в научно-технической сфере. Это устройство по сей день активно применяется в самых разных сферах человеческой жизни.
200 лет электродвигателю
В 1820 году датский физик Ханс Кристиан Эрстед ввел электромагнитную теорию в состояние замешательства. Натурфилософы того времени считали, что электричество и магнетизм — это два разных явления, но Эрстед предположил, что поток электричества через провод создает вокруг него магнитное поле. Французский физик Андре-Мари Ампер увидел демонстрацию эксперимента Эрстеда, в котором электрический ток отклонял магнитную иглу, и разработал математическую теорию для объяснения этой взаимосвязи.
Английский ученый Майкл Фарадей вскоре вступил в полемику, когда Ричард Филлипс, редактор журнала «Анналы философии», попросил его написать статью об истории электромагнетизма — области, которой было всего около двух лет и которая явно находилась в состоянии становления.
Фарадей был интересным кандидатом для этой задачи, о чем Нэнси Форбс и Бэзил Махон рассказывают в своей книге 2014 года «Фарадей, Максвелл и электромагнитное поле». Он родился в 1791 году и получил лишь самое скромное образование в церковной школе в своей деревне Ньюингтон, Суррей (сейчас это часть Южного Лондона). В возрасте 14 лет он стал подмастерьем у переплетчика. Он прочитал много книг, которые переплетал, и продолжал искать возможности учиться дальше. В 1812 году, когда ученичество Фарадея подходило к концу, один из клиентов переплетчика предложил Фарадею билет на прощальную лекцию Хамфри Дэви в Королевском институте Великобритании.
Дэви, который был всего на 13 лет старше Фарадея, уже прославился как химик. Он открыл натрий, калий и несколько соединений, а также изобрел шахтерскую лампу. Кроме того, он был харизматичным оратором. Фарадей делал подробные записи лекций и отправлял копии Дэви с просьбой о трудоустройстве. Когда в Королевском институте открылась вакансия ассистента по химии, Дэви взял Фарадея на работу.
Фарадей (слева), Дэви (справа).
Дэви был наставником Фарадея и обучил его принципам химии. Фарадей отличался ненасытным любопытством, и его репутация в Королевском институте росла. Но когда Филлипс попросил Фарадея написать обзорную статью для «Анналов», он только начинал заниматься электромагнетизмом и был несколько обескуражен математикой Ампера.
В душе Фарадей был экспериментатором, поэтому, чтобы написать подробный отчет, он повторил эксперименты Эрстеда и попытался следовать рассуждениям Ампера. Его «Исторический очерк электромагнетизма», опубликованный анонимно в «Анналах», описывал состояние этой области, текущие исследовательские вопросы и экспериментальную аппаратуру, теоретические разработки и основных участников. (Краткое изложение статьи Фарадея см. в статье Aaron D. Cobb «Michael Faraday’s ‘Historical Sketch of Electro-Magnetism’ and the Theory-Dependence of Experimentation» в декабрьском выпуске Philosophy of Science за 2009 год («Исторический очерк электромагнетизма Майкла Фарадея» и зависимость экспериментов от теории « в декабрьском выпуске 2009 года Философия науки).
Реконструируя эксперименты Эрстеда, Фарадей не был полностью убежден, что электричество действует как жидкость, протекая по проводам так же, как вода по трубам. Вместо этого он думал об электричестве как о колебаниях, возникающих в результате напряжения между проводящими материалами. Эти мысли заставляли его экспериментировать.
3 сентября 1821 года Фарадей наблюдал круговое вращение провода, притягиваемого и отталкиваемого магнитными полюсами. Он зарисовал в своем блокноте вращение по часовой стрелке вокруг южного полюса магнита и обратное вращение вокруг северного полюса. «Очень убедительно», — написал он в своем дневнике о проведенном эксперименте, — «но надо сделать более разумный прибор».
На следующий день у него все получилось. Он взял глубокий стеклянный сосуд, закрепил в нем магнит вертикально с помощью воска, а затем наполнил сосуд ртутью так, чтобы магнитный полюс находился чуть выше поверхности. Он опустил в ртуть жесткую проволоку и подключил прибор к батарее. Когда по цепи проходил ток, он создавал круговое магнитное поле вокруг проволоки. Когда ток в проволоке взаимодействовал с постоянным магнитом, закрепленным на дне блюда, проволока вращалась по часовой стрелке. На другой стороне прибора провод был закреплен, а магнит мог свободно перемещаться, что он и делал по кругу вокруг провода.
Чтобы ознакомиться с наглядной анимацией работы аппарата Фарадея, посмотрите это учебное пособие, созданное Национальной лабораторией высоких магнитных полей. А для желающих собрать свой собственный двигатель Фарадея можно посмотреть это видео:
Хотя устройство Фарадея было отличным доказательством концепции, оно было не так уж полезно, разве что в качестве салонного фокуса. Вскоре люди стали расхватывать карманные двигатели в качестве подарков.
Хотя оригинального моторчика Фарадея больше не существует, зато существует тот, который он построил в следующем году; он хранится в коллекции Королевского института и изображен на фото в начале публикации. Эта простая на вид конструкция является самым ранним примером электродвигателя, первого устройства, превращающего электрическую энергию в механическое движение.
Последствия изобретения Фарадея
Фарадей знал силу быстрой публикации, и менее чем за месяц он написал статью «О некоторых новых электромагнитных движениях и теории электромагнетизма», которая была опубликована в следующем номере «Ежеквартального журнала науки, литературы и искусства». К сожалению, Фарадей не оценил необходимость полного признания вклада других в открытие.
Через неделю после публикации Хамфри Дэви нанес своему подопечному сокрушительный удар, обвинив Фарадея в плагиате.
Дэви обладал печально известным чувствительным эго. Он также был расстроен тем, что Фарадей не отметил должным образом его друга Уильяма Хайда Волластона, который более года изучал проблему вращательного движения с помощью токов и магнитов. Фарадей упоминает обоих в своей статье, а также Ампера, Эрстеда и некоторых других. Но он не называет никого из них своим соавтором, помощником или сооткрывателем. Фарадей не работал непосредственно с Дэви и Волластоном над их экспериментами, но он подслушал разговор между ними и понял направление их работы. Кроме того, в ранних публикациях было принято (и до сих пор принято) отмечать заслуги своего консультанта.
Фарадей пытался очистить свое имя от обвинений в плагиате и в основном преуспел в этом, хотя его отношения с Дэви оставались напряженными. Когда Фарадей был избран членом Королевского общества в 1824 году, единственный голос против подал президент общества, Хамфри Дэви.
Следующие несколько лет Фарадей избегал работы в области электромагнетизма. Было ли это его собственным выбором или он был вынужден сделать его из-за того, что Дэви поручил ему трудоемкие обязанности в Королевском институте, вопрос открытый.
Одним из заданий Фарадея было спасение финансов Королевского института, что он и сделал, оживив серию лекций и введя популярную рождественскую лекцию. Затем в 1825 году Королевское общество попросило его возглавить Комитет по улучшению стекла для оптических целей — попытку возродить британскую стекольную промышленность, которая уступила позиции французским и немецким производителям линз. Это была утомительная, бюрократическая работа, которую Фарадей выполнял как патриотический долг, но рутина и постоянные неудачи выбили его из колеи.
Эксперименты Фарадея в 1831 году привели к созданию трансформатора и динамо-машины
В 1831 году, через два года после смерти Дэви и после завершения работы Фарадея в рабочей группе над стекольным проектом, он вернулся к экспериментам с электричеством, занявшись акустикой. Он объединился с Чарльзом Уитстоном для изучения звуковых колебаний. Фарадея особенно интересовало, как звуковые колебания можно наблюдать, когда скрипичный смычок проводит по металлической пластине, слегка присыпанной песком, создавая отчетливые узоры, известные как фигуры Хладни. В этом видеоролике:
Фарадей изучал нелинейные стоячие волны, образующиеся на поверхности жидкости, которые сегодня известны как волны Фарадея или пульсации Фарадея. Он опубликовал свое исследование «О своеобразном классе акустических фигур; и о некоторых формах, принимаемых группами частиц на вибрирующих упругих поверхностях» в «Философских трудах Королевского общества».
Все еще убежденный в том, что электричество каким-то образом вибрирует, Фарадей задался вопросом, может ли электрический ток, проходящий через проводник, вызвать ток в соседнем проводнике. Это привело его к одному из самых известных изобретений и экспериментов — индукционному кольцу. 29 августа 1831 года Фарадей подробно описал в своем блокноте эксперимент со специально подготовленным железным кольцом. Он обмотал одну сторону кольца тремя отрезками изолированной медной проволоки, каждый длиной около 24 футов (7 метров). Другую сторону он обмотал примерно 60 футами (18 метрами) изолированной медной проволоки. (Хотя он описывает только собранное кольцо, на обмотку проводов у него, вероятно, ушло много дней. Современные экспериментаторы, создавшие реплику, потратили на это 10 дней). Затем он начал заряжать одну сторону кольца и наблюдать за эффектом на магнитной игле, расположенной на небольшом расстоянии. К своему восторгу, он смог вызвать электрический ток от одного набора проводов к другому, создав таким образом первый электрический трансформатор.
Запись в записной книжке Фарадея от 29 августа 1831 года описывает его эксперимент с железным индукционным кольцом, связанным проволокой, -первым электрическим трансформатором.
Фарадей не прекращал эксперименты до осени 1831 года, на этот раз с постоянным магнитом. Он обнаружил, что может производить постоянный ток, вращая медный диск между двумя полюсами постоянного магнита. Это было первое динамо и прямой предок действительно полезных электродвигателей.
Спустя двести лет после открытия электродвигателя Майкла Фарадея по праву помнят за все его работы в области электромагнетизма, а также за его способности химика, лектора и экспериментатора. Но сложные отношения Фарадея с Дэви также говорят о проблемах учеников (и наставников), издательской деятельности, а также о том, как держать (или не держать) личные обиды. Иногда говорят, что Фарадей стал величайшим открытием Дэви, что несколько несправедливо по отношению к Дэви, который сам по себе был достойным ученым. Когда репутация Фарадея начала затмевать репутацию его наставника, Фарадей допустил несколько ошибок, ориентируясь в урезанном, чувствительном ко времени мире научных публикаций. Но он продолжал делать свою работу — и делал ее хорошо, — внося неизменный вклад в работу Королевского института. Через десять лет после своего первого открытия в области электромагнетизма он превзошел себя в другом. Неплохо для самоучки с слабым знанием математики.
НПП ИТЭЛМА всегда рада молодым специалистам, выпускникам автомобильных, технических вузов, а также физико-математических факультетов любых других высших учебных заведений.
У вас будет возможность разрабатывать софт разного уровня, тестировать, запускать в производство и видеть в действии готовые автомобильные изделия, к созданию которых вы приложили руку.
В компании организован специальный испытательный центр, дающий возможность проводить исследования в области управления ДВС, в том числе и в составе автомобиля. Испытательная лаборатория включает моторные боксы, барабанные стенды, температурную и климатическую установки, вибрационный стенд, камеру соляного тумана, рентгеновскую установку и другое специализированное оборудование.
Если вам интересно попробовать свои силы в решении тех задач, которые у нас есть, пишите в личку.
Мы большая компания-разработчик automotive компонентов. В компании трудится около 2500 сотрудников, в том числе 650 инженеров.
Мы, пожалуй, самый сильный в России центр компетенций по разработке автомобильной электроники. Сейчас активно растем и открыли много вакансий (порядка 30, в том числе в регионах), таких как инженер-программист, инженер-конструктор, ведущий инженер-разработчик (DSP-программист) и др.
У нас много интересных задач от автопроизводителей и концернов, двигающих индустрию. Если хотите расти, как специалист, и учиться у лучших, будем рады видеть вас в нашей команде. Также мы готовы делиться экспертизой, самым важным что происходит в automotive. Задавайте нам любые вопросы, ответим, пообсуждаем.