Что такое осциллограф?
Осциллограф – электронный прибор для измерения электрических сигналов в цепи и наблюдения за ними. Определение формы и параметров колебаний необходимо для отслеживания корректности работы оборудования.
Первые попытки создать прибор для определения электрических колебаний относятся ещё к 1880 году. Их делали французские и русские физики. Первые осциллографы были аналоговыми. С 1980-х годов сигналы стали фиксироваться с помощью цифрового оборудования.
Устройство и принцип действия прибора
Объясним устройство аналогового осциллографа просто, «для чайников». Прибор состоит из следующих элементов:
- лучевая трубка;
- блок питания;
- канал вертикального / горизонтального отклонения;
- канал модуляции луча;
- устройство синхронизации и запуска развёртки.
Для управления параметрами сигнала и его отображения на экране есть регуляторы. У старых моделей экрана не было. Изображение фиксировалось на фотоленте.
Принцип работы
При запуске прибора сигнал подаётся на вход канала вертикального отклонения. Он имеет высокое входное сопротивление. По тому же принципу работает вольтметр, измеряющий напряжение. Однако вольтметр не показывает временного графика колебаний напряжения.
Сигнал усиливается до необходимого уровня после подачи на вход. Он отображается на экране по вертикальной оси. Усиление требуется для работы отклоняющей системы лучевой трубки или преобразователя сигнала из аналогового в цифровой. Оно позволяет менять масштаб отображения колебаний на экране от крупного до мелкого.
Устройство
Лучевая трубка чувствительна к электрическим импульсам. Чем ниже их частота, тем выше чувствительность. В нынешних трубках количество лучей может составлять от одного до 16. Их количеству соответствует число сигнальных входов и отображающихся одновременно графиков.
Особенность цифрового осциллографа в том, что он имеет экран и преобразователь аналогового сигнала. У него есть память для сохранения данных о полученном графике колебаний. Часть информации анализируется в автоматическом режиме и отображается в обработанном виде. Аналоговый осциллограф не запоминает данные, а только показывает их в реальном времени.
Разверткой называется траектория движения луча, который улавливает колебания и выводит изображение на экран. Она бывает разной формы — эллиптической, круговой. Значение развёртки регулируется в зависимости от исследуемого сигнала по горизонтальной оси (временнóй).
Блок питания подаёт напряжение от сети 220 В на электронные схемы. Есть и аккумуляторные модели, способные работать автономно.
Виды осциллографов
По принципу действия осциллографы бывают цифровыми и аналоговыми. Существуют смешанные аналого-цифровые приборы. Всё чаще выпускают виртуальные. Там в качестве экрана используется другой прибор – монитор компьютера, телевизора.
Работа некоторых моделей основана на электромеханическом принципе:
- электродинамический;
- электростатический;
- выпрямительный;
- электромагнитный;
- магнитоэлектрический;
- термоэлектрический.
Прибор может работать самостоятельно или являться приставкой к другому оборудованию (например, компьютеру). Во втором случае цена ниже, но сам прибор зависим от внешнего устройства.
Виды развёрток
В разных режимах работы осциллографа линейные (создаваемых пилообразным напряжением) развёртки могут различаться:
- Однократная. Генератор запускается один раз, затем блокируется. Такая развёртка нужна для фиксирования неповторяющихся сигналов.
- Ждущая. Запуск происходит сразу после сигнала. Нужна для наблюдения за редкими колебаниями.
- Автоколебательная. Генератор периодически включается при отсутствии сигнала. Удобна для отображения частых периодических импульсов.
Измеряемые процессы
По принципу работы приборы делят на:
- Специальные. Имеют блоки для целевого использования (например, телевизионные осциллографы).
- Стробоскопические. Чувствительные приборы для исследования кратковременных повторяющихся процессов.
- Скоростные. Используют для фиксации процессов с высокой скоростью (с точностью до нано- и пикосекунд).
- Запоминающие. Сохраняют полученное изображение. Обычно применяют для изучения редких однократных действий.
- Универсальные. Исследуют разные процессы.
Где применяют осциллографы?
Информация, которую даёт осциллограф:
- значения напряжения, временные параметры колебаний;
- сдвиг фаз, искажение импульса на разных участках цепи;
- частота (определяется путем фиксирования его временных характеристик);
- переменная и постоянная составляющие колебаний;
- процессы в цепи.
Осциллографы используют как в практических, так и в научно-исследовательских целях. Для простых измерений можно воспользоваться мультиметром, но в большинстве случаев осциллограф незаменим.
Приборы для измерения колебаний применяют при настройке электронного оборудования. К примеру, для регулировки телевизионного сигнала необходимо получить его осциллографическое изображение. Приборы также используются при ремонте блоков питания, диагностике печатных плат.
При ремонте автомобилей устройство поможет получить данные о положении коленчатого и распределительного валов, датчиков положения. Данные осциллограммы расскажут о наличии импульса на катушке, укажут на неисправность свечей и проводов, диодного моста генератора.
Медицинское оборудование (кардиографы, энцефалографы) тоже работает по принципу осциллографирования. Только электрические колебания, измеряемые ими, происходят в живых организмах.
Методика измерений
Осциллограф измеряет электрическое напряжение и формирует амплитудный график электрических колебаний. Цифровые приборы могут запоминать полученный график, возвращаться к нему.
Колебания отображаются на экране в двухмерной системе координат (напряжение – вертикальная ось, время – горизонтальная ось), формируя график — осциллограмму. Есть ещё третий компонент исследований – интенсивность сигнала (или яркость).
При отсутствии входных импульсов на экране горизонтальная линия – «нулевая», обозначающая отсутствие напряжения. Как только на вход (или входы) прибора подаётся напряжение, на экране становятся видны один или несколько графиков одновременно (зависит от количества измеряемых сигналов).
График электрических колебаний по форме может представлять собой:
- синусоиду;
- затухающую синусоиду;
- прямоугольник;
- меандр;
- треугольники;
- пилообразные колебания;
- импульс;
- перепад;
- комплексный сигнал.
Для получения стабильного графика колебаний в приборе стоит блок синхронизации. Получить цикличное отображение колебаний можно только после установки значения синхронизации. Оно принимается за «стартовое», служит отправной точкой графика. Все скачки отображаются по отношению к этой точке.
Как выбрать
Нужно представлять, в каких целях и как часто будет использоваться прибор, для изучения каких сигналов он предназначен. Учитывайте количество точек для одновременного измерения, одиночность или периодичность колебаний. Иногда используются устройства советского производства. Но получить точную настройку с их помощью трудно.
Количество каналов
По количеству каналов осциллографы могут быть одноканальными, простыми (2-4 канала), продвинутыми (до 16 каналов). Несколько каналов позволяют одновременно анализировать поступающие сигналы.
Тип питания
Прибор с аккумулятором можно брать с собой на выезд. Это удобно для мастеров, которые проверяют оборудование по месту его нахождения. Если выезды не производятся, лучше брать работающий от сети осциллограф, поскольку он стабильнее и надёжнее.
Частота дискретизации
Частота дискретизации важна для измерения однократных и переходных процессов. Чем выше этот параметр, тем более точное изображение сигнала на экране удастся получить.
Полоса пропускания
Для простых исследований цифровых схем и усилителей оптимальная звуковая частота — 25 МГц. Для профессионального измерения нужен прибор, у которого этот параметр — до 200 или даже до 500 МГц. Современные линии связи работают на очень высоких частотах. Частота исследуемых сигналов должна быть в 3-5 раз меньше величины полосы пропускания.
Настройка осциллографа
Перед использованием нового устройства проводится его калибровка с помощью находящихся на корпусе генератора прямоугольных импульсов. Сигнальный щуп подключают к калибровочному выходу, при этом на экране появляется «пила» — зигзагообразная линия. Нужно проверить работу всех функций и регуляторов.
Сейчас осциллографы регулярно используют в сфере электроники. Есть большой выбор устройств, позволяющих наблюдать за параметрами электрических колебаний. Без осциллографа не обойтись ни инженеру-профи, ни рядовому любителю радиоэлектроники.
Что такое осцилограф и для чего он нужен
Чтобы отремонтировать современную электронную технику одного мультиметра порой недостаточно. Им можно определить целостность радиодеталей. Но определить работает или нет микросхема мультиметром не получится. Для этого нужен осциллограф. Что это за прибор, что он делает? Об этом и будет статья.
Что такое осциллограф
Осциллограф — это прибор для визуального отображения и измерений параметров сигналов различной формы (процесс называется «осциллографирование»). Сигналы подаются на вход и отображаются на экране. Экран разбит на квадраты, по центру проходят две оси координат. По горизонтали измеряется время. По вертикали — амплитуда и/или напряжение. Цена деления задается при помощи ручек калибровки. Режим отображения подстраивается под каждый сигнал. Выбирается такой режим, который наиболее удобен в данном случае (в пределах возможностей прибора).
Осциллограф — это не обязательно большая, громоздкая вещь. Есть портативные цифровые модели, есть приставки. Есть даже программы, которые можно с адаптером установить на стационарный компьютер или ноутбук.
Так выглядит цифровой осциллограф Tektronix DPO 3054. На дисплее отображает сигнал, регуляторами выбираются параметры
По количеству одновременно отслеживаемых сигналов осциллографы есть однолучевые (одноканальные/моноканальные) и многолучевые (многоканальные). Однолучевые могут одновременно принимать только один сигнал, многолучевые — два, три, четыре и больше — до 16. Зависит от прибора.
Какой тип лучше? Многолучевой. Вы одновременно можете отслеживать сигнал в нескольких точках схемы. Изменяя параметры будете видеть реакцию устройства не только на выходе, но и в разных точках схемы.
Для чего он нужен
Для чего нужен осциллограф? Это просто необходимая вещь при ремонте электронной аппаратуры, при самостоятельной сборке или усовершенствовании каких-либо устройств. Многим хватает тестера или мультиметра. Да. Но для ремонта простых устройств без микросхем и микропроцессоров. Мультиметром вы можете проверить наличие обрыва, короткого замыкания, измерить напряжение и ток. Ни форму сигнала, ни конкретные параметры синусоиды или импульсов не измерить и не увидеть.
Осциллограф нужен для измерения напряжения и визуального отображения сигналов. На фото цифровой двухканальный осциллограф Hantek DSO5102B в рабочем режиме
А ведь бывает так, что все детали, вроде исправны, но устройство не работает. А все потому что некоторые детали требовательны не только к физическим параметрам питания (напряжение, сила тока), но и к форме сигнала. Этим «страдают» некоторые полупроводниковые детали, практически все микросхемы и процессоры. А без них сейчас обходятся только самые элементарные приборы типа кипятильника. Вот и получается, что найти сгоревший резистор, пробитый транзистор можно и мультиметром. Но для чуть более сложную поломку уже не устранить. Вот для этих случаев и нужен осциллограф. Он позволяет видеть форму сигнала, определять есть ли отклонения и находить источник проблемы.
Виды осциллографов
По принципу преобразования сигнала осциллографы бывают аналоговыми и цифровыми. Есть еще смешанный тип — аналогово-цифровой. Принципиальная разница между ними — в методах обработки сигналов и в возможности запоминания. Аналоговые модели транслируют «живой» сигнал в режиме реального времени. Записывать его на таком приборе нет возможности.
Аналогово-цифровые и цифровые уже имеют возможность записи. На них можно «открутить» время назад и просмотреть информацию, увидеть динамику изменения амплитуды или времени.
Еще одно отличие цифровых осциллографов от аналоговых — размеры. Цифровые приборы имеют значительно меньшие габариты
Цифровые осциллографы сначала оцифровывают синусоиду, записывают эту информацию в запоминающее устройство (ЗУ), а затем передают на экран монитора. Но не все цифровые модели имеют долговременную память — в таком случае запись ведется циклически. Это когда вновь пришедший сигнал записывается поверх предыдущего. В памяти хранится то, что появлялось на экране, но промежуток времени не такой большой. Если вам необходима запись длиной пять-десять минут, нужен запоминающий осциллограф.
Что измеряет осциллограф
На экране осциллографа отображается двухмерная картинка сигнала, который подали на измерительный вход. На экране есть две оси координат. Горизонтальная — ось времени, вертикальная — напряжение. Эти параметры и измеряют. А уже из них высчитывают остальные.
На экране осциллографа отображаются сигналы, которые подаются на его входы. Это например, двухлучевой аналоговый осциллограф, который показывает форму сигнала на входе (синусоида) и выходе (прямоугольный) импульсного преобразователя напряжения
Вот что можно измерить и отследить при помощи осциллографа:
- Напряжение (амплитуду).
- Временные параметры, по которым можно рассчитать частоту.
- Отслеживать сдвиг фаз.
- Видеть искажения, которые вносит элемент или участок цепи.
- Определить постоянную и временную составляющие сигнала.
- Увидеть наличие шума.
- Рассчитать соотношение сигнал/шум.
- Видеть/определить параметры импульсов.
Сигнал, который показывает осциллограф, довольно информативен. Видны искажения, которые вносит та или иная деталь, можно отследить, как меняется форма/амплитуда/частота в каждой точке схемы, после каждой детали.
Кроме наблюдения за формой сигнала, осциллограф можно использовать для определения целостности сопротивлений, конденсаторов, катушек индуктивности (см. видео ниже).
Устройство и принцип работы
Рассмотрим блок-схему и алгоритм работы аналогового осциллографа. Как уже говорили, изменять изображения можно по горизонтали и по вертикали. Приборы на основе электронно-лучевой трубки (ЭЛТ) для этого имеют две пары пластин. Одна пара для изменения масштаба по вертикали (амплитуда или напряжение). Вторая — для растягивания или сжатия по горизонтали (временные параметры).
Устройство аналогового осциллографа: блок-схема
Отслеживаемый сигнал подается на входной усилитель, где усиливается или уменьшается до заданных значений. Значение задается переключателями. Коэффициент усиления обычно от 100 до 1000. Усиленный сигнал идет на пластины вертикальной развертки электронно-лучевой трубки.
Горизонтальная развертка формируется на основе пилообразного сигнала, который генерируется в соответствующем блоке (генератор развертки). Его параметры также задаются соответствующим переключателем. Отображение на экране ЭЛТ идет в режиме реального времени, с некоторой задержкой. Величина задержки прописывается в технических характеристиках прибора.
Основные блоки аналогового осциллографа
Для работы осциллографа важен блок синхронизации. Он обеспечивает появление картинки в момент поступления потенциала на вход. За счет этого на экране мы видим сигнал за некоторый промежуток времени. Есть разные типы синхронизации. Они выбираются переключателем. Чаще всего выбирают синхронизацию от самого исследуемого сигнала. Есть еще от сети и внешнего источника.
Режимы работы осциллографа
Осциллографом исследуют различные типы сигналов. Они могут быть постоянными (напряжение в сети), периодическими (шумы, помехи, звуки и т.д.). Периодические могут возникать случайно или с определенным интервалом. В зависимости от того, как часто или редко возникает сигнал, выбирают тот или иной режим работы. Чаще всего в осциллографе есть два режима: автоматический (автоколебательный) и ждущий. Еще может быть однократный.
Выбор режима работы осциллографа
Если мы не знаем, как часто возникают импульсы, выбирают обычно автоматический режим. В нем даже при отсутствии потенциала на входе или при его недостаточном уровне экран светится. Отображается «нулевой» сигнал — прямая линия, которая должна идти по горизонтальной оси на экране (выставляется по линии регуляторами со стрелочками). При появлении потенциала на входе, он отображается на экране. Картинка при этом периодически обновляется и мы видим развертку сигнала по времени.
Так выглядит экран осциллографа в автоколебательном (авторежиме) при отсутствии сигнала
Ждущий режим хорош для редко появляющихся сигналах. Пока на входе ничего нет, экран не светится. При появлении каких-либо изменений он загорается, запускается генератор развертки и сигнал отображается на экране. Запуск можно настроить как по восходящему фронту импульса/синусоиды, так и по нисходящему. Можно настроить запуск не на исследуемый сигнал, а на то событие, которое ему предшествует (если такое есть).
Одиночный режим настраивает осциллограф на принятие одного сигнала. Когда на вход приходит потенциал нужного уровня, сигнал отображается на экране. После этого прибор переходит в неактивное состояние. И, даже если на входе будет следующий потенциал (или пять, или сто пять) он его не зарегистрирует. Для приема другого импульса нужно заново «взвести» прибор.
Делитель (аттенюатор)
Исследуемый сигнал может иметь напряжение от десятых долей до сотен вольт. Есть осциллографы со встроенным регулятором чувствительности — аттенюатором. Выглядит он как переключатель с градуировкой. Она задает «вес» одного деления на экране и определяет, во сколько раз понижается входной сигнал. Если ожидается малый уровень, мы просто выставляем на 1 или на 0,1. В таком случае одно деление на экране по вертикали будет 1 В и 0,1 В соответственно. И «понижать» сигнал будут в 1 раз (то есть, передадут как есть) или усилят в 10 раз перед подачей на вход (это если стоит 0,1).
Не все осциллографы имеют встроенный делитель (аттенюатор). В комплекте с таким прибором идут внешние делители на 1:10 или 1:100. Это прямоугольные или цилиндрические насадки с разъемами с обоих сторон. Они устанавливаются во входной разъем и через них подается напряжение на вход, но уже пониженное в соответствующее количество раз.
Примерно так выглядит делитель. Он устанавливается во входное гнездо, а к нему уже подключается измерительный шнур
Ставить делитель необязательно. Необходимость определяется по ожидаемому уровню сигнала. В характеристиках указывается максимальное входное напряжение, которое может подаваться на прибор без делителя и с делителем. По уровню ожидаемого сигнала и ставим насадку.
Если уровень неизвестен, сначала выставляют самый большой делитель (или самое большое деление на аттенюаторе). Это предохранит прибор от перегорания если потенциал будет высоким. По результатам первого замера выбирается оптимальный режим.
Особенности цифровых моделей
Цифровой осциллограф работает иначе — аналоговый сигнал преобразуется в цифровую форму. В таком виде он записывается в ЗУ и передается на монитор, где из цифрового формата переводится снова в аналоговую форму. Отображение на экране начинается только в тот момент, когда уровень на входе превысит определенное значение (задается настройками).
Периодичность смены картинки зависит от выбранного режима работы: автоматический, одиночный и обычный. Обычный — это аналог ждущего.
Упрощенная блок-схема цифрового осциллографа
Чем лучше цифровые модели? Во-первых, такое преобразование делает изображение более стабильным. Во-вторых, проще увеличивать и уменьшать масштаб. В-третьих, есть возможность записи. Ну, и габариты. Самый небольшой аналоговый осциллограф — С1-94 — имеет размеры 100*190*300 мм и вес 3,5 кг. А цифровые при размерах 100*50-60*13-20 мм имеют вес порядка 150-300 граммов. И это вместе с аккумуляторами.
Как работать с осциллографом
Первоначально выставляются режим работы осциллографа (автоколебательный, ждущий или одиночный). Затем выбирается режим аттенюатора или устанавливается соответствующий делитель напряжения.
Это касается аналоговых приборов. Цифровые на входе анализируют сигнал и понижает/повышает его до необходимого уровня. В них на входе стоит аналитический блок, который сам понижает или повышает входной сигнал до требуемого уровня.
Подключение осциллографа
В комплекте с осциллографом идет измерительный шнур или шнуры. Их количество зависит от числа входных каналов конкретной модели. Если канал один, то и шнур один. Может быть два, три и до шестнадцати. Подключать надо столько, сколько собираетесь использовать.
Шнуры для осциллографа трудно спутать с другими. Один конец — со щупом и ответвлением. Это «измерительная» сторона. С другой находится характерный круглый разъем. Эта часть подключается к измерительному входу.
Провод, который идет в сторону от щупа — для подключения к «земле». Он часто бывает снабжен прищепкой или «крокодилом». Его подключать обязательно, вольтаж может быть разный и заземление необходимо.
Измерительные шнуры для осциллографа
Некоторые шнуры для осциллографа имеют на рукоятке переключатель, который работает как небольшой усилитель (на фото справа).
После подключения измерительных шнуров включаем прибор в сеть. Затем, перед работой, переводим в рабочее положение тумблер/кнопку включения прибора. Можно считать что осциллограф готов к работе.
Проверка осциллографа перед работой
Перед началом работы надо проверить осциллограф. Включаем его в сеть, устанавливаем измерительный шнур. К щупу прикасаемся пальцем, на экране появляется синусоида частотой 50 Гц — наводки от бытовой электросети.
Если пальцем прикоснуться к измерительному щупу, на экране появится синусоидальной формы сигнал. Синусоида неидеальна, но если она есть и ее частота 50 Гц, это значит, что осциллограф исправен
Затем берем земляной щуп и прикасаемся им к измерительному (палец продолжаем держать на острие щупа). Сигнал пропадает (отображается прямая). Это значит, что прибор исправен.
Как измерить осциллографом напряжение: переменное, меандра, постоянное
Как уже говорили, напряжение на экране осциллографа отображается по вертикали. Весь экран разбит на квадраты. Цена деления по вертикали выставляется переключателем, который подписан «V/дел». Что и обозначает, Вольт на одно деление. Перед подачей сигнала выставляем луч точно по горизонтальной оси — это важно.
Подаем сигнал и считаем, на сколько клеточек от нулевого уровня поднимается или опускается сигнал. Затем умножаем количество клеток на «цену деления», взятую с регулятора. В результате получаем напряжение сигнала. В случае с синусоидой или меандром (положительные и отрицательные прямоугольные импульсы) считается напряжение полуволны — верхней или нижней.
Измерение напряжения осциллографом
Чтобы было понятнее, разберем пример. На фото есть сигнал, полуволна которого понимается и опускается на три клеточки. Цена деления на регуляторе — 5 В. Имеем: 3 дел * 5 V/дел = 15 V. Получается, данный сигнал имеет напряжение 15 вольт.
Если надо измерить постоянное напряжение, снова выставляем луч по горизонтали. Подаем напряжение и смотрим, на сколько клеток «подпрыгнул» или опустился луч. Дальше все точно так же: умножаем на цену деления и получаем значение постоянного напряжения.
Как осциллографом определить частоту
Частота определяется как 1/T, где Т — период сигнала. А период — это время, за которое сигнал проходит полный цикл. Для сигнала на экране это 5,7 клетки. Считаем от места пересечения с горизонтальной осью и до второй аналогичной точки.
Как определить частоту сигнала по осциллографу
Далее определяем частоту деления по переключателю развертки. Положение переключателя стоит на 50 миллисекунд. Берем количество делений и умножаем на количество клеток. Получаем 50 мс * 5,7 = 285 мс. Переводим в секунды. Для этого надо разделить на 1000. Получаем 0,285 сек. Считаем частоту: 1/0,285 = 3,5 Гц
Полоса пропускания осциллографа: что это и на что влияет
При выборе осциллографа смотрят на следующие параметры:
- Полоса пропускания.
- Максимальное входное напряжение.
- Режимы развертки.
- Источники синхронизации.
Обо всех параметрах, кроме полосы пропускания, уже рассказали. Полоса пропускания — это чуть ли не важнейший показатель. Она определяет максимальную частоту сигнала, который будет отображаться без искажений. Например, при полосе пропускания 20 Гц — 20 МГц, все что имеет более высокую частоту будет подавляться.
Там, где полоса пропускания заканчивается, частоты жестко подавляются
Как же выбирать частоту пропускания? Зависит от того, какие сигналы вы собираетесь изучать и насколько «глубоко» вам надо их исследовать. Для аналоговых сигналов все просто — верхний предел должен быть больше чем максимальная частота. С меандрами все сложнее. На самом деле они состоят их суммы нечетных гармоник сигнала. Чем больше гармоник, тем больше форма похожа на квадрат, а не на сглаженное что-то. Но гармоники высокого порядка имеют очень высокую частоту. Если надо исследовать фронты, их отклонение, то верхний предел полосы пропускания — это десятки гигагерц. А такие приборы очень дорогие. Для обычной синусоиды достаточно 10-20 МГц, что значительно дешевле.
Осциллограф
Осциллограф — это прибор, который показывает изменение напряжение во времени на каком-либо участке электрической цепи.Ось X на экране осциллографа — это время, ось Y — напряжение.
В этой статье мы рассмотрим три типа осциллографов, а также принципы их работы.
Аналоговый осциллограф
Его еще также называют электронно-лучевой осциллограф, так как он состоит из электронно-лучевой трубки. По сути электронно-лучевая трубка представляет из себя маленький кинескоп, на котором мы можем наблюдать какое-либо изменение электрического сигнала.
Любой осциллограф имеет экран. Он может быть встроенный, либо это может быть монитор вашего настольного компьютера или дисплей ноутбука. В нашем случае на фото мы видим, что наш осциллограф имеет круглый экранчик. Сигнал, который вырисовывается на таком экране называется осциллограммой.
Для измерения электрических сигналов нам потребуются специальный щуп для осциллографа. Такой щуп представляет из себя кабель из двух проводов, один из которых является сигнальным, а другой нулевым. Нулевой провод также часто называют «землей».
Более современные щупы уже выглядят вот так.
А вот и сам разъем щупа
Этот конец щупа соединяется с осциллографом и фиксируется небольшим поворотом по часовой стрелке.
Что делать, если вы не помните, какой провод из щупа является сигнальным, а какой нулевым? Это определяется очень просто. Так как человек находится всегда в электромагнитном поле, он является своего рода принимающей антенной и может наводить помехи. Касаясь сигнального щупа осциллографа, на экране мы увидим, что сигнал очень сильно исказился.
При касании нулевого провода, сигнал на осциллографе остался бы таким, какой был. То есть чистый ноль.
Как измерить постоянное напряжение аналоговым осциллографом
Для того, чтобы измерить постоянное напряжение, мы должны переключить осциллограф в режим DC, что означает «постоянный ток». В разных моделях это делается по разному, но этот переключатель обязательно должен быть в каждом осциллографе.
Давайте рассмотрим на реальном примере, как можно измерить постоянное напряжение. Для этого нам потребуется источник постоянного тока. В данном случае я возьму лабораторный блок питания. Выставляю на нем значение напряжения в 1 Вольт.
Теперь необходимо выбрать масштаб измерений. Если мы хотим, чтобы одна сторона квадратика была равна 1 Вольту, то ставим коэффициент масштабирования 1:1. В данном случае я выставляю переключатель вертикальный развертки на единичку.
Далее сигнальный провод осциллографа цепляем на «плюс» питания, а нулевой — на «минус» питания. Далее наблюдаем вот такую картину.
Как вы могли заметить, осциллограммой постоянного тока является прямая линия, параллельная горизонтальной оси (оси Х). По вертикальной оси (оси Y) мы видим, что сигнал поднялся ровно на одну клеточку. Мы выставили коэффициент масштабирования по Y, что 1 клеточка — это 1 Вольт. Следовательно в нашем случае сигнал поднялся ровно на 1 клеточку, что говорит нам о том, что это и есть осциллограмма постоянного тока в 1 Вольт.
Я также могу изменить коэффициент. Например, ставлю на 2. Это означает, что 1 квадратик будет уже равен 2 Вольтам.
Смотрим, что произойдет с сигналом с напряжением в 1 Вольт
Здесь мы видим, что его значение просело в 2 раза, так как мы взяли коэффициент 1:2, что означает 1 квадратик равен 2 Вольтам. Благодаря масштабированию вертикальный развертки, мы можем измерять сигналы напряжением хоть в 1000 вольт!
Что случится, если мы соединим сигнальный провод осциллографа с «минусом» питания, а нулевой с «плюсом» питания? В этом случае осциллограмма «пробьет пол» и просто покажет минусовые значения. Ничего страшного в этом нет. Здесь мы видим значение «-2» Вольта.
Как измерить переменное напряжение аналоговым осциллографом
Для измерения переменного напряжения нам потребуется переключить осциллограф в режим измерения AC — «переменный ток». Если вы хотите просто наблюдать форму сигнала, то вам необязательно знать, какой провод осциллографа куда тыкать. Давайте измеряем переменное напряжение с понижающего трансформатора, который включен в сеть 220 Вольт.
Снимаем напряжение со вторичной обмотки трансформатора и видим вот такую осциллограмму.
По идее здесь должен быть чистый синус. То ли трансформатор вносит искажения в сигнал, то ли на электростанции что-то не так. Непонятно. Ну да ладно, главное то, что мы сняли осциллограмму переменного напряжения со вторичной обмотки трансформатора.
В этом случае мы можем без проблем определить период сигнала и его частоту. В этом нам поможет переключатель горизонтальной развертки по оси времени.
Мы видим, что его значение стоит на 5. Это означает, что один квадратик по оси «Х» , то есть по оси времени, будет равен 5 миллисекунд или 0,005 секунд.
Период — это время, через которое сигнал повторяется. Обозначается буквой Т. В нашем случае период равен 4 квадратикам.
Так как один квадратик в нашем случае равен 0,005 секунд, то получается, что T=0,005 x 4 = 0,02 секунды. Отсюда можно узнать частоту сигнала.
Для данного случая
V=1/T=1/0,02=50 Гц. Трансформатор меняет только амплитуду сигнала, но не изменяет его частоту. Поэтому, частота в нашей сети 50 Герц, что и подтвердил осциллограф.
Цифровой осциллограф
Цифровой осциллограф — это осциллограф, построенный на основе цифровой схемотехники. Его главное отличие от аналогового в том, что внутри него идет цифровая обработка сигналов. Цифровой осциллограф может записывать, останавливать, автоматически подгонять и измерять исследуемый сигнал. И это только часть функций!
Как подготовить цифровой осциллограф к работе
Включаем осциллограф и цепляем щуп на любой из каналов. Я соединил щуп с первым каналом (CH1)
На щупе есть делитель. Ставим его ползунок на 10Х. В осциллографе по умолчанию также должен стоять делитель на 10Х. Если это не так, ищем в его настройках и ставим в характеристиках канала «10Х».
Каждый нормальный цифровой осциллограф имеет встроенный генератор прямоугольных импульсов с частотой 1000 Герц (1кГц) и амплитудой напряжения в 5 Вольт. Чаще всего этот генератор находится в нижнем правом углу. В нашем случае он называется Probe Comp. Цепляемся за него щупом.
Все должно выглядеть приблизительно вот так:
На дисплее в это время происходит какой-то
В этом осциллографе есть волшебная кнопка, от которой я без ума. Это кнопка автоматического позиционирования сигнала Autoscale. Нажал на эту кнопку
Согласился с условиями автоматического позиционирования сигнала
Но что такое? У нас должен быть ровный прямоугольный периодический сигнал! Вся проблема в том, что щуп осциллографа вносит искажения в сам сигнал, поэтому, его желательно корректировать каждый раз перед работой.
В современных щупах есть маленький винтик, заточенный под тонкую отвертку. С помощью этого винтика мы будем корректировать щуп.
Крутим и смотрим, что у нас получается на дисплее.
Ого, слишком сильно крутанул винт.
Крутим чуточку в обратную сторону и выравниваем горизонтально вершины сигнала.
Вот! Совсем другое дело! На дисплее у нас ровные прямоугольные сигналы, следовательно н а этом этапе цифровой осциллограф полностью готов к работе.
Как измерить постоянное напряжение цифровым осциллографом
Итак, первым делом выбираем, какое напряжение собираемся измерять. Это делается с помощью кнопочки Coupling (нажимаем клавишу Н1). DC — direct current, что с английского означает «постоянный ток».
Справа экрана сплывают окошки, и мы выбираем DC (нажимаем клавишу F1)
Все, после этого наш осциллограф полностью готов к измерению постоянного тока.
Откуда будем брать постоянный ток? У меня для этого есть блок питания. Выставим на нем для примера 5 Вольт.
Соединяем щупы блока питания и осциллографа. Сигнальный щуп осциллографа желательно соединять с красным плюсовым крокодилом щупа блока питания, а черный щуп (земля) соединить с минусовым черным крокодилом.
Смотрим на дисплей осциллографа
Что мы тут видим? А видим мы тут осциллограмму постоянного напряжения. Постоянное напряжение — это такое напряжение, которое не изменяется во времени.
На что стоит обратить внимание? Разумеется, на цену деления. Один квадратик по вертикали у нас равен 2 Вольта. Если считать от центра пересечения жирных штриховых линий, то осциллограмма находится на высоте 2,5 стороны квадратика. Значит, напряжение будет 2,5х2=5 Вольт. Так как мне лень считать, я вывожу эти показания осциллографа прямо на экране (нижняя левая зеленая рамка).
Как измерить переменное напряжение цифровым осциллографом
Для опытов я возьму ЛАТР (Лабораторный автотрансформатор). Как вы помните, ЛАТР понижает или повышает переменное сетевое напряжение.
Выставляем напряжение на ЛАТРе 100 Вольт.
На осциллографе переключаем на АС, что означает alternating current — переменный ток.
Цепляемся к выходным разъемам ЛАТРа и наблюдаем такую картину.
С помощью кнопки «Measure» я вывел некоторые интересующие нас параметры:
Vk — среднеквадратичное значение напряжения. В данном случае он нам показывает напряжение, которое мы подавали с ЛАТРа — это 100 Вольт.
F — частота. В данном случае это частота сети 50 Герц. ЛАТР не меняет частоту сети.
T — период. T=1/F. Как мы с вами видим частота напряжения в сети 50 Герц. Период равен 20 миллисекунд. Если единицу разделить на 20 миллисекунд, то мы как раз получим частоту сигнала.
Как вывести все параметры сигнала
Мы будем рассматривать все наши измеряемые параметры на конкретном примере. Для этого будем использовать генератор частоты с заранее выставленной частотой в 1 Мегагерц (ну или 1000 КГц) с прямоугольной формой сигнала:
Сигнал с генератора частоты на экране осциллографа выглядит вот так.
А где же правильный прямоугольный сигнал? Вот тебе и раз… Ничего с этим не поделаешь. Это есть, было и будет у всех прямоугольных сигналов. Это возникает вследствие несовершенства цепей и радиоэлементов. Особенно хорошо такая осциллограмма прорисовывается на высоких частотах, как в нашем примере.
Ладно, давайте выведем все параметры сигнала, которые может вывести наш осциллограф. Для этого нажимаем кнопочку «Measure» , что с англ. означает «измерять»
Далее нажимаем кнопочку «Add» ( с англ. — добавлять), с помощью вспомогательной клавиши H1
И потом нажимаем кнопку «Show All» (с англ. — показать всё) с помощью вспомогательной клавиши F3
В результате всех этих операций у нас выскочит табличка с измеряемыми параметрами сигнала:
Описание характеристик сигналов
Как вы знаете, осциллограф нам показывает изменение напряжения сигнала во времени. Поэтому, параметры сигналов в основном делятся на два типа:
Давайте рассмотрим основные из них. Начнем слева-направо.
Period — с англ. период. Период сигнала — это время, за которое сигнал повторяется. В нашем случае период обозначается буквой «Т».
Чтобы самостоятельно посчитать период, нам надо знать значение одной клетки по горизонтали. Внизу осциллограммы можно найти подсказку. Я ее пометил в желтый прямоугольник
Следовательно, одна клеточка по горизонтали равна 500 наносекунд. А так как у нас период длится ровно две клеточки, значит 500 х 2 = 1000 наносекунда или 1 микросекунда.
Сходятся ли наши расчетные показания с показаниями автоматических измерений? Смотрим и проверяем.
Стопроцентное попадание! Кстати, чтобы не было дальнейших вопросов, привожу небольшую табличку.
«Микро» обозначается буквой «u», как и в маркировке современных конденсаторов.
Freq. Полное название frequency — с англ. частота. Обозначается буквой «F». Частоту очень легко можно вычислить по формуле, зная период Т.
В нашем случае получаем 1/1х10 -6 =10 6 =1 Мегагерц (MHz). Смотрим на наши автоматические измерения:
Ну разве не чудо? 😉
Следующий показатель Mean. В нашем случае обозначается просто буковкой «V». Он означает среднюю величину сигнала и используется для измерения постоянного напряжения. В данный момент этот параметр не представляет интереса, потому как измеряется переменный ток и в значении этого сигнала показывается какая-то вата. Постоянный ток меряет нормально, можно вывести этот параметр на дисплей, что мы и делали в прошлой статье:
Еще один интересный параметр: PK-PK. Называется он Peak-to-Peak и показывает напряжение от пика до пика. Обозначается как Vp. Что это за напряжение от пика до пика, показано на осциллограмме ниже:
Так как мы видим, что значение нашего квадратика равно 1 Вольту (внизу слева)
То можно высчитать и напряжение от пика до пика. Оно будет где-то эдак 5 Вольт. Сверяемся с автоматическим измерением
Почти в тютельку!
Остальные параметры сигнала не столь важны для начинающих электронщиков.
Плюсы и минусы цифрового осциллографа
Начнем с плюсов
- Запись, остановка, автоматические измерения и другие фишки — это еще не весь список, что умеет делать цифровой осциллограф
- Габариты цифрового осциллографа намного меньше, чем аналогового
- Потребление энергии меньше, чем у аналогового осциллографа
- Жидкокристаллический дисплей, в отличие от кинескопного дисплея аналогового осциллографа
- Дороговизна
- Дискретная прорисовка сигнала. Хотя дорогие модели ничуть не уступают аналоговым по прорисовке сигнала.
Где купить цифровой осциллограф
Естественно, на Алиэкспрессе, так как в наших интернет-магазинах их цена бывает завышена в два, а то и в три раза. Также очень хорошие отзывы об осциллографе Hantek, характеристики которого даже лучше, чем у моего OWON:
Посмотреть его можете на Алиэкпрессе по этой ссылке.
USB осциллограф
USB-осциллограф представляет из себя прибор, который не имеет собственного экрана.
У нас на обзоре USB осциллограф INTRUSTAR.
В придачу с ним шли 2 щупа, шнур USB, расходники, диск с ПО, а также отвертка для регулировки щупов
С одной стороны осциллографа мы видим два разъема для подключения щупов. Первый разъем CH1, что означает первый канал, а второй разъем CH2, то есть второй канал. Следовательно, осциллограф двухканальный. Справа видим два штыря. Эти штыри — генератор тестового сигнала для калибровки щупов осциллографа. Один из них земля, а другой — сигнальный. Калибруем точно также, как и простой цифровой осциллограф. Как это делать, я писал выше в статье.
В рабочем состоянии USB осциллограф выглядит вот так.
После установки программного обеспечения на компьютер или ноутбук, открываем программу и запускаем осциллограф. Здесь я уже сразу подцепил тестовый сигнал, чтобы подготовить осциллограф к работе.
Также можно вывести значение сигналов, которые осциллограф сразу бы показывал на экране монитора.
Плюсы и минусы USB осциллографа
- Умеренная цена и функционал. Стоит в разы дешевле, чем крутые цифровые осциллографы
- Настройка и установка ПО занимает около 10-15 минут
- Удобный интерфейс
- Малогабаритный размер
- Может производить операции как с постоянным, так и с переменным током
- Два канала, то есть можно измерять сразу два сигнала и выводить их на дисплей
- Малая частота дискретизации
- Обязательно нужен ПК
- Малая полоса пропускания
- Глубина памяти тоже никакая
Более подробно про характеристики цифровых осциллографов вы можете прочитать, скачав учебное пособие по цифровым осциллографам.
Зачем нужен осциллограф
Рано или поздно любой начинающий электронщик, если не бросит свои эксперименты, то дорастет до схем, где нужно отслеживать не просто токи и напряжения, а работу схемы в динамике. Особенно это часто нужно в различных генераторах и импульсных устройствах. Вот тут без осциллографа делать нечего!
Страшный прибор, да? Куча ручек, каких то кнопочек, да еще экран и нифига не понятно что тут да зачем. Ничего, сейчас исправим. Сейчас я тебе расскажу как пользоваться осциллографом.
На самом деле тут все просто — осциллограф, грубо говоря, это всего лишь… вольтметр ! Только хитрый, способный показывать изменение формы замеряемого напряжения.
Как всегда, поясню на отвлеченном примере
Представь, что ты стоишь перед железной дорогой, а мимо тебя с бешеной скоростью мчится бесконечный поезд состоящий из совершенно одинаковых вагонов. Если просто на них стоять и смотреть, то ничего кроме размытой фигни ты не увидишь.
А теперь ставим перед тобой стенку с окошком. И начинаем открывать окошко только тогда, когда очередной вагон будет в том же положении, что и предыдущий. Так как у нас вагоны все одинаковые, то тебе совершенно необязательно видеть один и тот же вагон. В результате картинки разных, но идентичных вагонов будут выскакивать перед твоими глазами в одном и том же положении, а значит картинка как бы остановится. Главное это синхронизировать открытие окошка со скоростью поезда, чтобы при открытии положение вагона не менялось. Если скорость не совпадет, то вагоны будут “двигаться” либо вперед, либо назад со скоростью, зависящую от степени рассинхронизации.
На этом же принципе построен стробоскоп — девайс, позволяющий разглядывать быстро движущиеся или вращающиеся хреновины. Там тоже шторка быстро-быстро открывается и закрывается.
Так вот, осциллограф это тот же стробоскоп, только электронный. А показывает он не вагоны, а периодические изменения напряжения. У той же синусоиды, например, каждый следующий период похож на предыдущий, так почему бы не “остановить” его, показывая в один момент времени один период.
Делается это посредством лучевой трубки , отклоняющей системы и генератора развертки.
В лучевой трубке пучок электронов попадая на экран заставляет светится люминофор, а пластины отклоняющей системы позволяют гонять этот пучок по всей поверхности экрана. Чем сильней напряжение, приложенное к электродам, тем больше отклоняется пучок. Подавая на пластины Х пилообразное напряжение мы создаем развертку . То есть луч у нас движется слева-направо, а потом резко возвращается обратно и продолжает снова. А на пластины Y мы подаем изучаемое напряжение.
Принцип работы осциллографа
Дальше все просто, если начало появления периода пилы (луч в крайне левом положении) и начало периода сигнала совпадают, то за один проход развертки нарисуется один или несколько периодов измеряемого сигнала и картинка как бы остановится. Меняя скорость развертки можно добиться того, что на экране вообще останется только один период — то есть за один период пилы пройдет один период измеряемого сигнала.
Синхронизировать пилу с сигналом можно либо вручную, подстраивая ручкой скорость так, чтобы синусоида остановилась, а можно по уровню . То есть мы указываем при каком уровне напряжения на входе нужно запустить генератор развертки. Как только напряжение на входе превысит уровень, так сразу же запустится генератор развертки и выдаст нам импульс.
В итоге, генератор развертки выдает пилу только тогда, когда надо. В этом случае синхронизация получается полностью автоматической. При выборе уровня следует учитывать такой фактор, как помехи. Так что если взять слишком низкий уровень, то мелкие иголки помех могут запустить генератор когда не нужно, а если взять уровень слишком большой, то сигнал может под ним пройти и ничего не случится. Но тут проще покрутить ручку самому и сразу же все станет понятно.
Также сигнал синхронизации можно подать и с внешнего источника.
Подробно о том, как устроены и работают осциллографы смотрите здесь: Электронный осциллограф
Итак, в топку теорию, переходим к практике
Показывать буду на примере своего осциллографа, спертого когда то давно с оборонного предприятия КБ “Ротор” :). Обычный осцил, не шибко навороченный, но надежный и простой как кувалда.
Яркость, фокус и освещение шкалы думаю не требуют пояснений. Это настройки интерфейса.
Усилитель У и стрелочки вверх вниз. Эта ручка позволяет гонять изображение сигнала вверх или вниз. Добавляя ему дополнительное смещение. Зачем? Да иногда не хватает размера экрана, чтобы вместить весь сигнал. Приходится его загонять вниз, принимая за ноль не середину, а нижнюю границу.
Ниже идет тумблер переключающий ввод с прямого, на емкостный. Этот тумблер в том или ином виде есть на всех без исключения осциллографах. Важная вещь! Позволяет подключать сигнал к усилителю либо напрямую, либо через конденсатор. Если подключить напрямую, то пройдет и постоянная составляющая и переменная. А через кондер проходит только переменная.
Например, надо нам посмотреть на уровень помех блока питания компа. Напряжение там 12 вольт, а величина помех может быть не более 0.3 вольт. На фоне 12 вольт эти жалкие 0.3 вольт будут совсем незаметны. Можно, конечно увеличивать коэффициент усиления по Y, но тогда график вылезет за экран, а смещения по Y не хватит, чтобы увидеть вершину. Тогда нам нужно лишь врубить конденсатор и тогда те 12 вольт постоянки осядут на нем, а в осциллограф пройдет только переменный сигнал, те самые 0.3 вольта помехи. Которые можно усилить и разглядеть в полный рост.
Далее идет коаксиальный разъем подключения щупа. Каждый щуп содержит в себе сигнал и землю. Землю обычно сажают на минус или на общий провод схемы, а сигнальным тычут по схеме. Осциллограф показывает напряжение на щупе относительно общего провода. Чтобы понять где сигнальный, а где земля достаточно взять за них рукой по очереди. Если возьмешься за общий, то на экране по прежнему будет пульс трупа. А если взяться за сигнальный, то увидишь кучу срача на экране — наводки на твое тело, служащее в данный момент антенной. На некторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения 1:10 или 1:100, который позволяет воткнуть осциллограф хоть в розетку, без риска его спалить. Включается и выключается он тумблером на щупе.
Еще почти на каждом осциллографе есть калибровочный выход. На котором ты всегда можешь найти прямоугольный сигнал частотой 1Кгц и напряжением около полувольта. В зависимости от модели осцила. Используется для проверки работы самого осциллографа, ну иногда и в тестовых целях пригождается 🙂
Две здоровенные крутилки Усиление и Длительность
Усиление служит для масштабирования сигнала по оси Y. Там же показано сколько вольт на деление в итоге покажет.
Скажем, если у тебя стоит 2 вольта на деление, а сигнал на экране достигает высоты две клеточки размерной сетки, значит амплитуда сигнала равна 4 вольта.
Длительность определяет частоту развертки. Чем короче интервал, чем больше частота, тем более высокочастотный сигнал ты сможешь разглядеть. Тут клеточки проградуированы уже в милли и микросекундах. Так что по ширине сигнала ты можешь посчитать сколько он клеток, а умножив его на масштаб по оси Х получишь длительность сигнала в секундах. Также можно посчитать длительность одного периода, а зная длительность легко найти частоту сигнала f=1/t
Верхняя пипка на крутилках позволяет менять масштаб плавно. Обычно у меня она стоит на щелчке, чтобы я всегда четко знал какой у меня масштаб.
Также там есть вход Х на который можно подать свой сигнал, вместо пилы развертки. Таким образом осциллограф может послужить телевизором или монитором, если собрать схему которая будет формировать изображение. Крутилка с надписью Развертка и стрелочками влево и вправо позволяет гонять график по экрану влево и вправо. Удобно иногда бывает, чтобы подогнать нужный участок под деления сетки.
Ручка уровня — задает уровень от которого будет стартовать генератор пилы.
Переключатель со внутренней на внешнюю, позволяет подать на вход синхроимпульсы с внешнего источника.
Переключатель с надписью +/- переключает полярность уровня. Есть не на всех осциллографах.
Ручка стабильность — позволяет вручную попытаться подобрать скорость синхронизации.
Итак, включил ты осцил. Первое что нужно сделать это замкнуть сигнальный щуп на свой же земляной крокодил. При этом на экране должен появится “Пульс трупа”. Если не появился, то покрути ручки стабилизации и смещений и уровня — возможно он просто спрятался за экран или не запустился из-за недостаточного уровня.
Как только появилась полоса, то выстави крутилками смещения её на ноль. Если у тебя аналоговый осциллограф, особенно если древний, то дай ему прогреться. У моего после включения ноль плавает еще минут пятнадцать.
Дальше выстави предел измерений по напряжению. Бери с запасом, если что уменьшишь. Теперь если земляной провод осциллографа приложишь к минусу батарейки, а сигнальный к плюсу, то увидишь как график скакнет на полтора вольта. Кстати, старые осциллографы зачастую начинают подвирать, поэтому по эталонному источнику напряжения полезно посмотреть насколько точно он отображает напряжение.
Если ты только начал, то тебе подойдет любой. Крайне желательно если он будет двухканальным. То есть у него будет два щупа и две крутилки Усиления, для первого и второго канала, что позволяет одновременно получить два графика.
Вторым по важности критерием осциллографа является частота. Максимальная частота сигнала которую он может уловить. Мне пока хватало 1МГц на большее не замахивался. Те осциллографы, что продаются в магазинах уже имеют частоту от 10МГц и выше. Самый дешевый осциллограф который я видел стоил 5 тысяч рублей — ОСУ-10. Двухканальный стоит уже 10 тысяч, ну а я нацелился взял себе цифровой RIGOL DS1042CD за килобакс. Разные запросы — разные игрушки. Но, повторюсь, для начала хватит и 1МГц, и хватит надолго. Так что найди себе хоть какой нибудь осциллограф. А там поймешь что тебе надо.
Профессиональное развитие начинается здесь: Телеграмм канал Домашняя электрика