Как найти длину звуковой волны
Перейти к содержимому

Как найти длину звуковой волны

Длина звуковой волны

Звук – это механические волны, распространяющиеся в упругих средах, которые могут воспринимать слуховые анализаторы человека. Звук, как и любой другой волновой процесс, имеет ряд характеристик. Рассмотрим такую важную характеристику звука, как длина волны.

Звуковые волны в разных средах

В большинстве случаев мы воспринимаем звук, распространяющийся в воздухе. Воздушная звуковая волна – это ряд распространяющихся в воздухе колебаний плотности – сжатий и разрежений. То есть, звук представляет собой продольную механическую волну.

Звук как ряд сжатий и разрежений

Рис. 1. Звук как ряд сжатий и разрежений.

Для распространения механической волны необходимо наличие упругой среды, которой является не только воздух. А, значит, звук может распространяться и в других средах – в жидкостях и кристаллах. Однако, упругость жидкостей и кристаллов гораздо выше, чем упругость воздуха, поэтому колебания точек в таких средах среде происходит с гораздо большими внутренними напряжениями. Это приводит к тому, что колебания распространяются намного быстрее.

Длина звуковой волны

Если скорость распространения звука в различных средах различна, а его частота фиксирована, то расстояние между соседними сжатиями или разрежениями будет также различно.

Это расстояние и называется длиной звуковой волны. Поскольку частота и период связаны простой обратной зависимостью, формулу длины звуковой волны можно получить как на основе частоты колебаний, так и на основе периода:

  • $\lambda$ – длина волны (м);
  • $v$ – скорость звука в среде (м/с);
  • $T$ – период звуковых колебаний (с);
  • $\nu$ – частота звуковых колебаний (Гц).

Из формулы можно видеть, что длина волны прямо пропорциональна скорости звука в среде. При одной и той же частоте длина волны будет наименьшей в газах при невысоких давлениях, будет больше в жидкостях, и самой большой будет в кристаллах. Например, для частоты 500гц:

Среда

v (м/с)

Длина звуковой волны

Рис. 2. Длина звуковой волны.

Роль длины звуковой волны

Звуковые волны способны отражаться от границ сред. Это свойство используется в ряде случаев и человеком и Природой. Если в среде есть какие-то неоднородности – то звуковые волны отражаются от них, и по картине отражения можно делать выводы о расположении неоднородностей. Такой процесс называется эхолокацией. Природное использование эхолокации – поведение летучих мышей и дельфинов. Человек использует эхолокацию в целях дефектоскопии промышленных установок, а также в медицинской практике, для исследования внутренних органов.

Рис. 3. Эхолокация в природе и технике.

Однако, для отражения волны граница между средами должна иметь размеры больше ее длины. Если длина волны будет больше, волна будет просто огибать неоднородность, не отражаясь. Отсюда следует важный вывод, что для обнаружения небольших неоднородностей длина звуковой волны должна быть как можно меньше.

Именно поэтому и человек и Природа для эхолокации использует ультразвук. Малая длина волны ультразвука способствует обнаружению самых мелких неоднородностей.

Что мы узнали?

Звук представляет собой распространяющиеся в среде сжатия и расширения. Длина звуковой волны – это расстояние между ближайшими сжатиями или расширениями. В разных средах длина волны различна, короткие ультразвуковые волны удобны для эхолокации.

Физические основы звука — Часть 1: Частота. Период. Длина волны.

Очень часто походя употребляют такие вроде бы понятные термины, как спектр, фаза, частота и прочие. Но зачастую мы до конца не понимаем, что же это на самом деле такое. Что значат эти термины на самом деле, как можно "пощупать" их истинное значение? Можно пойти в библиотеку и почитать там книги по теории радиотехники и цифровой обработке сигналов, но времени постоянно не хватает даже на более важные дела. Поэтому автор попытался дать читателю выжимки из радиотехнических учебников, объясненные "на пальцах" и самый минимум формул (если кто-то заинтересовался более "математическим" изложением материала).

Волновая форма сигнала (звука). Период. Частота

Что такое звук? Это переменное звуковое (воздушное) давление на барабанную перепонку. Ухо воспринимает как звук только изменение давления. Когда звучит отдельная нота давление периодически то нарастает, то убывает и этот процесс циклически повторяется.

Период (T, сек) — длительность этого цикла.

Частота (f, Гц, Герц) — количество периодов, помещающихся в одной секунде. 1 Герц — это 1 период за секунду.

f = 1 / T (формула частоты)

Причем закон (форма) изменения звукового давления не изменяется от периода к периоду.

Если у нас звучит мелодия, то волны, порождаемые разными нотами (которые то появляются, то исчезают), складываются друг с другом в общую волну, которая уже не имеет периода (цикла повтора).

А что же такое шум?

Шум — это сигнал (волновая форма не имеет периода), который в любой момент времени имеет случайное значение звукового давления. Шум не имеет периода.

Звук, как известно распространяется с задержкой, которая зависит от расстояния от источника до человеческого уха. Как это происходит?

Длина волны

Механические колебания источника звука (музыкального инструмента или динамика колонки) сжимают/разрежают (выталкивают/притягивают) воздух около себя. Сжатый воздух начинает расширятся прочь от источника звука, сжимая в свою очередь соседнюю воздушную область. Таким образом область сжатого воздуха путешествует от источника звука к уху.

Расстояние, между областями одинакового сжатия воздуха называется длиной звуковой волны.

L = M / f (формула длины волны),

L — длина волны в метрах;

M — скорость звука (331,46 м/с) в метрах в секунду;

f — частота звука в Герцах.

Длина волны для:

20 Гц L20 = (331,46 м/с) / (20 Гц) = 16,5 м.

100 Гц L100 = (331,46 м/с) / (100 Гц) = 3,3 м.

1000 Гц L1000 = (331,46 м/с) / (1000 Гц) = 0,33 м = 33 см.

10000 Гц L10000 = (331,46 м/с) / (10000 Гц) = 0,033 м = 3,3 см.

20000 Гц L10000 = (331,46 м/с) / (20000 Гц) = 0,017 м = 1,7 см.

Чтобы "надавить" на ухо, область сжатого звука должна затратить некоторое время, чтобы пройти путь от музыкального инструмента до уха. Этим и объясняется задержка звука.

Расстояние вносит задержку распространения звука не зависящую от частоты, так как скорость звука на разных частотах одинакова.

Dt = l / M (формула задержки распространения звука),

Dt — задержка в секундах;

l — расстояние в метрах;

M — скорость звука (331,46 м/с) в метрах в секунду.

1 метр вносит задержку распространения звука

Dt= (1 м) / (331,46 м/с) = 0,003 секунды или 3 миллисекунды (мс).

Конвертер величин

Этот калькулятор определяет длину волны звуковых колебаний (только звуковых!), если известны их частота и скорость распространения звука в среде. Он также может рассчитать частоту, если известны длина волны и скорость или скорость звука, если известны частота и длина волны.

Пример: Рассчитать длину звуковой волны, распространяющейся в морской воде от гидроакустического преобразователя с частотой 50 кГц, если известно, что скорость звука в соленой воде равна 1530 м/с.

Для расчета выберите среду или введите скорость звука, затем введите частоту и нажмите кнопку Рассчитать для расчета длины волны. Можно также ввести длину волны и рассчитать частоту.

Определения и формулы

Звук — это волновой процесс. Если струна скрипки или арфы колеблется, в окружающем ее воздуха образуются зоны сжатия и разрежения, которые и представляют собой звук. Эти зоны сжатия и разрежения перемещаются по воздуху в форме продольных волн, которые имеют ту же частоту, что и источник звука. В продольных волнах молекулы воздуха движутся параллельно движению волны. Воздух сжимается в том же направлении, в котором распространяются звуковые волны. Эти волны передают энергию голоса или колеблющейся струны. Отметим, что воздух не перемещается, когда звуковая волна проходит через него. Перемещаются только колебания, то есть зоны сжатия и разрежения. Более громкие звуки получаются при более сильных сжатиях и разрежениях.

Спектр звуковых колебаний. 1 — землетрясения, молнии и обнаружение ядерных взрывов; 2 — акустический диапазон; 3 — Слух животных; 4, Ультразвуковая очистка; 5. Терапевтическое применение ультразвука; 6 — Неразрушающий контроль и медицинская ультразвуковая диагностика; 7 — Акустическая микроскопия; 8 — Инфразвук; 9 — Слышимый диапазон; 10 — Ультразвук

Количество этих колебаний в секунду называется частотой и измеряется в герцах. Период колебаний — это длительность одного цикла колебаний, измеренная в секундах. Длина волны — это расстояние между двумя соседними повторяющимися зонами волнового процесса. Если предположить, что скорость распространения волны в среде постоянная, то длина волны обратно пропорциональна частоте.

При 20 °C звук распространяется в сухом воздухе со скоростью около 343 метра в секунду или 1 километр приблизительно за 3 секунды. Звук распространяется быстрее в жидкостях и еще быстрее в твердых телах. Например, в воде звук распространяется в 4,3 раза быстрее, чем в воздухе, в стекле — в 13 раз и в алмазе в 35 раз быстрее, чем в воздухе.

Хотя звуковые волны и морские волны движутся намного медленнее электромагнитных волн, уравнение, описывающее их движение будет одинаковым для всех трех типов волн:

f — частота волны,

v — скорость распространения волны и

λ — длина волны

Продольные и поперечные волны

В различных средах звук распространяется в виде различных видов волн. В жидкостях и газах звук распространяется в виде продольных волн. В твердых телах звук может распространяться как в виде продольных, так и в виде поперечных волн.

Для лучшего понимания обоих типов волн удобно воспользоваться механическим аналогом, которым послужит пружина Слинки. Эта пружина представляет собой модель среды (жидкости или газа). Если ее растянуть, а затем сжимать, а затем отпускать один конец, сжатие в форме волны перемещается вперед, передавая таким образом энергию с одного конца пружины в другой. Если звук распространяется в жидкости или газе, он идет от источника в форме периодических сжатий и разрежений газа или жидкости, которые перемещаются от источника звука.

Мы можем сравнить витки пружины с молекулами воздуха или воды, которые сталкиваются друг с другом. Поскольку направление движения этих сжатий и разрежений параллельно направлению движения самой волны, такие волны называются продольными.

Если начать двигать один конец пружины перпендикулярно ее оси, то создается поперечная волна. Она называется поперечной, потому что движение витков пружины перпендикулярно направлению движения волны по пружине. В такой волне энергия передается вдоль пружины, а ее витки движутся в направлении, перпендикулярном передаче энергии.

Отметим, что в нашем эксперименте пружина представляет собой среду, в которой распространяется волна, и эта среда не движется вместе с волной. Она только колеблется. Это поведение волны легко наблюдать в твердом теле, однако это справедливо также для воздуха, воды и вообще любой жидкости или газа. То есть, колебания переносятся молекулами жидкости или газа, в то время как среднее положение молекул среды не изменяется с течением времени. Это справедливо для любых типов волн.

Примеры

Возьмем на клавиатуре несколько нот и покажем их частоту и длину волны. Предположим, что звук движется в воздухе со скоростью 340 м/с. Тогда можно рассчитать длину волны нот:

Звуковая волна – период, длина, частота и скорость распространения

Длина, скорость и частота электромагнитной волны

Звуковая волна – это механические колебания, которые в результате колебаний молекул вещества распространяются в какой-либо среде (в газе, жидкости или твёрдом теле) и, достигнув органов слуха человека, воспринимаются им как звук. Источник, создающий возмущение (колебания воздуха), называется источником звука.
Как уже было сказано, для распространения звука необходима какая-либо упругая среда. Поэтому в вакууме ори, не ори – тебя никто не услышит, по причине того, что звуковые волны распространяться не смогут, так как там нечему колебаться. да и слушать там, по большому счёту, тоже некому.

Так же, как и в случае с электромагнитными волнами, соотношение, связывающее длину звуковой волны с частотой колебаний, в общем случае выглядит следующим образом:
λ (м) = V (м/сек) / F (Гц) , где V (м/сек) — это скорость распространения звука в среде.

Период колебаний также не претерпел никаких изменений и по-прежнему равен:
T(сек) = 1 / F (Гц) = λ (м) / V (м/сек) .

Частота колебаний звукового сигнала F (Гц) – это параметр стабильный, практически не зависящий от среды распространения.
А вот скорость звука V (м/сек), а соответственно и длина звуковой волны – это величины, которые зависят не только от плотности вещества, но и от его упругости, а в случае с жидкостями и газами ещё – и от температуры, и атмосферного давления.

Зависимость скорости звуковой волны от свойств упругой среды легко прослеживается по следующей формуле:
V (м/сек) = √ Eупр (паскаль) / ρ (кг/м 3 ) , где Eупр представляет собой модуль объёмной упругости среды, а ρ – плотность среды.
Модуль упругости, так же как и плотность – это справочные величины, прописанные для конкретных материалов.
В качестве примера, ниже приведена таблица величины скорости распространения звука в различных средах:

Среда Скорость звука, м/сек
Воздух при 0° 331
Воздух при 30° 350
Вода 1450
Медь 3800
Дерево 4800
Железо 4900
Сталь 5600

Для газов параметры модуля объёмной упругости и плотности имеют ярко выраженную зависимость от температуры и атмосферного давления. Если углубиться, то скорость звука в газах можно вычислить по следующей формуле:
V (м/сек) = √ γ*Ратм / ρ , где γ = cp/сv – это отношение удельной теплоёмкости при постоянном давлении к удельной теплоёмкости при постоянном объёме, а Pатм – атмосферное давление, которое связано с температурой газообразной среды.
Поэтому, чтобы никого сильно не грузить, приведу и приближённую зависимость скорости звука (при нормальном атмосферном давлении) от температуры среды:
V (м/сек) = (331 + 0,6 * T°) , где 331 м/сек – это скорость звука при 0°С, а T° – температура в градусах Цельсия.

Теперь можно совместить формулы и получить простое соотношение, связывающее длину звуковой волны с частотой колебаний с учётом температуры среды:
λ (м) = (331 + 0,6 * T°) / F (Гц) .

Всё это без лишнего напряга несложно посчитать при помощи листа бумаги или деревянных счёт, ну а для пущего упрощения жизни человека, приведу и пару он-лайн считалок для перевода одного из параметров в другой.
Калькуляторы предполагают расчёты длины и частоты звуковой волны для воздушной среды при нормальном атмосферном давлении (760 мм ртутного столба).

Онлайн калькулятор расчёта длины звуковой волны по частоте

Онлайн калькулятор расчёта частоты по длине звуковой волны

Полный диапазон звуковых частот условно находится в пределах: 16. 20 000 Гц.
Ниже ( 0,001. 16Гц ) – инфразвук.
Выше ( 20. 100кГц ) – низкочастотный ультразвук,
ещё выше (100кГц. 1МГц) – высокочастотный ультразвук.

А для интересующихся приведу таблицу соответствия нот стандартного музыкального звукоряда частотам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *