Все о Лазерах
Вы все любите лазеры. Я то знаю, я от них тащусь больше вашего. А если кто не любит – то он просто не видел танец сверкающих пылинок или как ослепи- тельный крошечный огонек прогрызает фанеру
А началось все со статьи из Юного техника за 91-й год о создании лазера на красителях – тогда повторить конструкцию для простого школьника было просто нереально… Сейчас к счастью с лазерами ситуация проще – их можно доставать из сломанной техники, их можно покупать готовые, их можно собирать из деталей… О наиболее приближенных к реальности лазерах и пойдет сегодня речь, а также о способах их применения. Но в первую очередь о безопасности и опасности.
Почему лазеры опасны
Проблема в том, что параллельный луч лазера фокусируется глазом в точку на сетчатке. И если для зажигания бумаги надо 200 градусов, для повреждения сетчатки достаточно всего 50, чтобы кровь свернулась. Вы можете точкой попасть в кровеносный сосуд и закупорить его, можете попасть в слепое пятно, где нервы со всего глаза идут в мозг, можете выжечь линию «пикселей»… А потом поврежденная сетчатка может начать отслаиваться, и это уже путь к полной и необратимой потере зрения. И самое неприятное –вы не заметите по началу никаких повреждений: болевых рецепторов там нет, мозг достраивает предметы в поврежденных областях (так сказать ремапинг битых пикселей), и лишь когда поврежденная область становится достаточно большой вы можете заметить, что предметы пропадают при попадании в неё. Никаких черных областей в поле зрения вы не увидите – просто кое-где не будет ничего, но это ничего и не заметно. Увидеть повреждения на первых стадиях может только офтальмолог.
Опасность лазеров считается исходя из того, может ли он нанести повреждения до того как глаз рефлекторно моргнет – и считается не слишком опасной мощность в 5мВт для видимого излучения. Потому инфракрасные лазеры крайне опасны (ну и отчасти фиолетовые – их просто очень плохо видно) – вы можете получить повреждения, и так и не увидеть, что вам прямо в глаз светит лазер.
Потому, повторюсь, лучше избегать лазеров мощнее 5мВт и любых инфракрасных лазеров.
Также, никогда и ни при каких условиях не смотрите «в выход» лазера. Если вам кажется что «что-то не работает» или «как-то слабовато» — смотрите через вебкамеру/мыльницу (только не через зеркалку!). Это также позволит увидеть ИК излучение.
Есть конечно защитные очки, но тут много тонкостей. Например на сайте DX есть очки против зеленого лазера, но они пропускают ИК излучение- и наоборот увеличивают опасность. Так что будьте осторожны.
PS. Ну и я конечно отличился один раз – нечаянно себе бороду лазером подпалил 😉
650нм – красный
Это пожалуй наиболее распространенный на просторах интернета тип лазера, а все потому, что в каждом DVD-RW есть такой, мощностью 150-250мВт (чем больше скорость записи – тем выше). На 650нм чувствительность глаза не очень, потому хоть точка и ослепительно яркая на 100-200мВт, луч днем лишь едва видно (ночью видно конечно лучше). Начиная с 20-50мВт такой лазер начинает «жечь» — но только в том случае, если можно менять его фокус, чтобы сфокусировать пятно в крошечную точечку. На 200 мВт жгет очень резво, но опять же нужен фокус. Шарики, картон, серая бумага…
Покупать их можно готовые (например такой на первом фото красный). Там же продаются мелкие лазерчики «оптом» — настоящие малютки, хотя у них все по взрослому – система питания, настраиваемый фокус — то что нужно для роботов, автоматики.
И главное – такие лазеры можно аккуратно доставать из DVD-RW (но помните, что там еще инфракрасный диод есть, с ним нужно крайне аккуратно, об этом ниже). (Кстати, в сервис-центрах бывает негарантийные DVD-RW кучами лежат — я себе унес 20 штук, больше не донести было). Лазерные диоды очень быстро дохнут от перегрева, от превышения максимального светового потока – мгновенно. Превышение номинального тока вдвое (при условии не превышения светового потока) сокращает срок службы в 100-1000 раз (так что аккуратнее с «разгоном»).
Питание: есть 3 основных схемы: примитивнейшая, с резистором, со стабилизатором тока (на LM317, 1117), и самый высший пилотаж – с использованием обратной связи через фотодиод.
В нормальных заводских лазерных указках применяется обычно 3-я схема – она дает максимальную стабильность выходной мощности и максимальный срок службы диода.
Вторая схема – проста в реализации, и обеспечивает хорошую стабильность, особенно если оставлять небольшой запас по мощности (
10-30%). Именно её я бы и рекомендовал делать – линейный стабилизатор – одна из наиболее популярных деталей, и в любом, даже самом мелком радиомагазине есть аналоги LM317 или 1117.
Самая простая схема с резистором описанная в предыдущей статье – лишь чуть-чуть проще, но с ней убить диод элементарно. Дело в том, что в таком случае ток/мощность через лазерный диод будет сильно зависеть от температуры. Если например при 20C у вас получился ток 50мА и диод не сгорает, а потом во время работы диод нагреется до 80С, ток возрастет (такие они коварные, эти полупроводники), и достигнув допустим 120мА диод начинает светить уже только черным светом. Т.е. такую схему все-таки можно использовать, если оставить по меньшей мере трех-четырехкратный запас по мощности.
И на последок, отлаживать схему стоит с обычным красным светодиодом, а припаивать лазерный диод в самом конце. Охлаждение обязательно! Диод «на проводочках» сгорит моментально! Также не протирайте и не трогайте руками оптику лазеров (по крайней мере >5мВт) — любое повреждение будет «выгорать», так что продуваем грушей если нужно и все.
А вот как выглядит лазерный диод вблизи в работе. По вмятинам видно, как близок я был к провалу, доставая его из пластикового крепления. Это фото также не далось мне легко
532нм – зеленый
Устроены они сложно – это так называемые DPSS лазеры: Первый лазер, инфракрасный на 808nm, светит в кристалл Nd:YVO4 – получается лазерное излучение на 1064нм. Оно попадает на кристалл «удвоителя частоты» — т.н. KTP, и получаем 532нм. Кристаллы все эти вырастить непросто, потому долгое время DPSS лазеры были чертовски дороги. Но благодаря ударному труду китайских товарищей, теперь они стали всполне доступны — от 7$ штука. В любом случае, механически это сложные устройства, боятся падений, резких перепадов температур. Будьте бережными.
Основной плюс зеленых лазеров – 532нм очень близко к максимальной чувствительности глаза, и как точка, так и сам луч очень хорошо видны. Я бы сказал, 5мВт зеленый лазер светит ярче, чем 200мВт красный (на первой фото как раз 5мВт зеленый, 200мВт красный и 200мВт фиолетовый). Потому, я бы не рекомендовал покупать зеленый лазер мощнее чем 5мВт: первый зеленый я купил на 150мВт и это настоящая жесть – с ним ничего нельзя сделать без очков, даже отраженный свет слепит, и оставляет неприятные ощущения.
Также у зеленых лазеров есть и большая опасность: 808 и особенно 1064нм инфракрасное излучение выходит из лазера, и в большинстве случаев его больше чем зеленого. В некоторых лазерах есть инфракрасный фильтр, но в большинстве зеленых лазеров до 100$ его нет. Т.е. «поражающая» способность лазера для глаза намного больше, чем кажется — и это еще одна причина не покупать зеленый лазер мощнее чем 5 мВт.
Жечь зелеными лазерами конечно можно, но нужны мощности опять же от 50мВт + если вблизи побочный инфракрасный луч будет «помогать», то с расстоянием он быстро станет «не в фокусе». А учитывая как он слепит – ничего веселого не выйдет.
405нм – фиолетовый
Это уже скорее ближний ультрафиолет. Большинство диодов – излучают 405нм напрямую. Проблема с ними в том, что глаз имеет чувствительность на 405нм около 0.01%, т.е. пятнышко 200мВт лазера кажется дохленьким, а на самом деле оно чертовски опасное и ослепительно-яркое – сетчатку повреждает на все 200мВт. Другая проблема – глаз человека привык фокусироваться «под зеленый» свет, и 405нм пятно всегда будет не в фокусе – не очень приятное ощущение. Но есть и хорошая сторона – многие предметы флуоресцируют, например бумага – ярким голубым светом, только это и спасает эти лазеры от забвения массовой публики. Но опять же, с ними не так весело. Хоть 200мВт жгут будь здоров, из-за сложности фокусировки лазера в точку это сложнее чем с красными. Также, к 405нм чувствительны фоторезисты, и кто с ними работает, может придумать зачем это может понадобиться 😉
780нм – инфракрасный
Такие лазеры в CD-RW и как второй диод в DVD-RW. Проблема в том, что глаз человека луч не видит, и потому такие лазеры очень опасны. Можно сжечь себе сетчатку и не заметить этого. Единственный способ работать с ними – использовать камеру без инфракрасного фильтра (в веб камерах её легко достать например) – тогда и луч, и пятно будет видно. ИК лазеры применять пожалуй можно только в самодельных лазерных «станочках», баловаться с ними я бы крайне не рекомендовал.
Также ИК лазеры есть в лазерных принтерах вместе со схемой развертки — 4-х или 6-и гранное вращающееся зеркало + оптика.
10мкм – инфракрасный, CO2
Это наиболее популярный в промышленности тип лазера. Основные его достоинства – низкая цена(трубки от 100-200$), высокая мощность (100W — рутина), высокий КПД. Ими режут металл, фанеру. Гравируют и проч. Если самому хочется сделать лазерный станок – то в Китае(alibaba.com) можно купить готовые трубки нужной мощности и собрать к ним только систему охлаждения и питания. Впрочем, особые умельцы делают и трубки дома, хоть это очень сложно (проблема в зеркалах и оптике – стекло 10мкм излучение не пропускает – тут подходит только оптика из кремния, германия и некоторых солей).
Применения лазеров
В основном – используют на презентациях, играют с кошками/собаками (5мвт, зеленый/красный), астрономы указывают на созвездия (зеленый 5мВт и выше). Самодельные станки – работают от 200мВт по тонким черным поверхностям. CO2 лазерами режут почти все, что угодно. Вот только печатную плату резать трудно – медь очень хорошо отражает излучение длиннее 350нм (потому на производстве, если очень хочется – применяют дорогущие 355nm DPSS лазеры). Ну и стандартное развлечение на YouTube – лопание шариков, нарезка бумаги и картона – любые лазеры от 20-50мВт при условии возможности фокусировки в точку.
Из более серьёзного — целеуказатели для оружия(зеленый), можно дома делать голограммы (полупроводниковых лазеров для этого более чем достаточно), можно из пластика, чувствительного к УФ печатать 3Д-объекты, можно экспонировать фоторезист без шаблона, можно посветить на уголковый отражатель на луне, и через 3 секунды увидеть ответ, можно построить лазерную линию связи на 10Мбит… Простор для творчества неограничен
Так что, если вы еще думаете, какой-бы купить лазер – берите 5мВт зеленый 🙂 (ну и 200мВт красный, если хочется жечь)
ЛАЗЕР
ЛАЗЕР (оптический квантовый генератор) – устройство, генерирующее когерентные и монохроматические электромагнитные волны видимого диапазона за счет вынужденного испускания или рассеяния света атомами (ионами, молекулами) активной среды. Слово «лазер» – аббревиатура слов английской фразы «Light Amplification by Stimulated Emission of Radiation» – усиление света вынужденным излучением. Рассмотрим эти понятия подробнее.
Основы теории излучения.
Из законов квантовой механики (см. КВАНТОВАЯ МЕХАНИКА) следует, что энергия атома может принимать только вполне определенные значения E0, E1, E2. En. которые называются энергетическими уровнями. Самый низкий уровень E0, при котором энергия атома минимальна, называется основным. Остальные уровни, начиная с E1, называются возбужденными и соответствуют более высокой энергии атома. Атом переходит с одного из низких уровней на более высокий поглощая энергию, например, при взаимодействии с фотоном – квантом электромагнитного излучения. А при переходе с высокого уровня на низкий атом отдает энергию в виде фотона. В обоих случаях энергия фотона E = h n равна разности начального и конечного уровней:
h n mn = Em – En (1)
где h = 6,626176·10 –34 Дж·с– постоянная Планка, n – частота излучения.
Атом в возбужденном состоянии неустойчив. Рано или поздно (в среднем за 10 –8 секунды), в случайный момент времени он самостоятельно (спонтанно) вернется в основное состояние, излучив электромагнитную волну – фотон. Случайный характер переходов приводит к тому, что все атомы вещества излучают неодновременно и независимо, фазы и направление движения излученных ими электромагнитных волн не согласованы. Именно так работают обычные источники света – лампы накаливания, газоразрядные трубки, таким же источником света является и Солнце и пр. Их спонтанное излучение некогерентно.
Но атом может также излучить фотон не спонтанно, а под действием электромагнитной волны, частота которой близка к частоте перехода атома, определяемой формулой (1):
n 21 = (E2 – E1)/h. (2)
Такая резонансная волна как бы «раскачивает» атом и «стряхивает» его с верхнего энергетического уровня на нижний. Происходит вынужденный переход, при котором излученная атомом волна имеет ту же частоту, фазу и направление распространения, что и волна первичная. Эти волны когерентны, при их сложении происходит увеличение интенсивности суммарного излучения, или числа фотонов.
Понятие вынужденного излучения было введено, а его особое свойство – когерентность – теоретически предсказано А.Эйнштейном в 1916 и строго обосновано П.Дираком с точки зрения квантовой механики в 1927–1930.
Обычно в веществе количество атомов в основном состоянии гораздо больше, чем атомов возбужденных. Поэтому световая волна, проходя по веществу, расходует свою энергию на возбуждение атомов. Интенсивность излучения при этом падает, подчиняясь закону Бугера:
где I0 – исходная интенсивность, Il – интенсивность излучения, прошедшего расстояние l в веществе с коэффициентом поглощения k. Из уравнения видно, что среда поглощает свет очень сильно – по экспоненциальному закону.
Вещество, в котором возбужденных атомов гораздо больше, чем атомов в основном состоянии, называется активным. Число атомов на определенном уровне En называется заселенностью этого уровня, а ситуация, когда E2 > E1 – инверсной заселенностью. Пусть по активному веществу проходит электромагнитная волна, частота которой n = n 21. Тогда за счет излучения при вынужденных переходах E2 ® E1 (которых значительно больше, чем актов поглощения E1 ® E2) будет происходить ее усиление. А с точки зрения квантовой механики это означает, что каждый пролетевший сквозь вещество фотон вызывает появление точно такого же фотона. Вместе они порождают еще два фотона, эти четыре – восемь и так далее – в активном веществе возникает фотонная лавина. Такое явление приводит к экспоненциальному закону нарастания интенсивности излучения, который записывается аналогично закону Бугера (3), но с коэффициентом квантового усиления a вместо –k:
На практике, однако, столь стремительного роста числа фотонов не происходит. В реальных веществах всегда есть множество факторов, вызывающих потерю энергии электромагнитной волны (рассеяние на неоднородностях среды, поглощение примесями и пр.). В итоге, можно добиться усиления волны хотя бы в десятки раз, только увеличив длину ее пробега в активной среде до нескольких метров, что осуществить нелегко. Но есть и другой путь: поместить активное вещество между двумя параллельными зеркалами (в резонатор). Волна, многократно отражаясь в них, пройдет достаточное для большого усиления расстояние, если, конечно, число возбужденных атомов будет оставаться большим, т.е. сохранится инверсная заселенность.
Инверсную заселенность можно осуществлять и поддерживать при помощи отдельного источника энергии, который как бы «накачивает» ею активное вещество. Таким источником может быть мощная лампа, электрический разряд, химическая реакция и т.п. Кроме того нужно, чтобы атомы на одном из верхних энергетических уровней оставались достаточно долго (в масштабах квантовых процессов, разумеется) чтобы их там накопилось порядка 50% от общего количества атомов вещества. А для этого необходимо иметь как минимум три уровня энергии рабочих частиц (атомов или ионов).
Трехуровневая схема генерации излучения работает следующим образом. Накачка переводит атомы с нижнего энергетического уровня E0 на самый верхний E3. Оттуда они спускаются на уровень E2, где могут находиться достаточно долго без спонтанного испускания фотонов (такой уровень называется метастабильным). И только под воздействием проходящей электромагнитной волны атом возвращается на основной уровень E0, испуская вынужденное излучение частотой n = (E2 – E0)/h, когерентное исходной волне.
Условия создания инверсной населенности и экспериментального обнаружения вынужденного излучения сформулировал немецкий физик Р. Ланденбург в 1928 и независимо от него российский физик В.А.Фабрикант в 1939. Вынужденное излучение в виде коротких радиоимпульсов впервые наблюдали американские физики Е.Парселл и Р.Паунд в 1950. В 1951 В.А.Фабрикант с сотрудниками подает авторскую заявку на «способ усиления электромагнитного излучения (ультрафиолетового, видимого, инфракрасного, радиодиапазонов волн) путем прохождения усиливаемого излучения через среду с инверсной населенностью». Однако эта заявка была опубликована только в 1959, и никакого влияния на ход работ по созданию квантовых генераторов оказать не смогла. Потому что принципиальную возможность их построения начали обсуждать уже в начале 1950-х независимо друг от друга в СССР Н.Г.Басов с А.М.Прохоровым, и в США Ч.Таунс с Дж.Вебером. А в 1954–1956 был разработан и сконструирован первый квантовый генератор радиодиапазона ( l = 1,25 см), в 1960 – лазер на рубине и газовый лазер, и спустя два года – полупроводниковый лазер.
Устройство лазера.
Несмотря на большое разнообразие типов активных сред и методов получения инверсной заселенности все лазеры имеют три основные части: активную среду, систему накачки и резонатор.
Активная среда – вещество, в котором создается инверсная заселенность, – может быть твердой (кристаллы рубина или алюмо-иттриевого граната, стекло с примесью неодима в виде стержней различного размера и формы), жидкой (растворы анилиновых красителей или растворы солей неодима в кюветах) и газообразной (смесь гелия с неоном, аргон, углекислый газ, водяной пар низкого давления в стеклянных трубках). Полупроводниковые материалы и холодная плазма, продукты химической реакции тоже дают лазерное излучение. В зависимости от типа активной среды лазеры называются рубиновыми, гелий-неоновыми, на красителях и т.п.
Резонатор представляет собой пару зеркал, параллельных друг другу, между которыми помещена активная среда. Одно зеркало («глухое») отражает весь падающий на него свет; второе, полупрозрачное, часть излучения возвращает в среду для осуществления вынужденного излучения, а часть выводится наружу в виде лазерного луча. В качестве «глухого» зеркала нередко используют призму полного внутреннего отражения (см. ОПТИКА), в качестве полупрозрачного – стопу стеклянных пластин. Кроме того, подбирая расстояние между зеркалами, резонатор можно настроить так, что лазер станет генерировать излучение только одного, строго определенного типа (так называемую моду).
Накачка создает инверсную заселенность в активных средах, причем для каждой среды выбирается наиболее удобный и эффективный способ накачки. В твердотельных и жидкостных лазерах используют импульсные лампы или лазеры, газовые среды возбуждают электрическим разрядом, полупроводники – электрическим током.
После того, как в активном элементе, помещенном внутрь резонатора, за счет накачки достигнуто состояние инверсии, его атомы время от времени начинают спонтанно опускаться на основной уровень, излучая фотоны. Испущенные под углом к оси резонатора фотоны вызывают короткую цепочку вынужденных излучений в этих направлениях и быстро покидают активную среду. И только фотоны, идущие вдоль оси резонатора, многократно отражаясь в зеркалах, порождают лавину когерентного излучения. При этом в преимущественном положении оказываются частоты (моды излучения), целое число полуволн которых укладывается на длине резонатора целое число раз.
Типы лазеров.
Твердотельные лазеры. Первой твердой активной средой стал рубин – кристалл корунда Al2O3 с небольшой примесью ионов хрома Cr +++ . Сконструировал его Т.Мейман (США) в 1960. Широко применяется также стекло с примесью неодима Nd, алюмо-иттриевый гранат Y2Al5O12 с примесью хрома, неодима и редкоземельных элементов в виде стержней. Накачкой твердотельных лазеров обычно служит импульсная лампа, вспыхивающая примерно на 10 –3 секунды, а лазерный импульс оказывается раза в два короче. Часть времени тратится на создание инверсной заселенности, а в конце вспышки интенсивность света становится недостаточной для возбуждения атомов и генерация прекратится. Лазерный импульс имеет сложную структуру, он состоит из множества отдельных пиков длительностью порядка 10 –6 секунды, разделенных промежутками, примерно, в 10 –5 секунды. В этом режиме так называемой свободной генерации мощность импульса может достигать десятков киловатт. Повысить мощность, просто усиливая свет накачки и увеличивая размеры лазерного стержня, невозможно чисто технически. Поэтому мощность лазерных импульсов повышают, уменьшая их длительность. Для этого перед одним из зеркал резонатора ставят затвор, который не позволяет генерации начаться, пока на верхний уровень не будут переброшены практически все атомы активного вещества. Затем затвор на короткое время открывается и вся накопленная энергия высвечивается в виде так называемого гигантского импульса. В зависимости от запаса энергии и длительности вспышки мощность импульса может составлять от нескольких мегаватт до десятков тераватт (10 12 ватт).
Газовые лазеры. Активной средой газовых лазеров служат газы низкого давления (от сотых долей до нескольких миллиметров ртутного столба) или их смеси, заполняющие стеклянную трубку с впаянными электродами. Первый газовый лазер на смеси гелия и неона был создан вскоре после лазера рубинового в 1960 А.Джаваном, В.Беннетом и Д.Эрриотом (США). Накачкой газовых лазеров служит электрический разряд, питаемый высокочастотным генератором. Генерация излучения ими происходит так же, как и в твердотельных лазерах, но газовые лазеры дают, как правило, непрерывное излучение. Поскольку плотность газов очень мала, длина трубки с активной средой должна быть достаточно велика, чтобы массы активного вещества хватило для получения высокой интенсивности излучения.
К газовым лазерам можно отнести также лазеры газодинамические, химические и эксимерные (лазеры, работающие на электронных переходах молекул, существующих только в возбужденном состоянии).
Газодинамический лазер похож на реактивный двигатель, в котором сгорает топливо с добавкой молекул газов активной среды. В камере сгорания молекулы газов возбуждаются, и, охлаждаясь при сверхзвуковом течении, отдают энергию в виде когерентного излучения большой мощности в инфракрасной области, которое выходит поперек газового потока.
В химических лазерах (вариант газодинамического лазера) инверсия заселенности образуется за счет химических реакций. Наиболее высокую мощность развивают лазеры на реакции атомарного фтора с водородом:
Жидкостные лазеры. Активной средой этих лазеров (их называют также лазерами на красителях) служат различные органические соединения в виде растворов. Первые лазеры на красителях появились в конце 60-х. Плотность их рабочего вещества занимает промежуточное место между твердым телом и газом, поэтому они генерируют довольно мощное излучение (до 20 Вт) при небольших размерах кюветы с активным веществом. Работают они как в импульсном, так и в непрерывном режиме, их накачку осуществляют импульсными лампами и лазерами. Возбужденные уровни молекул красителей имеют большую ширину, поэтому жидкостные лазеры излучают сразу несколько частот. А меняя кюветы с растворами красителей, излучение лазера можно перестраивать в очень широком диапазоне. Плавную подстройку частоты излучения осуществляют настройкой резонатора.
Полупроводниковые лазеры. Этот вид оптических квантовых генераторов был создан в 1962 одновременно несколькими группами американских исследователей (Р.Холлом, М.И.Нейтеном, Т.Квистом и др.), хотя теоретическое обоснование его работы сделал Н.Г.Басов с сотрудниками в 1958. Наиболее распространенные лазерный полупроводниковый материал – арсенид галлия GaAr.
В соответствии с законами квантовой механики электроны в твердом теле занимают широкие энергетические полосы, состоящие из множества непрерывно расположенных уровней. Нижняя полоса, называемая валентной зоной, отделена от верхней зоны (зоны проводимости) так называемой запрещенной зоной, в которой энергетические уровни отсутствуют. В полупроводнике электронов проводимости мало, подвижность их ограничена, но под действием теплового движения отдельные электроны могут перескакивать из валентной зоны в зону проводимости, оставляя в ней пустое место – «дырку». И если электрон с энергией Eэ спонтанно возвращается обратно в зону проводимости, происходит его «рекомбинация» с дыркой, имеющей энергию Eд, которая сопровождается излучением из запрещенной зоны фотона частотой n = Eэ – Eд. Накачка полупроводникового лазера осуществляется постоянным электрическим током (при этом от 50 до почти 100% его энергии превращается в излучение); резонатором обычно служат полированные грани кристалла полупроводника.
Лазеры в природе. Во Вселенной обнаружены лазеры естественного происхождения. Инверсная заселенность возникает в огромных межзвездных облаках конденсированных газов. Накачкой служат космические излучения, свет близких звезд и пр. Из-за гигантской протяженности активной среды (газовых облаков) – сотни миллионов километров – такие астрофизические лазеры не нуждаются в резонаторах: вынужденное электромагнитное излучение в диапазоне длин волн от нескольких сантиметров (Крабовидная туманность) до микрона (окрестности звезды Эта Карина) возникает в них при однократном проходе волны.
Свойства лазерного излучения.
В отличие от обычных, тепловых источников излучения лазер дает свет, обладающий целым рядом особых и очень ценных свойств.
1. Лазерное излучение когерентно и практически монохроматично. До появления лазеров этим свойством обладали только радиоволны, излучаемые хорошо стабилизированным передатчиком. А это дало возможность освоить диапазон видимого света для осуществления передачи информации и связи, тем самым существенно увеличив количество передаваемой информации в единицу времени.
Из-за того, что вынужденное излучение распространяется строго вдоль оси резонатора, лазерный луч расширяется слабо: его расходимость составляет несколько угловых секунд.
Все перечисленные качества позволяют фокусировать лазерный луч в пятно чрезвычайно малого размера, получая в точке фокуса огромную плотность энергии.
2. Лазерное излучение большой мощности имеет огромную температуру.
Связь между энергией равновесного излучения E данной частоты n и его температурой T задает закон излучения Планка. Зависимость между этими величинами имеет вид семейства кривых в координатах частота (по абсциссе) – энергия (по ординате). Каждая кривая дает распределение энергии в спектре излучения при определенной температуре. Лазерное излучение неравновесно, но, тем не менее, подставив в формулу Планка значения его энергии E в единице объема и частоты n (или отложив их значения на графике), мы получим температуру излучения. Поскольку лазерное излучение практически монохроматично, а плотность энергии (ее количество в единице объема) может быть чрезвычайно велика, температура излучения способна достигать огромной величины. Так, например, импульсный лазер мощностью порядка петаватта (10 15 Вт) имеет температуру излучения около 100 миллионов градусов.
Применение лазеров.
Уникальные свойства лазерного излучения сделали квантовые генераторы незаменимым инструментом в самых разных областях науки и техники.
1. Технологические лазеры. Мощные лазеры непрерывного действия применяются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые иными методами соединить нельзя (например, металл с керамикой). Высокая монохроматичность излучения позволяет сфокусировать луч в точку диаметром порядка микрона (за счет отсутствия дисперсии, см. КОЛЕБАНИЯ И ВОЛНЫ) и применять его для изготовления микросхем (так называемый метод лазерного скрайбирования – снятия тонкого слоя). Для обработки деталей в вакууме или в атмосфере инертного газа лазерный луч можно вводить в технологическую камеру через прозрачное окно.
Идеально прямой лазерный луч служит удобной «линейкой». В геодезии и строительстве импульсные лазеры применяют для измерения расстояний на местности, рассчитывая их по времени движения светового импульса между двумя точками. Точные измерения в промышленности производят при помощи интерференции лазерных лучей, отраженных от концевых поверхностей изделия.
2. Лазерная связь. Появление лазеров произвело переворот в технике связи и записи информации. Существует простая закономерность: чем выше несущая частота (меньше длина волны) канала связи, тем больше его пропускная способность. Именно поэтому радиосвязь, вначале освоившая диапазон длинных волн, постепенно переходила на все более короткие длины волн. Но свет – такая же электромагнитная волна, как и радиоволны, только в десятки тысяч раз короче, поэтому по лазерному лучу можно передать в десятки тысяч раз больше информации, чем по высокочастотному радиоканалу. Лазерная связь осуществляется по оптическому волокну – тонким стеклянным нитям, свет в которых за счет полного внутреннего отражения распространяется практически без потерь на многие сотни километров. Лазерным лучом записывают и воспроизводят изображение (в том числе движущееся) и звук на компакт-дисках.
3. Лазеры в медицине. Лазерная техника широко применяется и в хирургии, и в терапии. Лазерным лучом, введенным через глазной зрачок, «приваривают» отслоившуюся сетчатку и исправляют дефекты глазного дна. Хирургические операции, производимые «лазерным скальпелем» меньше травмируют живые ткани. А лазерное излучение малой мощности ускоряет заживление ран и оказывает воздействие, аналогичное иглоукалыванию, практикуемому восточной медициной (лазерная акупунктура).
4. Лазеры в научных исследованиях. Чрезвычайно высокая температура излучения и высокая плотность его энергии дает возможность исследовать вещество в экстремальном состоянии, существующем только в недрах горячих звезд. Делаются попытки осуществить термоядерную реакцию, сжимая ампулу со смесью дейтерия с тритием системой лазерных лучей (т.н. инерционный термоядерный синтез). В генной инженерии и нанотехнологии (технологии, имеющей дело с объектами с характерными размерами 10 –9 м) лазерными лучами разрезают, передвигают и соединяют фрагменты генов, биологических молекул и детали размером порядка миллионной доли миллиметра (10 –9 м). Лазерные локаторы (лидары) применяются для исследования атмосферы.
5. Военные лазеры. Военное применение лазеров включает как их использование для обнаружения целей и связи, так и применение в качестве оружия. Лучами мощных химических и эксимерных лазеров наземного или орбитального базирования планируется разрушать или выводить из строя боевые спутники и самолеты противника. Созданы образцы лазерных пистолетов для вооружения экипажей орбитальных станций военного назначения.
Можно без преувеличения сказать, что лазеры, появившиеся в середине XX века, сыграли такую же роль в жизни человечества, как электричество и радио полустолетием раньше.
Лазерная световая указка: какая самая мощная, где применяется
Световые указки используются для обучения, в промышленности и как развлекательные средства. Указки могут представлять собой аккумуляторные элементы и устройства с твердотельными лазерами внутри. В зависимости от цвета различается стоимость и мощность лазерных указок.
Лазерные указки различных цветов
Значение | Параметр |
Начало промышленного производства | 2005 год |
Диапазон мощности | 1-100 мВт |
Диапазон КПД | 1-25% |
Дальность | От 1 до 190 километров |
Тип питания | Аккумуляторы, твердотельные диоды |
Световая указка красного цвета
Красные лазерные указки — самые дешевые в производстве, так как цветовой спектр не требует энергозатрат и имеют следующие характеристики:
- элемент питания — обычные батарейки;
- мощность такого луча колеблется в пределах от 1 до 100 мВт;
- срок службы таких изделий не превышает 1-2 лет.
Смотрите также статью Что такое КПСС и его история
Со временем длина волны красного лазера сокращается, лучи теряют мощность из-за снижения запаса прочности аккумуляторных элементов или из-за выгорания диодов.
Красные лазеры
“Луч смерти”, признание задним числом и мазеры
С появлением понятия вынужденного излучения у физиков оказалось всё, что требовалось для изобретения лазера. Но потребовалось несколько десятилетий, чтобы идея воплотилась в жизнь. Пока же учёные и инженеры работали над созданием всё более коротких волн — в том числе и для того, чтобы использовать их в качестве оружия. В 20-е — 30-е годы был целый бум вокруг “луча смерти”, и многие именитые изобретатели, включая Гульемо Маркони и Никола Тесла, заявляли, что изобрели его. Подобные разработки велись и во время Второй мировой, но главным результатом “укорачивания” волн стал радар. К 40-му году радары могли генерировать лучи с длиной волны до сантиметра и меньше. Устройства были быстро взяты на вооружение и задействованы для обнаружения вражеских самолётов.
Советский фантастический фильм «Луч смерти» Льва Кулешова вышел на экраны 16 марта 1925 года.
Впрочем, работа в направлении вынужденного излучения не останавливалась. В 1938 году советский физик Валентин Фабрикант предложил метод, позволяющий доказать существование этого излучения. Война приостановила его разработки, но в 1951-м учёный, совместно с двумя коллегами, подал заявку на изобретение «Нового способа усиления электромагнитного излучения ультрафиолетового (УФ), видимого, инфракрасного (ИК) и радиодиапазона». Правда, тогда она принята не была, и авторское свидетельство изобретатели получили только в 1959-м.
Разработка наших соотечественников слишком опережала своё время, и из-за отсутствия практических подтверждающих экспериментов оценена не было. Лишь в 1964-м, уже после создания лазеров, Валентин Фабрикант, Михаил Вудынский и Фатима Бутаева получили диплом о своём открытии (с приоритетом от 18 июня 1951 года), а само открытие было внесено в Государственный реестр научных открытий СССР.
В 1950-м французский физик Альфред Кастлер открыл метод оптической накачки — способ, позволяющий сдвигать электроны в атомах с одного магнитного подуровня на другой, и через два года вместе с коллегами смог воплотить его на практике.
В том же 1952 году, через год после того как была подана безуспешная заявка Фабриканта и его коллег, американский физик Джозеф Вебер на конференции в Оттаве выступил с докладом об использовании вынужденного излучения для усиления микроволновых сигналов. Суть его идеи была в том, что вынужденное излучение можно применять для создания “лавины” синхронных фотонов, когда небольшое количество частиц запускает целый их каскад, подобно тому, как несколько камней могут вызвать оползень.
Среди участников той конференции был Чарлз Хард Таунс, профессор Колумбийского университета. Таунс, который сам работал над аналогичными идеями, попросил копию материалов Вебера. Уже в следующем, 1953 году, Таунс и его аспиранты, Джеймс П. Гордон и Герберт Дж. Цайгер создали первый действующий мазер — устройство, которое могло излучать импульсы синхронных — когерентных — микроволновых фотонов. Термин “мазер” придумал Таунс — это была аббревиатура фразы m
icrowave
a
mplification by
s
timulated
e
mission of
r
adiation — “усиление микроволн с помощью вынужденного излучения”. От него впоследствии и будет образовано более знакомое слово — “лазер”.
Зеленые лазерные указки (green laser)
Устройства, оснащенные зеленым цветом, больше воспринимаются человеческим глазом, по сравнению со всеми остальными, однако, это правило применимо лишь в световой день, в ночное время суток зеленый цвет воспринимается хуже.
Лазер с зеленым лучом имеет следующие особенности:
- основа для использования — твердотелые лазеры, оснащенные диодами;
- коэффициент полезного действия — 20 % от номинальной мощности;
- питание — таблеточная батарейка;
- начало выпуска — 2006 год наряду с иными цветовыми элементами;
- длина волны зеленого лазера — 532 нм.
Световая указка зеленого цвета
Смотрите также статью Что такое электрошокер и как выбрать парализатор
И снова “Луч смерти”
Но, как и многие новаторские открытия, поначалу лазер столкнулся с серьёзным сопротивлением со стороны научного сообщества. Так, лучшие физики того времени со скептицизмом отнеслись к ранним теоретическим выкладкам Таунса.
Престижный журнал Physical Review Letters не принял первую статью Маймана о лазере — но ему всё же удалось опубликовать её (пусть и в сокращённом варианте) в журнале Nature. СМИ отнеслись к новому изобретению со смесью восторга и ужаса: статьи о лазере сопровождались сенсационными и зловещими заголовками, и рисовали мрачное будущее.
Например, статья Ральфа Дайтона в газете Independent-Star News от 2 октября 1960 года называлась “Учёные исследовали возможности луча смерти: спутник с лучом может повелевать Землёй”. И начиналась она так: “Гигантская линза вращается вокруг планеты, сжигая города сфокусированными лучами солнца… Но это научно-фантастическое супер-оружие — всего лишь игрушка по сравнению с тем, чем, возможно, может обернуться новая научная разработка”.
Лазерная указка синего цвета
Лазерные указки синего цвета имеют схожий с зеленым принцип управления и осуществления работы. Такие указки имеют характеристики:
- длина пучка — варьируется в зависимости от оттенка и для ярко-синего цвета составляет 445 нм, для тусклого (бирюзового) 473 нм, а для голубого 490 нм;
- вероятный вред для здоровья человека — самый большой среди всех цветов, используемых в указках;
- коэффициент полезного действия — 3 %, что является одним из самых маленьких показателей;
- основной элемент — твердотельные диоды.
Указка синего цвета
Будущее лазерных технологий
За последние 40 лет новые виды лазеров появлялись едва ли не каждый год — с использованием различных сред, с излучением разной длины волны, с разным типом накачки и для разных задач. А порой задачи для них появлялись не до, а уже после нового изобретения. Лазеры ведь не зря называют “готовыми решениями ещё неизвестных проблем”. Они уже изменили мир своими возможностями, и продолжают это делать снова и снова.
Например, недавние (конец 2010-х годов) эксперименты, проведённые учёными из Университета Регенсбурга (Германия), показали, что электрическое поле сверхкоротких импульсов лазера можно использовать для перемещения электронов внутри твердых форм материи. Потенциально это может позволить создавать компьютеры, которые будут выполнять операции на скорости большей, чем период одного колебания световой волны.
Словом, как это часто случается со многими современными открытиями и разработками, лазер эволюционирует прямо сейчас, прямо у нас на глазах. Всего за 60 лет он прошёл путь от теоретической задумки до неотъемлимой части повседневной жизни. Чем он станет завтра? Увидим уже очень скоро.
ЛУ желтого цвета
Световые указки желтого цвета имеют меньшее распространение среди остальных и обладают следующими характеристиками:
- длина пучка — 594 нм (один из самых больших показателей);
- коэффициент полезного действия — менее 1 % — самый низкий показатель в классе;
- срок эксплуатации — 2-4 года;
- принцип работы — твердотельные диоды;
- разработка — 2008 год.
Указка желтого цвета
Выводы
Мы нисколько не преувеличиваем, когда говорим, что, появившись в середине XX века, лазеры сыграли в нашей жизни такую же значимую роль, как электричество и радио. Лазер проник практически во все области деятельности человека, и если вдруг изъять его, то мир перестанет быть таким привычным и комфортным. Даже текст этой статьи, читаемый вами сегодня с компьютера или смартфона, доступен благодаря полупроводниковым лазерам, активно используемым в новейших оптических средствах связи. Без лазеров невозможно представить компьютеры, а значит, и огромный пласт современной жизни человека. Будучи очень интересно устроенным, лазер открывает перед современной наукой новые перспективы развития. Свойства его невероятно многогранны, и можно смело сказать, что лазерный луч «высвечивает» себе путь абсолютно во всех сферах человеческой жизни, делая ее качественнее и счастливее!
ЛУ фиолетового цвета
Смотрите также статью Швейцарские ножи и как их выбрать
Особый вид световой указки, связанный с возникновением новой технологии оцифровки носителей Blu-ray. Такие указки имеют следующие функции:
- длина светового пучка — 405 нм;
- срок ввода в эксплуатацию — 2008;
- срок службы — 3-5 лет;
- принцип действия — твердотельные диоды высокой мощности.
Указка фиолетового цвета
Свойства лазерного излучения
Свет от лазера имеет особенные и очень ценные свойства, выгодно отличающие его от света обычных, тепловых источников.
- Излучение лазера когерентно и практически полностью монохроматично. Ранее подобные свойства были лишь у радиоволн от хорошо стабилизированных передатчиков.
- Распространение вынужденного излучения происходит только вдоль оси резонатора. В связи с этим расширение лазерного луча очень слабое, имеет почти незаметную расходимость (несколько угловых секунд).
- Благодаря вышеназванным свойствам лазерный луч способен фокусироваться в точку невероятно маленького размера. Энергия в точке его фокуса имеет огромную плотность.
- По причине монохроматичности излучения и чрезвычайной плотности энергии, лазерное излучение может достигать очень высоких температур. К примеру, температура излучения импульсного лазера мощностью порядка петаватта (1015 Вт) составляет более 100 миллионов градусов.
Применение лазерных указок
Применение лазерных указок имеет широкий спектр и распространяется на многие сферы жизни. Чаще всего они используются:
- для подсвечивания целей в коллиматорных прицелах огнестрельного оружия (пистолеты, винтовки, автоматы), а также как целеуказатели для работы артиллерии или авиации на небольших расстояниях;
- в научной деятельности такие указки используются для выявления газа в жидкостях при невозможности распознать его обычным человеческим глазом;
- китайский зеленый лазер применяется в астрономических исследованиях. Такие указки используются для исследования видимых для глаза границ и обозначения космических объектов, их фиксации. В темное время суток указки различных спектров ученые используют для определения направления звезд, фиксируя его направленным лучом света;
- в образовательной деятельности такие указки применяют для демонстрации презентаций, лекций и научных семинаров, требующих демонстрации с помощью цветовой указки;
- в политической и общественной деятельности указки используются для презентаций, для объяснения схем общественных процессов и концентрации внимания зала, публики, собрания.
Смотрите также статью Коллиматорные прицелы и принцип работы
Указки трех популярных цветов
Гонка за “оптическим мазером”
Но, как это часто бывает в научной среде, когда все части головоломки оказываются на месте, разные учёные независимо друг от друга могут практически одновременно сделать одно и то же открытие. Вот и в этой истории, пока Таунс строил мазер в США, физики Николай Басов и Александр Прохоров в Советском Союзе успешно разрабатывали свою собственную версию, которая, в отличие от прибора Таунса, могла излучать непрерывный пучок микроволн, а не серию импульсов.
В 1964 году Таунс, Басов и Прохоров совместно получили Нобелевскую премию по физике «за фундаментальные работы в области квантовой электроники, которые привели к созданию генераторов и усилителей, основанных на мазерно-лазерном принципе».
Мазер
Появление мазера привело к шквалу публикаций в научных журналах, в которых описывались свойства устройства и обсуждались вариации идеи. Но, хотя мазеры и нашли своё применение в качестве усилителей радиосигналов и сверхчувствительных детекторов, в целом они имели довольно узкую сферу применения. Поэтому многие из первоначальных исследователей, такие как Таунс и его коллега Артур Леонард Шавлов из «Лабораторий Белла», занялись разработкой «оптического мазера», который работал бы в видимом свете.
Одной из сложнейших проблем при создании нового устройства был размер. Микроволны имеют длину волны около 1 миллиметра, тогда как длина волны видимого света примерно в 1000 раз короче. А точность конструкции приборов должна быть сопоставима с длиной волны.
Тем не менее «Лаборатории Белла» в 1958 году подали первый патент на оптический мазер. Примерно в то же время Прохоров разрабатывал собственное оптическое устройство, а аспирант Колумбийского университета по имени Гордон Гулд опубликовал свои идеи и наработки о том, что он назвал «лазером».
Безопасность лазеров
Безопасность использования лазеров, неотъемлемая часть их повседневной эксплуатации, такие приборы не являются безобидными и могут нести определенную опасность, зависящей от того, как устроена лазерная указка. Опасность у зеленого луча самая высокая.
Негативные последствия, когда используется самая мощная лазерная указка без соблюдения техники безопасности могут быть следующими:
- при попадании в глаза, даже на непродолжительное время, свет лазера может вызвать ожог сетчатки глаза, что приведет к нарушению зрения или же его частично потере. Такое попадание может повлечь за собой фатальные последствия, если применить такой луч для летчиков или водителей автомобиля (в 2013 году в России массовыми случаи стало ослепление летчиков гражданской авиации на подлете к городам, что могло привести к крушению самолетов);
- повреждения кожного покрова — при использовании мощных лазеров с сильным световым пучком на протяжении нескольких минут на открытом участке кожи может остаться ожог 2-3 степени.
Эти последствия повлекли за собой законодательный запрет на владение лазерными указками на территории некоторых стран, и из них же вытекают меры предосторожности при использовании таких средств:
- не светить в глаза — при использовании указки запрещается даже на короткий промежуток времени направлять световой пучок человеку в глаза во избежание ожога сетчатки;
- не направлять на открытые участки тела — при использовании мощных лазеров это также может вызвать ожог поверхности тела;
- не облучать водителей транспортных средств — это может привести к авариям на транспорте и имущественный вред, вплоть до летального исхода.
Фото лазерной указки
Безуспешные попытки и первый рабочий лазер
Идея у всех в общих чертах была одинакова — использовать метод оптической накачки Кестлера и резонатор Фабри-Перо: устройство с двумя параллельными соосными зеркалами, между которыми может формироваться резонансная стоячая оптическая волна. Резонатор к тому моменту существовал уже почти 60 лет: французские физики Шарль Фабри и Альфред Перо ещё в 1899 году предложили использовать две частично посеребренные стеклянные пластины для создания таких волн.
Таунс использовал в качестве среды для своего оптического мазера пары калия, свойства которых были хорошо изучены. Но газ был едким и разъедал стекло резонатора, от чего оно мутнело. Бывший ученик Таунса, Али Джаван, тоже использовал газ — смесь гелия и неона, но, несмотря на некоторые успехи, в тот момент создать лазер ему не удалось.
Были и попытки построить лазер не на базе газа, а на кристалле — например, на кристалле фторида кальция или на синтетическом рубине. Но учёным, которые экспериментировали с рубином до Маймана, не повезло: для накачки они использовали лампу накаливания с вольфрамовой нитью, вот только она не могла дать достаточно энергии для работы лазера.
Расчёты Маймана показывали, что рубин должен был сработать, но требовался исключительно яркий источник света. Где его взять? И в один день учёного осенило — те его коллеги, которые потерпели неудачу в работе с рубином, использовали постоянный свет. Но он не обязательно должен светить без перерыва. Подойдёт лампа-вспышка.
Просматривая каталоги, физик нашёл одну очень яркую вспышку спиральной формы, будто специально сделанную для размещения внутри неё рубина. И 16 мая 1960 года Майман добился того, чего хотел — его устройство произвело импульсы красного цвета. Это был первый в мире лазер, работавший на синтетическом рубине двух сантиметров в длину.
Какая лазерная указка самая мощная
Рынок лазерных указок с каждым годом насыщается новыми моделями, тенденцией которых является увеличение мощности за счет использования современных светодиодов.
Передовыми в этом плане производителями является китайская компания Wicked Lasers, которая выпускает самые мощные лазеры, способные передавать луч на расстояние десятков и сотен километров. Дальность луча зависит от того, из чего состоит лазерная указка.
Лазерная указка производства Wicked Lasers
В 2022 году установлено, какой лазер мощнее. Зафиксирован рекордный случай передачи зеленого светового пучка на расстояние 190 километров.
Смотрите также статью Роль джихада в истории России и мира
Война патентов
Несмотря на все опасения, лазерного апокалипсиса не случилось. Но одну войну лазер вызвал — войну патентов. Гордон Гулд из Колумбийского университета, работавший над идеей лазера одновременно с другими командами, не просто вёл записи в своём блокноте — он нотариально их зарегистрировал. Говорят, идею об этом подал ему Чарлз Таунс.
Гулд полагал, что подавать заявку на патент стоит только после того, как у него будет рабочая модель лазера. Именно поэтому Таунс и Шавлов его опередили — они подали свою заявку ещё до демонстрации Маймана, в июле 1958-го, и в марте 1960-го получили патент за номером 2929922. Название “лазер” в патенте не фигурировало, речь шла о мазере.
Когда в апреле 1959-го Гулд обратился за патентом, ему отказали, сославшись на то, что другая заявка была подана раньше. Гулд пошёл в суд. Главным его аргументом была его нотариально заверенная записная книжка. Именно в ней впервые появилось слово “лазер”. Как и “мазер”, это была аббревиатура фразы — l
ight
a
mplification by
s
timulated
e
mission of
r
adiation (“усиление света посредством вынужденного излучения”).
Тяжба длилась почти 30 лет, и в 1977-м суд признал за Гулдом право патента. Но на этом война не закончилась. То, что Гулд оказался обладателем патента, означало, что лазерная промышленность должна была выплатить ему авторский гонорар. К тому моменту общая сумма составляла миллионы долларов. Компании ещё десять лет судились за право не платить физику, но в 1987 году Гулд выиграл и этот процесс.
История этой войны — хорошая иллюстрация того, что “владелец патента” не равно “автор идеи”. Большинство идей было кем-то запатентовано, но это мало что говорит о том, как эти идеи возникли на самом деле и как распространились среди учёных.
Как защитить глаза от лазерного воздействия
Мы подтвердили нашим рабочим экспериментом, что для безопасной работы на лазерном эпиляторе потребуется защита для глаз, а именно специальные защитные очки.
Линзы защитных очков поглощают излучение, а к глазам доходит уже “нейтральный” свет, не приносящий им вред. Материал изготовления очков может быть разный (поликарбонат, стекло, пластик), главное, чтобы они подходили для конкретного типа лазера и фильтровали определенную длину волн.
Как выбрать защитные очки для работы лазером
Начнем с тех очков, которые в работе использовать не надо. Сюда относятся дешевые китайские изделия. Они стоят дешево, но и защиты для глаз никакой не дают.
Проверить их защиту несложно — в качественных очках при проведении процедуры вспышки лазера не будут видны.
Как видите, через стекло из поликарбоната вспышки проходят, чего быть не должно.
Полное видео с проверкой очков скачать тут: эксперимент с очками
Часто видим подобные очки у косметологов которые проводят лазерную эпиляцию. Очки не имеют никаких обозначений, относящихся к защите от излучений. Иногда это очки используют для клиентов, иногда для себя. Но, эти очки не являются защитными от лазерного воздействия. Данные очки сделаны из удароустойчивого поликарбоната, служат для проведения строительных работ и неплохо защищают от механических повреждений. Иногда их применяют для работы с лазерным уровнем, чтобы лучше видеть красный свет. Стоят они порядка 70 рублей.
Опасно как прямое, так и рассеянное излучение. Лазеры различных типов, начиная со второго класса, имеют риски для нарушения зрения. Диодный лазер для эпиляции имеет 4й класс опасности, соответственно риски довольно высокие. В глазу находятся мишени для различных лазерных лучей. Это меланин в эпителии сетчатки, пигмент радужной оболочки. Наиболее уязвимая часть глаза – сетчатка: лазерный луч 400-1400 нм длиной (а особенно 700-1400 нм) фокусируется прямо на ней с помощью выпуклостей хрусталика и роговицы. В итоге сетчатка получает почти в 100 раз больше излучения, чем роговица.
- фотокоагуляция (перфорации отдельных структур);
- кровоизлияние в сетчатку;
- образование преретинальных спаек и ретинопатия;
- ожог роговицы;
- катаральный конъюнктивит;
- и др.
Восстановление зрения — длительная и серьезная операция, не забывайте беречь глаза!
При выборе изделия смотрите на такие параметры:
- длина волны (светофильтр очков должен подходить для определенного диапазона волн);
- угол обзора (излучение не должно попадать в глаза);
- комфортность ношения (очки не должны спадать);
- сертификация.
Подробнее об этих пунктах читайте в нашей статье “Как выбрать очки для лазерной эпиляции”.
Виды лазеров: 4 метода классификации
Лазер известен как одно из четырех великих изобретений 20-го века, лазерный луч — это не свет, существующий в природе, а свет, изобретенный человеком на основе квантовой теории. От естественного света лазер отличают характеристики и процесс его генерации.
Лазер называют «самым быстрым ножом, самым ярким светом и самой точной линейкой»:
По сравнению с естественным светом лазер обладает такими характеристиками, как высокая интенсивность, хорошая монохроматичность, хорошая когерентность и хорошая направленность.
Лазер — это продукт атомного стимулированного излучения:
Возбужденный энергией источника накачки, атом может перейти в высокоэнергетическое состояние. В это время, если он столкнется с внешним фотоном с определенной частотой, он испустит идентичный фотон. Эти два фотона заставят больше атомов перейти и выпустить такой же фотон. Этот процесс называется стимулированным излучением, а генерируемый свет — «лазерным».
Частота, фаза, направление распространения и состояние поляризации фотонов, испускаемых стимулированным излучением, и посторонних фотонов абсолютно одинаковы, поэтому лазер имеет характеристики высокой интенсивности, хорошей монохроматичности, хорошей когерентности и хорошей направленности.
Схематическая диаграмма перехода на атомный энергетический уровень
Схематическая диаграмма процесса стимулированного излучения
Особенности лазеов:
- Хорошая направленность;
- Хорошая монохроматичность;
- Высокая мощность;
- Высокая когерентность.
История создания лазерного оборудования
- Эйнштейн впервые предложил идею стимулированного излучения в 1917 году;
- В 1960 году появился первый в мире рубиновый твердотельный лазер;
- Коммерческое использование началось в 1970-х годах и сейчас находится на стадии бурного развития:
- После изучения механизма взаимодействия лазерного луча с материей, область применения лазера также расширяется. После 1990-х годов промышленное применение перешло в стадию высокоскоростного развития.
История развития лазерных технологий
Два вида применения лазера
Характеристики высокой интенсивности, хорошей монохроматичности, хорошей когерентности и хорошей направленности определяют два сценария применения лазера:
Энергетический лазер
Лазер обладает выдающимся преимуществами — высокой плотностью энергии, что находит важное применение в обработке материалов, производстве оружия, медицине и других областях.
Информационный лазер
Лазер обладает хорошей монохроматичностью и направленностью. Он подходит для передачи информации (оптическая связь) и измерения расстояния (оптическое измерение). По сравнению с традиционной электрической связью, оптическая связь имеет такие преимущества, как большая емкость, большое расстояние, хорошая конфиденциальность и легкий вес.
Оборудование для лазерной обработки
Лазерная обработка является представителем технологии точной обработки. Основной движущей силой роста является замещение традиционных методов обработки:
По сравнению с другими станками, лазерные станки имеют такие преимущества как высокая эффективность, высокая точность, низкое потребление энергии, малая деформация материала, большой ряд обрабатываемых материалов и простота управления.
Эти преимущества тесно связаны с двумя характеристиками бесконтактной обработки и высокой плотностью энергии лазерной обработки:
Бесконтактная обработка
Работа лазера полностью завершается за счет тепла, выделяемого при взаимодействии лазера с материалом.
Во время всего процесса нет контакта между обрабатывающим инструментом и материалом, поэтому обрабатываемый материал не подвергается силовому воздействию, а остаточное напряжение относительно невелико.
Поскольку диаметр луча можно контролировать до очень малого, точность также высока;
Высокая плотность энергии
Плотность мощности лазерной обработки может достигать более 107 Вт/см, в тысячи и даже десятки тысяч раз превышая плотность мощности пламени, дуги и других методов обработки.;
Более высокая плотность мощности означает, что лазер может обрабатывать очень маленькую область на объекте обработки, не затрагивая материалы вокруг микрообласти, поэтому точность обработки и эффективность обработки выше.
Многоточечные преимущества
- Высокая эффективность;
- Высокоточный;
- Низкое потребление энергии;
- Малая деформация;
- Легко контролировать.
Лазер: основной блок лазерного оборудования
Лазер — это компонент, используемый для генерации лазерного луча и основной компонент лазерного оборудования:
- Стоимость лазера составляет 20% — 40% от общей стоимости полного комплекта оборудования для лазерной обработки, или даже выше;
- В лазере происходит накачка, стимулированное излучение и другие процессы;
- Типичный лазер состоит из рабочего материала лазера (энергия излучения), источника накачки (энергии подъема), оптического резонатора (распространяющая энергия) и т.д.
Основная структурная схема лазера
Типы лазеров
Существует множество методов классификации лазеров, среди которых наиболее часто используются четыре наиболее часто используемые:
По рабочему веществу:
По рабочему веществу лазеры можно разделить на газовые, твердотельные, жидкостные (на красителях), полупроводниковые, эксимерные и т.д;
Газовый лазер
Принимая газ в качестве рабочего материала, распространенными являются CO2 лазер , He-Ne лазер, аргонионный лазер, He-Cd лазер, лазер на парах меди, различные эксимерные лазеры и др. лазер, He-Cd лазер, лазер на парах меди, различные эксимерные лазеры и т.д., особенно CO2 лазер наиболее часто используется в промышленности.
Твердотельные лазеры
Ионы металлов, способные производить стимулированное излучение, легируются в кристалл и используются в качестве рабочих материалов. Обычно используемые кристаллы включают рубин, корунд, алюминиевый гранат (широко известный как YAG), тунгстат кальция, фторид кальция, алюминат иттрия и бериллат лантана, среди которых YAG является наиболее распространенным кристаллом в настоящее время.
Твердотельный лазер
Лазер на красителях
В качестве рабочего вещества используется раствор, образующийся при растворении некоторых органических красителей в жидкостях, таких как этанол, метанол или вода.
Полупроводниковые лазеры
Также известны как лазерные диоды, в качестве рабочего вещества используются полупроводниковые материалы, такие как арсенид галлия (GaAs), сульфид кадмия (CDS), фосфид индия (INP), сульфид цинка (ZnS) и т.д.
Полупроводниковые лазеры
Оптоволоконный лазер:
В качестве рабочего материала используется стекловолокно, легированное редкоземельными элементами. Волоконный лазер — это лазер, использующий волокно в качестве рабочей среды.
Волоконный лазер
Волоконный лазер имеет отличные характеристики и известен как лазер третьего поколения:
- Поскольку волокно имеет характеристики малого объема, намотки, низкого отношения площади к объему и высокой скорости фотоэлектрического преобразования, волоконный лазер имеет преимущества миниатюризации и интенсификации, хорошего рассеивания тепла и высокой скорости фотоэлектрического преобразования;
- В то же время, лазерный выход волоконного лазера может быть получен непосредственно из волокна, поэтому волоконный лазер имеет высокую технологичность и может адаптироваться к применению обработки в любом пространстве;
- По структуре, волоконный лазер не имеет оптической линзы в резонансной полости, поэтому он обладает такими преимуществами, как отсутствие регулировки, отсутствие технического обслуживания и высокая стабильность.
- Кроме того, качество луча волоконного лазера также превосходно.
Типы лазеров | Стандартный тип | Длина лазерной волны | Максимальная выходная мощность | Эффективность преобразования энергии | Особенности |
Газовый лазер | CO2 лазер | Около 10.6um инфракрасного излучения | 1-20 кВт | 8%~10% | Хорошая монохроматичность и высокая эффективность преобразования энергии |
Жидкостный лазер | 6G лазер на красителях | УФ к ИК | – | 5%~20% | Длина волны на выходе плавно регулируется, мощность преобразования энергии высокая, низкая стоимость |
Твердотельные лазеры | YAG/рубиновый лазер | От видимого до ближнего инфракрасного диапазона | 0,5-5 кВт | 0.5%~1% | Низкая выходная мощность, низкий коэффициент преобразования энергии и хорошая монохроматичность. |
Полупроводниковые лазеры | Диодный лазер GaAs | 100 nm―1.65 um | 0,5-20 кВт, двухмерный массив может достигать 350 кВт | 20% — 40%, лабораторные 70% | Высокая мощность преобразования энергии, малый объем, легкий вес, простая структура, длительный срок службы и слабая монохроматичность. |
Волоконный лазер | Импульсный/Постоянный волоконный лазер | 1.46 um―1.65 um | 0.5-20 кВт | 30%-40% | Миниатюризация, интенсификация, высокая эффективность преобразования, высокий выход энергии, высокое качество луча, отсутствие оптической коллимации и меньшее техническое обслуживание. |
Форма выходного сигнала энергии (рабочий режим):
По форме выходного сигнала лазеры можно разделить на непрерывный, импульсный и квазинепрерывный. Импульсный лазер можно дополнительно разделить на миллисекундный лазер, микросекундный лазер, наносекундный механизм, пикосекундный лазер, фемтосекундный лазер, аттосекундный лазер и т.д.;
Непрервные лазеры
Непрерывно выдают стабильную форму волны энергии в течение рабочего времени, с высокой мощностью, и могут обрабатывать материалы с большим объемом и высокой температурой плавления, такие как металлические пластины;
Импульсный лазер
По ширине импульса импульсные лазеры могут быть далее разделены на миллисекундные лазеры, микросекундные лазеры, наносекундные механизмы, пикосекундные лазеры, фемтосекундные лазеры и аттосекундные лазеры;
Фемтосекундные и аттосекундные лазеры называются сверхбыстрыми лазерами.
Мощность импульсного лазера намного ниже, чем у непрерывного лазера, но точность обработки выше, чем у непрерывного лазера. Как правило, чем меньше ширина импульса, тем выше точность обработки;
Квази-КВ лазер
Помимо непрерывного лазера и импульсного лазера, высокоэнергетический лазер может быть выведен многократно в течение определенного периода.
Способ классификации | Категория лазера | Особенности |
Классификация по режиму работы | Непрерывный лазер | Возбуждение рабочего материала и соответствующий лазерный выход может осуществляться непрерывно в большом диапазоне времени |
Импульсивный лазер | Он относится к лазеру с длительностью одного лазерного импульса менее 0,25 секунды и работает только один раз с определенным интервалом. Он имеет большую выходную пиковую мощность и подходит для лазерной маркировки, резки и ранжирования. | |
Классификация по длительности импульса | Миллисекундный лазер (MS) | 10 -3 S |
Микросекундный лазер (US) | 10 -6 S | |
Наносекундный лазер (NS) | 10 -9 S | |
Пикосекундный лазер (PS) | 10 -12 S | |
Фемтосекундный лазер (FS) | 10 -15 S |
Выходная длина волны (цвет):
По длине выходной волны лазеры можно разделить на рентгеновские, ультрафиолетовые, инфракрасные, видимые и т.д;
Мощность:
Можно разделить на лазеры низкой мощности 100 Вт, лазеры средней мощности 100-1500 Вт и лазеры высокой мощности больше 1500 Вт.
Классификация лазеров
Если вам понравилась статья, то ставьте лайк, делитесь ею со своими друзьями и оставляйте комментарии!