Маркировка шин:(индекс скорости, индекс нагрузки, цветные метки используемые для маркировки шины, дополнительная информация, указываемая в маркировке на боковине шины).
205 – ширина профиля шины в миллиметрах. Здесь – 205 мм.
55 – высота профиля шины в процентах от его ширины. То есть в нашем случае: 55% от 205 мм = 112,75 мм.
Поскольку профиль шины — это величина относительная, то важно учитывать при подборе резины, что если вы вместо типоразмера 205/55 R16 захотите поставить автошины с размером 215/55 R16, то увеличится не только ширина покрышки, но и высота! Что в большинстве случаев недопустимо! (за исключением случаев, когда оба этих типоразмера указаны в книжке по эксплуатации авто).
Если это соотношение не указано (например, 185/R14С), значит оно равно 80-82%, и шина называется полнопрофильной. Усиленные шины с такой маркировкой обычно применяют на микроавтобусах и легких грузовичках, где очень важна большая максимальная нагрузка на колесо.
R – указывает на конструкцию шины. В данном случае шина радиальная – по расположению нитей корда каркаса шины.
Многие ошибочно полагают, что R — означает радиус шины, но это именно радиальная конструкция автошины. Бывает еще диагональная конструкция (обозначается буквой D), но в последнее время ее практически не выпускают, поскольку ее эксплуатационные характеристики заметно хуже.
16 – диаметр колеса (диска) в дюймах. (Именно диаметр, а не радиус! Это тоже распространенная ошибка). Это "посадочный" диаметр покрышки на диск, т.е. это внутренний размер шины или наружный у диска.
94 – индекс нагрузки (он же "индекс допустимой грузоподъемности шины").
H – индекс скорости шины. Чем он больше, тем с большей скоростью вы можете ездить на данной покрышке, (в нашем случае ИС — Н — до 210 км/ч). Говоря про индекс скорости автошины хочется отметить, что этим параметром производитель покрышек гарантирует нормальную работу резины при постоянном движении машины с указанной скоростью в течении нескольких часов.
XL – усиленная шина, индекс нагрузки которой выше на 3 единицы, чем у обычных автошин того же типоразмера.
Таблица индексов скорости:
94 — индекс нагрузки. Это уровень предельно-допустимой нагрузки на одно колесо.
Для легковых автомобилей он обычно делается с запасом и при выборе шин не является решающим значением, (в нашем случае ИН — 94 — 670 кг.). Для микроавтобусов и небольших грузовиков этот параметр очень важен и его обязательно необходимо соблюдать.
Таблица индексов нагрузки шины:
Внимание! Индекс нагрузки указывается на одно колесо автомобиля. Для подсчета максимально допустимого веса машины нужно умножить максимальный вес нагрузки одного колеса на количество колес (например, у легкового авто нужно умножать на 4).
Цветные метки используемые для маркировки шины:
Желтая маркировка на шине (круглая или треугольная метка) на боковине означает самое легкое место на шине. При монтаже новой шины на диск, желтую метку нужно совместить с самым тяжелым местом на диске. Обычно это то место, где крепится ниппель. Это позволяет улучшить балансировку колеса и поставить грузики меньшего веса.
На шинах с пробегом эта желтая маркировка-метка не так актуальна, поскольку, как правило, при износе автошины её баланс смещается.
Красная маркировка (красная точка на шине) — означает место максимальной силовой неоднородности, проявление которой обычно связано с различными соединениями разных слоев шины при её изготовлении. Эти неоднородности — абсолютно нормальное явление, и они есть у всех шин. Но обычно помечают красными точками только те шины, которые идут на первичную комплектацию автомобилей, т.е. когда машина выходит с завода.
Эту красную метку совмещают с белыми метками на дисках (белые метки маркировки на дисках тоже ставятся в основном для первичной комплектации авто), которые обозначают самое близкое место к центру колеса. Это делается для того, чтобы максимальная неоднородность в шине минимально сказывалась при движении, обеспечивая более сбалансированную силовую характеристику колеса. При обычном шиномонтаже не рекомендуется обращать внимание на маркировку шины красной меткой, а руководствоваться желтой меткой, совмещая её с ниппелем.
Маркировка — белый штамп с цифрой означает номер инспектора, который проводил финальный осмотр шины на заводе-изготовителе.
Цветные полоски на протекторе шины делаются, чтобы было удобнее "опознавать" шину на складе. У всех моделей автошин и различных типоразмеров эти маркировки разные. Поэтому, когда шины стоят в стопках на складах, сразу видно, что данная стопка шин имеет один и тот же типоразмер и модель. Никакой другой смысловой нагрузки эти цветные полоски на шине не имеют.
Дополнительная информация, указываемая в маркировке на боковине шины:
XL или Extra Load — усиленная шина, индекс нагрузки которой выше на 3 единицы, чем у обычных автошин того же типоразмера.
M+S или маркировка покрышки M&S (Mud + Snow) — грязь плюс снег и означает, что шины всесезонные или зимние.
На многих летних покрышках для внедорожников указывается M&S. Однако эти шины нельзя эксплуатировать в зимнее время, т.к. зимние шины имеют совсем другой состав резины и рисунок протектора, а значок M&S указывает на хорошие показатели проходимости автошины.
All Season или AS — Всесезонные шины.
Aw (Any Weather) — Любая погода.
Пиктограмма * (снежинка) — резина предназначена для использования её в суровых зимних условиях.
Если на боковине шины нет этой маркировки, то эта автошина предназначена для использования только в летних условиях.
Aquatred, Aquacontact, Rain, Water, Aqua или пиктограмма (зонтик) — специальные дождевые шины.
Outside и Inside — ассиметричные шины. При установке надпись Outside должна быть с наружной стороны автомобиля, а Inside — с внутренней.
RunFlat, RSC (RunFlat System Component) — шины RunFlat — это покрышки, на которых можно продолжать движение на автомобиле со скоростью не более 80 км/ч при ПОЛНОМ падении давления в шине (при проколе или порезе). На этих шинах, в зависимости от рекомендаций производителя, можно проехать от 50 до 150 км.
Разные производители автошин используют различные обозначения технологии RSC. Например: Bridgestone RFT, Continental SSR, Goodyear RunOnFlat, Nokian Run Flat, Michelin ZP и т. д.
Rotation или стрелка эта маркировка на боковине шины означает направленную шину. При установке покрышки нужно строго соблюдать направление вращения колеса, указанное стрелкой.
Tubeless — бескамерная шина. При отсутствии данной надписи покрышка может использоваться только с камерой.
Tube Type — обозначает, что эта покрышка обязательно должна эксплуатироваться только с камерой.
Max Pressure — максимально допустимое давление в шине, в кПа.
Max Load — максимально допустимая нагрузка на каждое колесо автомобиля, в кг.
Reinforced или буквы RF в типоразмере (например, 195/70 R15RF) означают, что это усиленная шина (6 слоёв). Буква С в конце типоразмера (например 195/70 R15C) обозначает грузовую шину (8 слоёв).
Radial эта маркировка на резине в типоразмере означает, что это авторезина радиальной конструкции.
Steel означает, что в конструкции шины присутствует металлический корд.
Буква E (в кружочке) — шина соответствует европейским требованиям ECE (Economic Commission for Europe).
DOT (Department of Transportation — Министерство транспорта США) — американский стандарт качества.
Temperature А, В или С — термостойкость авторезины при высоких скоростях на испытательном стенде (А — наилучший показатель).
Traction А, В или С — способность шины к торможению на влажном дорожном полотне.
Treadwear — относительный ожидаемый километраж пробега по сравнению со специальным стандартным тестом США.
TWI (Tread Wear Indiration) — указатели индикаторов износа протектора автошины. Маркировка на колесе TWI также может быть со стрелкой. Указатели располагаются равномерно в восьми или шести местах по всей окружности покрышки и показывают минимально допустимую глубину протектора. Индикатор износа выполняется в виде выступа с высотой 1.6 мм (минимальная величина протектора для легких автомобилей) и располагается в углублении протектора (как правило, в водоотводящих канавках).
Как узнать дату изготовления шины:
Дата изготовления шины написана в виде четырёх цифр в овале (например, 1805) — первые две цифры неделя изготовления, следующие две — год изготовления (в нашем примере апрель 2005 г).
Какая шина поддерживает автоматическое определение ширины
Шина HyperTransport (HT)— это двунаправленная последовательно-параллельная компьютерная шина с высокой пропускной способностью и малыми задержками.
HyperTransport работает на частотах от 200 МГц до 3,2 ГГц (у шины PCI — 33 и 66 МГц). Кроме того, она использует DDR, что означает, что данные посылаются как по переднему, так и по заднему фронтам сигнала синхронизации, что позволяет осуществлять до 5200 миллионов посылок в секунду при частоте сигнала синхронизации 2,6 ГГц; частота сигнала синхронизации настраивается автоматически.
Шина HyperTransport основана на передаче пакетов. Каждый пакет состоит из 32-разрядных слов, вне зависимости от физической ширины шины (количества информационных линий). Первое слово в пакете — всегда управляющее слово. Если пакет содержит адрес, то последние 8 бит управляющего слова сцеплены со следующим 32-битным словом, в результате образуя 40-битный адрес. Шина поддерживает 64-разрядную адресацию — в этом случае пакет начинается со специального 32 разрядного управляющего слова, указывающего на 64 разрядную адресацию, и содержащего разряды адреса с 40 по 63 (разряды адреса нумеруются начиная с 0). Остальные 32-битные слова пакета содержат непосредственно передаваемые данные. Данные всегда передаются 32-битными словами, вне зависимости от их реальной длины (например, в ответ на запрос на чтение одного байта по шине будет передан пакет, содержащий 32 бита данных и флагом-признаком того, что значимыми из этих 32 бит являются только 8).
Пакеты HyperTransport передаются по шине последовательно. Увеличение пропускной способности влечёт за собой увеличение ширины шины. HyperTransport может использоваться для передачи служебных сообщений системы, для передачи прерываний, для конфигурирования устройств, подключённых к шине и для передачи данных.
Шина HyperTransport нашла широкое применение в качестве процессорной шины. Она имеет оригинальную топологию (Рис.1) на основе линков, тоннелей, цепей и мостов, что позволяет этой архитектуре легко масштабироваться. HyperTransport призвана упростить внутрисистемные сообщения посредством замены существующего физического уровня передачи существующих шин и мостов, а также снизить количество узких мест и задержек. При всех этих достоинствах HyperTransport характеризуется также малым числом выводов (low pin counts) и низкой стоимостью внедрения. HyperTransport поддерживает автоматическое определение ширины шины, допуская ширину от 2 до 32 бит в каждом направлении (Таблица 2), кроме того, она позволяет передавать асимметричные потоки данных к периферийным устройствам и от них.
Рисунок 1. Топология шины HyperTransport.
HyperTransport v3 применяется в таких процессорах как: новое поколение AMD K8 и все K10, Turion 64 X2/Phenom/Phenom II.
Немного о резине…
Собственно, запись является ответом на комментарий в теме AlekseyKlimov Как измеряется ширина автомобильной шины.
Может кто-то читал уже, но для тех, кто не читал и не хочет в двух словах поясню.
Алексей задал вопрос в пресс-службу Nokian по поводу того, как измеряется ширина шины, на который ему развернуто ответили:
"Ширина протектора измеряется не по ширине рисунка (беговой дорожке протектора), а по всей ширине протекторной ленты"
"Стык протекторной ленты и боковины находится уже вне рисунка протектора, поэтому измерения необходимо проводить от плечевой зоны шины"
"На фото №3 отмечен шов (стык) между протекторной лентой и боковиной, от которого и следует производить измерения."
Но Алексей немного не правильно понял и измерил свои шины вот так:
Получив таким образом ширину своих шин 275 мм вместо заявленных 265-ти.
Так вот, Алексей, Вам в комментариях много людей указало на допущенную ошибку в измерениях, но Вы или не можете, действительно, понять что не так, или же просто не хотите этого признавать.
В общем, многие сказали, а я еще и покажу, как правильно измерить ширину "не разрезанной" шины.
Так уж получилось, что я сегодня завозил в гараж свои зимние колеса и вспомнил о споре. Под рукой как раз оказались и штангенциркуль, и фотоаппарат.
Итак, ширину шины надо измерять вот таким образом:
Кстати говоря, на данной резине имеем заявленные 185 мм:
Это была шина от Gislaved.
Собственно, ответ на комментарий на этом и закончу. Алексей, надеюсь Вы поняли, в чем Ваша ошибка.
Ну а дальше немного наблюдений, к сожалению, печальных.
Померил еще пару колесиков.
Сначала вторая пара зимних Satoya:
Результат неприятно удивил — 168 мм вместо заявленных 185-ти:
Потом не удержался и пошел померил летние колеса — Kumho:
Результат тоже оказался неутешительным — 183 мм вместо заявленных 195-ти:
Вот такая вот невеселая картинка получается…
Обманывают все и везде, блин!
В процессе написания заметки вот еще о чем подумал, интересно, а высота у них в процентах от заявленной ширины или от реальной?
Буду в гараже наводить порядок и проведу еще исследование )))
Ну а пока все. Всем честных шин!
Comments 6
Думаю эта же резина на более широких дисках покажет другой результат.
На любых сайтах по продаже шин есть рисунок, типа такого:
a-a.d-cd.net/ea81e7u-960.jpg
Там всё чётко нарисовано, как мерить. Даже спорить не о чем.
Ничего не написали о давлении в шинах. неужели перед измерениями подкачивали до нормы?
Странный спор у Вас с Климовым. У Климова делается упор на свои картинки, где боковая часть после окончания протектора почти под прямым углом свисает аж на 3+3 =6 см, как бы по гипотенузе треугольника. По Вашим картинкам видно, что наклон боковой части прибавляет к ширине протектора не более чем (1,5-1,8)х2 = 3-3,6 см. Добавка при измерениях по кривой 2,4-3 см, но никак не 1 см=10мм, как получилось у Климова. Кстати на Ваших картинках угол свисания боковой части протектора сильно отличается у разных производителей. У Кумхо, почти прямой угол. И он сильно зависит от давления, а значит и измеряемая ширина зависит от давления в шинах. А также замеры будут сильно зависеть от жёсткости резины. На старой резине жёсткость больше, значит и ширина получится меньше.
Наверное, правильно было бы замерять на новых и еще не одетых на диск шинах (хотя и это спорно — утвержденной методики я не читал, а там может быть все, что угодно). Но эта запись не претендует на научно-исследовательский труд, так, просто наблюдения. Ну и показать Алексею, в чем ошибка его измерений. К слову сказать, у всех трех моих колес давление одинаковое 2,2 Атм., т.к. зимние положены на сезонное хранение, а я в таких случаях всегда привожу давление в норму. Ну а летнее только поставил на машину и, соответственно, давление тоже приведено в норму. Но я уверен на 100%, что на ширине именно протекторной линии давление не скажется очень сильно. Будет разница в 1-2 мм, но никак не в 10-15. Т.е., если я спущу Сатою, то ширина протекторной линии ну никак не вырастет у нее из полученных 168-ми до заявленных 185-ти. Т.е. тенденция к маломерности останется в любом случае. Если бы речь шла о полной ширине шины, т.е. замеры шли бы от боковин, а не от линии стыка, то разница была бы, наверное, больше. И то, что-то мне подсказывает, что не в пользу честности производителя ))) Но в любом случае, здесь речь о ширине протекторной ленты.
Климов отвечал на первой странице дискуссии. Он выбрал такой метод, потому что на присланных обрезках шин протектор идёт параллельно линейке. Это как бы нужно мерить на накачанной шине в месте контактного пятна, все скругления профиля придавлены и место стыка приближено к линии замера. Но мерить тогда придётся при наезде на линейку, плюс, использовать приспособления из угольников регулируемой высоты. Климов рассудил, что длина ненагруженного выпуклого профиля остаётся той же самой. Что, конечно же, спорно.
Ой, да Климов выбрал такой метод потому что не понял как надо. Все что он потом отвечал — это попытка выкрутиться из ситуации. Прочтите все комментарии и Вы увидите, что его доводы меняются по мере более убедительных контраргументов. То измерение было произведено не понимая основ геометрии… Как надо было померить, если его смущало "выгибание" шины дугой при накачивании я ему ответил в комментарии. Собственно, способ почти такой же, как и предложенный Вами — установить штангель по стыкам, а расстояние между его ножками измерить рулеткой по дуге, образованной шиной. Но никак не плюсовать к ширине протектора еще и его высоту, причем дважды.
Системная шина hypertransport что это такое
Всё течёт, всё меняется. В сфере компьютерных технологий эта фраза никогда не потеряет актуальности, равно как и девиз «Быстрее! Выше! Сильнее!». И действительно, последние несколько лет можно назвать «временами перемен» компьютерной индустрии. В полной мере это коснулось и такой специфичной области, как шины передачи данных.
Среди наиболее динамично развивающихся областей компьютерной техники стоит отметить сферу технологий передачи данных: в отличие от сферы вычислений, где наблюдается продолжительное и устойчивое развитие параллельных архитектур, в «шинной» 1 сфере, как среди внутренних, так и среди периферийных шин, наблюдается тенденция перехода от синхронных параллельных шин к высокочастотным последовательным. (Заметьте, «последовательные» – не обязательно значит «однобитные», здесь возможны и 2, и 8, и 32 бит ширины при сохранении присущей последовательным шинам пакетной передачи данных, то есть в пакете импульсов данные, адрес, CRC и другая служебная информация разделены на логическом уровне 2 ).
Все эти нововведения и смена приоритетов преследуют в конечном итоге одну цель – повышение суммарного быстродействия системы, ибо не все существующие архитектурные решения способны эффективно масштабироваться. Несоответствие пропускной способности шин потребностям обслуживаемых ими устройств приводит к эффекту «бутылочного горлышка» и препятствует росту быстродействия даже при дальнейшем увеличении производительности вычислительных компонентов – процессора, оперативной памяти, видеосистемы и так далее.
Процессорная шина
Любой процессор архитектуры x86CPU обязательно оснащён процессорной шиной. Эта шина служит каналом связи между процессором и всеми остальными устройствами в компьютере: памятью, видеокартой, жёстким диском и так далее. Так, классическая схема организации внешнего интерфейса процессора (используемая, к примеру, компанией Intel в своих процессорах архитектуры х86) предполагает, что параллельная мультиплексированная процессорная шина, которую принято называть FSB (Front Side Bus), соединяет процессор (иногда два процессора или даже больше) и контроллер, обеспечивающий доступ к оперативной памяти и внешним устройствам. Этот контроллер обычно называют северным мостом , он входит в состав набора системной логики ( чипсета ).
Используемая Intel в настоящее время эволюция FSB – QPB , или Quad-Pumped Bus, способна передавать четыре блока данных за такт и два адреса за такт! То есть за каждый такт синхронизации шины по ней может быть передана команда либо четыре порции данных (напомним, что шина FSB–QPB имеет ширину 64 бит, то есть за такт может быть передано до 4х64=256 бит, или 32 байт данных). Итого, скажем, для частоты FSB, равной 200 МГц, эффективная частота передачи адреса для выборки данных будет эквивалентна 400 МГц (2х200 МГц), а самих данных – 800 МГц (4х200 МГц) 3 .
В архитектуре же AMD64 (и её микроархитектуре K8), используемой компанией AMD в своих процессорах линеек Athlon 64/Sempron/Opteron, применён революционно новый подход к организации интерфейса центрального процессора – здесь имеет место наличие в самом процессоре нескольких отдельных шин. Одна (или две – в случае двухканального контроллера памяти) шина служит для непосредственной связи процессора с памятью, а вместо процессорной шины FSB и для сообщения с другими процессорами используются высокоскоростные шины HyperTransport. Преимуществом данной схемы является уменьшение задержек (латентности) при обращении процессора к оперативной памяти, ведь из пути следования данных по маршруту «процессор – ОЗУ» (и обратно) исключаются такие весьма загруженные элементы, как интерфейсная шина и контроллер северного моста.
Различия реализации классической архитектуры и АМD-K8
Ещё одним довольно заметным отличием архитектуры К8 является отказ от асинхронности, то есть обеспечение синхронной работы процессорного ядра, ОЗУ и шины HyperTransport, частоты которых привязаны к «шине» тактового генератора (НТТ), которая в этом случае является опорной. Таким образом, для процессора архитектуры К8 частоты ядра и шины HyperTransport задаются множителями по отношению к НТТ, а частота шины памяти выставляется делителем от частоты ядра процессора 4
В классической же схеме с шиной FSB и контроллером памяти, вынесенным в северный мост, возможна (и используется) асинхронность шин FSB и ОЗУ, а опорной частотой для процессора выступает частота тактирования 5 (а не передачи данных) шины FSB, частота же тактирования шины памяти может задаваться отдельно. Из наиболее свежих чипсетов возможностью раздельного задания частот FSB и памяти обладает NVIDIA nForce 680i SLI, что делает его отличным выбором для тонкой настройки системы (разгона).
HyperTransport
Эмблема HyperTransport Technology Consortium
HyperTransport – это прежде всего технология, управлением спецификациями и продвижением которой занимается HyperTransport Technology Consortium, куда входят такие компании, как Advanced Micro Devices (AMD), Alliance Semiconductor, Apple Computer, Broadcom Corporation, Cisco Systems, NVIDIA, PMC-Sierra, Sun Microsystems, Transmeta и ещё более 140 малых и больших компаний.
Основные особенности и возможности, предоставляемые технологией HyperTransport
Технология HyperTransport (ранее известная как Lightning Data Transport) – это последовательная (пакетная) связь, построенная по схеме peer-to-peer (точка-точка), обеспечивающая высокую скорость при низкой латентности (low-latency responses). HyperTransport имеет оригинальную топологию на основе линков, тоннелей, цепей (цепь – последовательное объединение нескольких туннелей) и мостов (мост выполняет маршрутизацию пакетов между отдельными цепями), что позволяет этой архитектуре легко масштабироваться. Иными словами, HyperTransport призвана упростить внутрисистемные сообщения (передачи) посредством замены существующего физического уровня передачи существующих шин и мостов, а также снизить количество узких мест и задержек. При всех этих достоинствах HyperTransport характеризуется также малым числом выводов (low pin counts) и низкой стоимостью внедрения. HyperTransport поддерживает автоматическое определение ширины шины 6 , допуская ширину от 2 до 32 бит в каждом направлении, использует Double Data Rate, или DDR (данные посылаются как по переднему, так и по заднему фронтам сигнала синхронизации), кроме того, она позволяет передавать асимметричные потоки данных к периферийным устройствам и от них.
Топология шины HyperTransport
На данный момент консорциумом HyperTransport разработана уже третья версия спецификации, согласно которой шина HyperTransport может работать на частотах до 2,6 ГГц (сравните с шиной PCI и её 33 или 66 МГц). Это позволяет передавать до 5200 миллионов пакетов в секунду при частоте сигнала синхронизации 2,6 ГГц; частота сигнала синхронизации настраивается автоматически.
Полноразмерная (32-битная) полноскоростная (2,6 ГГц) шина способна обеспечить пропускную способность до 20800 МБ/с (2*(32/8)*2600) в каждую сторону, являясь на сегодняшний день самой быстрой шиной среди себе подобных.
Самые известные решения c использованием HyperTransport:
Использование шины НyperТransport на примере двухпроцессорной системы на базе AMD Opteron
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
HT (HyperTransport)
HyperTransport (ранее известная как Lightning Data Transport (LDT)) — двунаправленная последовательно-параллельная компьютерная шина с высокой пропускной способностью и малыми задержками.
Последовательная двунаправленная шина HyperTransport (НТ) разработана консорциумом компаний во главе с AMD и служит для связи процессоров AMD семейства К8 друг с другом, а также с чипсетом. Кроме того, многие современные чипсеты используют НТ для связи между мостами, нашла она место и в высокопроизводительных сетевых устройствах — маршрутизаторах и коммутаторах. Характерной особенностью шины НТ является ее организация по схеме Peer-to-Peer (точка-точка), обеспечивающая высокую скорость обмена данными при низкой латентности, а также широкие возможности масштабирования — поддерживаются шины шириной от 2 до 32 бит в каждом направлении (каждая линия — из двух проводников), причем «ширина» направлений, в отличие от PCI Express, не обязана быть одинаковой. К примеру, возможно использование двух линии НТ на прием и 32 — на передачу.
Содержание
Описание принципа работы
Шина является последовательной. Скорость передачи зависит от двух параметров – ширины шины и частоты её функционирования. Шина, кроме передачи самих данных, может использоваться для передачи прерывания, служебных, системных и конфигурационных сообщений.
Шина может работать в двух режимах: Posted и Non—Posted. Первый обычно используется в настольных потребительских системах (для DMA-передачи к примеру) и обеспечивает максимальную скорость передачи данных. Posted операция записи просто посылает пакет с данными на определённый адрес, данные записываются и на этом всё. Non—Posted подразумевает передачу данных на определённый адрес, а после успешной записи в обратном направлении отправляется пакет с подтверждением успешной записи. Данный тип записи работает значительно медленней, но исключает возникновение ошибок передачи. Потому он используется преимущественно в серверных, научных, высокоточных машинах.
Шина поддерживает энергосберерегающие режимы, предусмотренные в ACPI. А именно – C/D— state.
Основные технические характеристики
Тип шины | «Точка-точка», ненаправленная |
Ширина | 2, 4, 8,16 или 32 бита |
Протокол | Пакетная пересылка данных, с множественными пакетами по четыре байта (32 бита) |
Полоса пропускания (в каждом направлении) | От 100 до 6500 Мб/ |
Сигналы | 1,2В — низковольтные дифференциальные сигналы (LVDS) c дифференциальным импедансом 100 Ом |
Поддержка многопроцессорности | Да |
Модель памяти | Когерентная и некогерентная |
Версии шины и скорость работы
2001-2002 год — 1.0 и 1.1 версии, работают на частоте до 800 МГц и имеют максимальную скорость 12.8 Гб/с. 2004 год – 2.0 версия, имеет частоту функционирования до 1400 МГц и пропускную способность до 22.4 Гб/с. 2006 год – 3.0 версия, частота до 2600 МГц, скорость передачи данных до 41.6 Гб/с. 2008 год – 3.1 версия, частота до 3200 МГц, скорость передачи данных до 51.6 Гб/с.
«Базовая» тактовая частота шины HT — 200 МГц, все последующие тактовые частоты определяются как кратные данной — 400МГц, 600МГц, 800МГц и 1000 МГц.
На данный момент консорциумом HyperTransport разработана уже третья версия спецификации НТ, согласно которой шина HyperTransport 3.0 допускает возможность «горячего» подключения и отключения устройств; может работать на частотах вплоть до 2,6 ГГц, что позволяет довести скорость передачи данных до 20800 Мб/с (в случае 32-битной шины) в каждую сторону, являясь на сегодняшний день самой быстрой шиной среди себе подобных.
HyperTransport — наиболее часто задаваемые вопросы.
1. Что такое технология HyperTransport?
Технология HyperTransport (ранее известная как LDT, Lightning Data Transport, сейчас часто называется просто «HT») – это разработанная консорциумом HyperTransport Technology (во главе с компанией с AMD) шина для высокоскоростной пакетной связи с низкими задержками, построенная по схеме «точка-точка», которая позволяет микросхемам передавать данные с максимальной скоростью до 41.6 Гб/c (для 32-битного варианта версии 3.0). Масштабируемость её архитектуры способна упростить внутрисистемные соединения путем замены некоторых существующих шин и мостов, а также путем снижения количества узких мест и задержек внутри системы.
2. Для каких целей предназначена технология HyperTransport?
HyperTransport может применяться в архитектуре персональных компьютеров и серверов как замена проприетарной версии системной шины (FSB) для связи процессора с чипсетом и для связи процессоров между собой в многопроцессорных системах — это отличительная особенность всех процессоров AMD с архитектурой K8 (Athlon64) и далее.
Также она может применяться в специализированном сетевом и телекоммуникационном оборудовании, обеспечивая существенно более высокую скорость передачи данных по сравнению с тем, что позволяют осуществлять существовавшие до появления HyperTransport шинные технологии.
Первым примером реального использования HyperTransport был чипсет NVIDIA nForce, в котором технология HyperTransport использовалась для связи между двумя микросхемами, составляющими этот чипсет — графическим процессором IGP (nForce Integrated Graphics Processor) и коммуникационным процессором MCP (nForce Media and Communications Processor. С тех пор все больше чипсетов nVidia используют эту технологию в аналогичных целях (а варианты для процессоров AMD — ещё и собственно для связи с процессором).
Также она может использоваться как периферийная шина для подключения специализированных процессоров, которым недостаточно полосы пропускания или латентности «обычных» (PCI-X, PCI-E) шин. Для таких целей шина HyperTransport имеет внешнее исполнение, соответствующий разъём называется HTX (Hyper Transport eXtension).
3. С какими шинами и какими другими технологиями совместима технология HyperTransport?
Для HyperTransport созданы мосты на подавляющее большинство существующих в природе шин передачи данных, включая PCI-Express, AGP, PCI, PCI-X, IEEE-1394, USB 2.0, Gigabit Ethernet, а также менее популярных PL-3, SPI-4, Infiniband, SPI-5, 10 Gigabit Ethernet и т.д. В традиционных шинных архитектурах (например — PCI) многочисленные устройства используют одну шину, а в технологии HyperTransport каждый элемент получает свой собственный канал ввода-вывода. Таким образом, уменьшается количество «узких мест» (bottlenecks) в системе, и повышается ее производительность.
Однако непосредственно на физическом уровне HyperTransport несовместима ни с одной из существующих шин.
  4. Совместима ли технология HyperTransport с существующими программами и операционными системами?
Да, технология HyperTransport совместима с существующими и будущими операционными системами, поскольку она на логическом уровне совместима с PCI, учтенной в перспективах развития операционных систем. Это уже было продемонстрировано в производстве систем, основанных на чипсетах NVIDIA nForce.
5. Совместима ли технология HyperTransport со стандартом Plug & Play?
Да, устройства ввода-вывода HyperTransport рассчитаны на то, чтобы использовать стандартную методологию Plug & Play, и являются совместимыми с любой операционной системой, поддерживающей стандарт PCI, на этапах загрузки, исполнения, а также на уровне драйверов.
6. На каких тактовых частотах функционирует HyperTransport?
Версия HyperTransport Version | Год | Макс. частота HT | Макс.разрядность шины | Макс. общая полоса пропускания (bi-directional) |
1.0 | 2001 | 800 МГц | 32 бит | 12.8 ГБайт/с |
1.1 | 2002 | 800 МГц | 32 бит | 12.8 ГБайт/с |
2.0 | 2004 | 1.4 ГГц | 32 бит | 22.4 ГБайт/с |
3.0 | 2006 | 2.6 ГГц | 32 бит | 41.6 ГБайт/с |
Устройства Hyper Transport могут функционировать на разных тактовых частотах от 200 МГц до 2600 МГц. Hyper Transport использует технологию удвоенной скорости передачи данных (double data rate), передавая два бита информации за один такт и увеличивая, таким образом, скорость передачи данных. С целью облегчить оптимизацию дизайна систем, можно устанавливать разные тактовые частоты для приема и передачи данных.
7. Какова разрядность шины ввода-вывода HyperTransport?
Ввод-вывод данных в технологии HyperTransport разработан таким образом, чтобы предоставить наибольшую гибкость при проектировании, допуская разрядность шины в 2, 4, 8, 16, или 32 бита в каждом направлении. В процессе инициализации устройства автоматически распознают разрядность шины и затем функционируют соответствующим образом.