В чем состоит явление электромагнитной индукции
Перейти к содержимому

В чем состоит явление электромагнитной индукции

Электромагнитная индукция. Правило Ленца

Явление электромагнитной индукции заключается в том, что в результате изменения во времени магнитного потока, который пронизывает замкнутый проводящий контур, в контуре возникает электрический ток. Открыто это явление было физиком из Великобритании Максом Фарадеем в 1831 году.

Формула магнитного потока

Введем обозначения, необходимые нам для записи формулы. Для обозначения магнитного потока используем букву Ф , площади контура – S , модуля вектора магнитной индукции – B , α – это угол между вектором B → и нормалью n → к плоскости контура.

Магнитный поток, который проходит через площадь замкнутого проводящего контура, можно задать следующей формулой:

Рисунок 1 . 20 . 1 . Магнитный поток через замкнутый контур. Направление нормали n → и выбранное положительное направление l → обхода контура связаны правилом правого буравчика.

За единицу магнитного потока в С И принят 1 вебер ( В б ) . Магнитный поток, равный 1 В б , может быть создан в плоском контуре площадью 1 м 2 под воздействием магнитного поля с индукцией 1 Т л , которое пронизывает контур по направлению нормали.

1 В б = 1 Т л · м 2

Закон Фарадея

Изменение магнитного потока приводит к тому, что в проводящем контуре возникает ЭДС индукции δ и н д . Она равна скорости, с которой происходит изменение магнитного потока через ограниченную контуром поверхность, взятой со знаком минус. Впервые экспериментально установил это Макс Фарадей. Он же записал свое наблюдение в виде формулы ЭДС индукции, которая теперь носит название Закона Фарадея:

Закон Фарадея:

δ и н д = — ∆ Φ ∆ t

Правило Ленца

Согласно результатам опытов, индукционный ток, который возникает в замкнутом контуре в результате изменения магнитного потока, всегда направлен определенным образом. Создаваемое индукционным током магнитное поле препятствует изменению вызвавшего этот индукционный ток магнитного потока. Ленц сформулировал это правило в 1833 году.

Проиллюстрируем правило Ленца рисунком, на котором изображен неподвижный замкнутый проводящий контур, помещенный в однородное магнитное поле. Модуль индукции увеличивается во времени.

Рисунок 1 . 20 . 2 . Правило Ленца

Здесь ∆ Φ ∆ t > 0 , а δ и н д < 0 < 0. Индукционный ток I и н д протекает навстречу выбранному положительному направлению l → обхода контура.

Благодаря правилу Ленца мы можем обосновать тот факт, что в формуле электромагнитной индукции δ и н д и ∆ Φ ∆ t противоположны по знакам.

Если задуматься о физическом смысле правила Ленца, то это частный случай Закона сохранения энергии.

Причины возникновения индукционного тока в движущихся и неподвижных проводниках

Причин, по которым может происходить изменение магнитного потока, пронизывающего замкнутый контур, две:

  1. Изменение магнитного потока вследствие перемещения всего контура или отдельных его частей в магнитном поле, которое не изменяется со временем;
  2. Изменение магнитного поля при неподвижном контуре.

Перейдем к рассмотрению этих случаев подробнее.

Перемещение контура или его частей в неизменном магнитном поле

При движении проводников и свободных носителей заряда в магнитном поле возникает ЭДС индукции. Объяснить возникновение δ и н д можно действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца здесь – это сторонняя сила.

На рисунке мы изобразили пример индукции, когда прямоугольный контур помещен в однородное магнитное поле B → направленное перпендикулярно плоскости контура. Одна из сторон контура перемещается по двум другим сторонам с некоторой скоростью.

Рисунок 1 . 20 . 3 . Возникновение ЭДС индукции в движущемся проводнике. Отражена составляющая силы Лоренца, которая действует на свободный электрон

На свободные заряды подвижной части контура воздействует сила Лоренца. Основная составляющая силы Лоренца в данном случае направлена вдоль проводника и связана с переносной скоростью зарядов υ → . Модуль этой сторонней силы равен:

Работа силы F Л на пути l равна:

A = F Л · l = e υ B l .

По определению ЭДС:

δ и н д = A e = υ B l .

Значение сторонней силы для неподвижных частей контура равно нулю. Для соотношения δ и н д можно записать другой вариант формулы. Площадь контура с течением времени изменяется на Δ S = l υ Δ t . Соответственно, магнитный поток тоже будет с течением времени изменяться: Δ Φ = B l υ Δ t .

Знаки в формуле, которая связывает δ и н д и ∆ Φ ∆ t , можно установить в зависимости от того, какие направления нормали и направления контура будут выбраны. В случае выбора согласованных между собой по правилу правого буравчика направлений нормали n → и положительного направления обхода контура l → можно прийти к формуле Фарадея.

При условии, что сопротивление всей цепи – это R , то по ней будет протекать индукционный ток, который равен I и н д = δ и н д R . За время Δ t на сопротивлении R выделится джоулево тепло:

∆ Q = R I и н д 2 ∆ t = υ 2 B 2 l 2 R ∆ t

Парадокса здесь нет. Мы просто не учли воздействие на систему еще одной силы. Объяснение заключается в том, что при протекании индукционного тока по проводнику, расположенному в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, которая связана с относительной скоростью движения зарядов вдоль проводника. Благодаря этой составляющей появляется сила Ампера F А → .

Для рассмотренного выше примера модуль силы Ампера равен F A = I B l . Направление силы Ампера таково, что она совершает отрицательную механическую работу A м е х . Вычислить эту механическую работу за определенный период времени можно по формуле:

A м е х = — F υ ∆ t = — I B l υ ∆ t = — υ 2 B 2 l 2 R ∆ t

Проводник, перемещающийся в магнитном поле, испытывает магнитное торможение. Это приводит к тому, что полная работа силы Лоренца равна нулю. Джоулево тепло может выделяться либо за счет уменьшения кинетической энергии движущегося проводника, либо за счет энергии, которая поддерживает скорость перемещения проводника в пространстве.

Изменение магнитного поля при неподвижном контуре

Вихревое электрическое поле – это электрическое поле, которое вызывается изменяющимся магнитным полем.

В отличие от потенциального электрического поля работа вихревого электрического поля при перемещении единичного положительного заряда по замкнутому проводящему контуру равна δ и н д в неподвижном проводнике.

В неподвижном проводнике электроны могут приводиться в движение только под действием электрического поля. А возникновение δ и н д нельзя объяснить действием силы Лоренца.

Первым, кто ввел понятие вихревого электрического поля, был английский физик Джон Максвелл. Случилось это в 1861 году.

Фактически, явления индукции в подвижных и неподвижных проводниках протекают одинаково. Так что в этом случае мы тоже можем использовать формулу Фарадея. Отличия касаются физической причины возникновения индукционного тока: в движущихся проводниках δ и н д обусловлена силой Лоренца, в неподвижных – действием на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Закон электромагнитной индукции Фарадея

Чтобы научиться эффективно использовать электричество, важно понимать правила его взаимодействия с магнитным полем. В определённых случаях магнитное поле может стать причиной возникновения электрического тока. Данное явление известно как электромагнитная индукция, понять его помогает закон электромагнитной индукции Фарадея.

Майкл Фарадей

История открытия

До середины 19 века было хорошо известно о существовании электрического и магнитного полей, но считалось, что они имеют разную природу. Это было обусловлено уровнем развития науки и техники. Фарадей был уверен в том, что оба этих случая представляют собой частные проявления более общего понятия — электромагнитного поля.

Благодаря его исследованиям были получены основополагающие сведения, подтверждающие явление электромагнитной индукции. Однако надо сказать, что в это время многие важные идеи как бы витали в воздухе. Представления о природе электромагнитной индукции не были исключением. Одновременно с Фарадеем к аналогичным выводам пришёл Джозеф Генри.

Максвелл также исследовал законы электромагнитного поля на протяжении многих лет. В 1873 году он изложил свои уравнения, которые легли в основу современных знаний и технологий, относящихся к этой сфере. В знак признания заслуг Фарадея, сформулированная Максвеллом теорема, была признана как закон электромагнитной индукции Фарадея-Максвелла.

Одним из выводов стало то, что любые изменения электрического поля вызывают изменения магнитного, а меняющееся магнитное поле вызывает создание электрического. Закон Фарадея является убедительной демонстрацией этого принципа.

Закон ЭМИ

Основные понятия

Формулировка закона электромагнитной индукции становится более понятной после изучения тех характеристик, которые в нем упоминаются. Определение свойств магнитного поля основывается на знании вектора напряжённости в каждой его точке. Зрительно это можно представить в виде картинки с большим количеством стрелок. Если поле является неравномерным, то они могут иметь различные направления и величину. Магнитное поле способно с течением времени изменяться. В этом случае напряжённость будет принимать различные значения.

Закон электромагнитной индукции Фарадея рассматривает замкнутый контур. Подразумевается, что он сделан из проводника и имеет произвольную форму. Действие закона относится как к плоским, так и к объёмным замкнутым контурам. Однако для лучшего понимания следует представить себе фигуру простой формы, находящуюся в одной плоскости.

Характеристики контура, помещённого в электрическое поле

На приведённой здесь схеме показана напряжённость поля B, имеющая вектор, проходящий через плоскость, ограниченную контуром в виде прямоугольника. Перпендикулярное направление к ней обозначено символом n.

Если поле имеет сложную конфигурацию, а также изменяется во времени, то рассматриваются промежутки, которые настолько малы, что вектор в их пределах почти не изменяется. В данном случае напряжённость электрического поля будет представлять собой сумму таких векторов.

Аналогичный подход применяется при рассмотрении сложных поверхностей, ограниченных контуром. Для проведения анализа они разбиваются на элементарные плоские участки. Вычисления в таких сложных случаях производятся с использованием методов интегрального исчисления.

Далее рассматривается контур в виде плоской фигуры с проходящим через него постоянным вектором напряжённости.

Теперь определим, что представляет собой магнитный поток. Расчёты проводятся для определённого поля, проходящего через рассматриваемый контур. Используется следующая формула:

Формула магнитного потока

Из формулы видно, что если рамка перпендикулярна вектору напряжённости, то магнитный поток будет максимальным, а если параллельна, то он равен нулю. Поток может принимать положительное или отрицательное значение в зависимости от величины косинуса угла.

Электромагнитная индукция

Рассматриваемые поля взаимосвязаны. Если поток через контур изменится, то возникает электродвижущая сила, которая будет перемещать по контуру заряды. Фарадей внимательно изучал этот эффект. Чтобы лучше понимать то, как действует магнитное поле, проводились многочисленные опыты. Из основных можно привести следующие:

  • На непроводящей основе располагают две электрически не связанные друг с другом катушки. Одну из них присоединяют к гальванометру. Другая через выключатель подключается к источнику питания. При замыкании ключа ток протекает по второй катушке, а в первой возникает импульс тока. После размыкания ключа также наблюдается импульс тока, но противоположного направления.
  • В этом опыте участвуют две катушки. В одной из них выходы подсоединены к гальванометру, в другой — к источнику питания. Если одну из них перемещать рядом с другой, то гальванометр покажет, что через катушку проходит ток, несмотря на то, что электрически она не подсоединена к источнику.
  • Здесь используется катушка, которая подключена к гальванометру. Она имеет внутреннюю полость, вдоль которой экспериментатор двигает магнит. В результате в катушке возникает электродвижущая сила, и гальванометр показывает наличие тока.

В этих опытах видно, что изменение магнитного потока приводит к возникновению электродвижущей силы. Важно отметить, что возникающий ток может иметь разное направление в зависимости от особенностей воздействия.

Опыты Фарадея

Формулировка закона Фарадея

Чтобы вывести закон электромагнитной индукции, Фарадей проделал множество опытов, в которых проводил точное измерение электрических параметров. На их основании он создал уравнение, которое доказало свою истинность.

Если рассматривается замкнутый контур, то возникающая в нём ЭДС индукции равна по абсолютной величине и противоположна по знаку скорости изменения магнитного потока, проходящего через этот контур. Закон формулируется таким образом.

Формула закона Фарадея

Здесь стоит обратить внимание на то, что ток, возникший в контуре, также создаст магнитное поле. Оно будет меньше первоначального, определяющего его, и будет направлено так, чтобы противодействовать его изменению. Об этом говорит знак минус. Рассматриваемое выражение описывает ситуацию для плоского контура. Если речь идёт о катушке с N витками, то у формулы будет следующий вид:

Формула для катушки, в которой N витков

В данной формуле используется электродвижущая сила. Чтобы определить силу тока, можно воспользоваться законом Ома.

Закон Ома

Закон Фарадея описывает изменение магнитного потока. Важно понимать, в каких случаях оно может произойти. Это обычно относится к следующим ситуациям:

  • В постоянном магнитном поле происходит перемещение контура. Здесь могут рассматриваться передвижение, поворот или изменение его формы.
  • При неподвижном контуре происходит изменение магнитного поля во времени. Оно, например, может менять свою интенсивность, направление или перемещаться.

Также могут рассматриваться ситуации, когда оба вида изменений происходят одновременно, однако они являются значительно более сложными. Во всех рассмотренных случаях изменения подчиняются закону Фарадея.

Универсальность закона Фарадея

Правило Ленца

Закон Фарадея позволяет определить величину индукционного тока. Однако он в контуре может протекать в двух направлениях. Чтобы понять в каком именно, нужно использовать правило Ленца.

Строгая формулировка этого правила гласит, что возникающий ток порождает поле, вектор напряжения которого направлен противоположно тому, какой имело первоначальное поле. В этом эффекте можно убедиться, если провести простой опыт.

Опыт, демонстрирующий правило Ленца

Когда магнит, вносят внутрь кольца, держа вперёд северным полюсом, по нему проходит ток в направлении против часовой стрелки. При этом вектор напряжённости определяется просто — он направлен внутрь контура. Возникший ток в соответствии с законами физики создаст поле с вектором напряжённости направленным противоположно движению магнита.

Закон Фарадея-Ленца

Таким образом, чтобы применить правило Ленца к явлению электромагнитной индукции, необходимо выполнить следующие действия:

  • Нужно определить то, как направлен вектор B внешнего магнитного поля.
  • Далее требуется определить, происходит ли его уменьшение или увеличение.
  • Определить направление вектора индукционного тока, создаваемого магнитным полем. Если изменение внешнего поля положительно, то векторы индукции и тока направлены противоположно друг другу. Если оно отрицательно, то векторы являются сонаправленными.
  • Зная направление вектора силы Ленца, можно по правилу правого винта определить направление электрического тока.

Важно отметить, что нарушение правила Ленца противоречило бы закону сохранения энергии. В таком случае ток смог бы поддерживать себя на протяжении неограниченного времени.

Правило правой руки

Практическое применение закона Фарадея

Эффект, который описывается рассматриваемым законом, позволяет превращать механическое движение в электрический ток. Это можно объяснить с помощью следующего примера.

Если постоянный магнит перемещать вдоль замкнутого контура, то по нему пройдёт ток. Его сила будет зависеть от особенностей движения магнита. Понятно, что механическое движение можно обеспечить множеством различных способов. Однако в результате применения указанной схемы можно получить электрическую энергию.

Схема генератора

Закон Фарадея также используется в работе трансформаторов. Они устроены таким образом, что переменный ток подаётся на входную катушку (первичную обмотку). Его изменения создают магнитное поле в сердечнике, которое также проходит через вторую катушку (вторичную обмотку). Изменения магнитного поля создают ток, используемый для работы электроприбора.

Токовые клещи представляют собой особый тип трансформатора. Обычно сердечник имеет форму кольца, но в токовых клещах он разомкнут. Этот инструмент можно раскрыть и затем закрыть вокруг провода, бесконтактным образом измеряя силу тока в нём. Такие измерения проводятся без отключения электросети, что существенно упрощает процедуру.

Закон Фарадея в относительно простой и понятной форме описывает связь между электрическим и магнитным полями. Он является основным законом электродинамики. На его основе построен принцип работы генераторов и электродвигателей.

Закон электромагнитной индукции Фарадея для начинающих

Основной закон электродинамики

Что может быть лучше, чем вечером понедельника почитать про основы электродинамики. Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью. Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет успешно извлечь из недр памяти закон Фарадея. Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.

Электродинамика – раздел физики, изучающий электромагнитное поле во всех его проявлениях.

Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.

Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея.

Майкл Фарадей (1791-1867)

Майкл Фарадей (1791-1867)

История и определение

Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!

При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

Рамка в поле

Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

Электромагнитная индукция – возникновение в замкнутом контуре электрического тока при изменении магнитного потока, проходящего через контур.

Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:

ЭДС, возникающая в контуре, пропорциональна скорости изменения магнитного потока Ф через контур.

Закон электромагнитной индукции Фарадея

А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца. Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

Для определения направления индукционного тока применяется знаменитое правило буравчика, или правило правой руки, оно же правило правого винта. Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца укажут направление индукционного тока.

Правило правой руки

Правило правой руки

Примеры решения задач

Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.

Задача на электромагнитную индукцию

И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть — обратитесь к нашим авторам! Теперь вы знаете где заказать курсовую работу. Мы быстро предоставим подробное решение и разъясним все вопросы!

  • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
  • Курсовая работа 5 дней / от 2160 р. Узнать стоимость
  • Реферат от 1 дня / от 840 р. Узнать стоимость

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Явление электромагнитной индукции

В 1821 году Майкл Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена. В 1831 г. Майкл Фарадей установил, что электрический ток в контуре может возникать не только при движении проводника в магнитном поле, но и при любом изменении магнитного потока (рис. 3.13.).

Рис. 3.13. Опыты Фарадея

Электромагнитная индукция – физическое явление, заключающееся в возникновении электрического тока в замкнутом контуре при изменении магнитного потока через поверхность, ограниченную этим контуром.

Электрический ток, возникающий при явлении электромагнитной индукции называется индукционным.Индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции. Сила индукционного тока не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения.

Закон Фарадея: сила индукционного тока, возникающего в замкнутом проводящем контуре (ЭДС индукции, возникающая в проводнике), пропорциональна скорости изменения магнитного потока, сцепленного с контуром (проникающего через поверхность, ограниченную контуром), и не зависит от способа изменения магнитного потока.

Правило Ленца: индукционный ток направлен таким образом, что собственным магнитным полем препятствует изменению внешнего магнитного потока, пересекающего поверхность контура (рис. 3.14).

Рис. 3.14. Иллюстрация правила Ленца

Мгновенное значение ЭДС индукции (закон Фарадея-Ленца)

,

где – потокосцепление замкнутого проводящего контура.

Открытие явления электромагнитной индукции:

1. показало взаимосвязь между электрическим и магнитным полем;

2. предложило способ получения электрического тока с помощью магнитного поля.

Таким образом, возникновение ЭДС индукции возможно и в случае неподвижного контура, находящегося в переменном магнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому с ее помощью нельзя объяснить возникновение ЭДС индукции.

Опыт показывает, что ЭДС индукции не зависит от рода вещества проводника, от состояния проводника, в частности от его температуры, которая может быть даже неодинаковой вдоль проводника. Следовательно, сторонние силы с изменением свойств проводника в магнитном поле, а обусловлены самим магнитным полем.

Максвелл для объяснения ЭДС индукции в неподвижных проводниках предположил, что переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Вихревое электрическое поле не является электростатическим (т. е. потенциальным).

Разность потенциалов на концах проводника, движущегося со скоростью в магнитном поле,

,

где ‑ длина проводника; ‑ угол между векторами и.

Заряд, протекающий по замкнутому контуру при изменении магнитного потока, пронизывающего этот контур,

, или ,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *