Какую энергию генерирует лазер
Лазеры или оптические квантовые генераторы – это современные источники когерентного излучения, обладающие целым рядом уникальных свойств. Создание лазеров явилось одним из самых замечательных достижений физики второй половины XX века, которое привело к революционным изменениям во многих областях науки и техники. К настоящему времени создано большое количество лазеров с различными характеристиками – газовых, твердотельных, полупроводниковых, излучающих свет в различных оптических диапазонах. Лазеры могут работать в импульсном и непрерывном режимах. Мощность излучения лазеров может изменяться в пределах от долей милливатта до 10 12 –10 13 Вт (в импульсном режиме). Лазеры находят широкое применение в военной технике, в технологии обработки материалов, в медицине, оптических системах навигации, связи и локации, в прецизионных интерференционных экспериментах, в химии, просто в быту и т. д. Хотя первый оптический квантовый генератор был построен сравнительно недавно (1960 г.), современную жизнь уже невозможно представить без лазеров.
Одним из важнейших свойств лазерного излучения является чрезвычайно высокая степень его монохроматичности, недостижимая в излучении нелазерных источников. Это и все другие уникальные свойства лазерного излучения возникают в результате согласованного, кооперативного испускания световых квантов многими атомами рабочего вещества.
Чтобы понять принцип работы лазера, нужно более внимательно изучить процессы поглощения и излучения атомами квантов света. Атом может находиться в различных энергетических состояниях с энергиями , и т. д. В теории Бора эти состояния называются стабильными. На самом деле стабильным состоянием, в котором атом в отсутствие внешних возмущений может находиться бесконечно долго, является только состояние с наименьшей энергией. Это состояние называют основным. Все другие состояния нестабильны. Возбужденный атом может пребывать в этих состояниях лишь очень короткое время, порядка , после этого он самопроизвольно переходит в одно из низших состояний, испуская квант света, частоту которого можно определить из второго постулата Бора. Излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое, называют спонтанным . На некоторых энергетических уровнях атом может пребывать значительно большее время, порядка . Такие уровни называются метастабильными .
Переход атома в более высокое энергетическое состояние может происходить при резонансном поглощении фотона, энергия которого равна разности энергий атома в конечном и начальном состояниях.
Переходы между энергетическими уровнями атома не обязательно связаны с поглощением или испусканием фотонов. Атом может приобрести или отдать часть своей энергии и перейти в другое квантовое состояние в результате взаимодействия с другими атомами или столкновений с электронами. Такие переходы называются безизлучательными .
Теперь самое главное. В 1916 году А. Эйнштейн предсказал, что переход электрона в атоме с верхнего энергетического уровня на нижний может происходить под влиянием внешнего электромагнитного поля, частота которого равна собственной частоте перехода. Возникающее при этом излучение называют вынужденным или индуцированным . Вынужденное излучение обладает удивительным свойством. Оно резко отличается от спонтанного излучения. В результате взаимодействия возбужденного атома с фотоном атом испускает еще один фотон той же самой частоты, распространяющийся в том же направлении. На языке волновой теории это означает, что атом излучает электромагнитную волну, у которой частота, фаза, поляризация и направление распространения точно такие же, как и у первоначальной волны. В результате вынужденного испускания фотонов амплитуда волны, распространяющейся в среде, возрастает. С точки зрения квантовой теории, в результате взаимодействия возбужденного атома с фотоном, частота которого равна частоте перехода, появляются два совершенно одинаковых фотона-близнеца.
Именно индуцированное излучение является физической основой работы лазеров.
На рис. 6.4.1 схематически представлены возможные механизмы переходов между двумя энергетическими состояниями атома с поглощением или испусканием кванта света.
Рассмотрим слой прозрачного вещества, атомы которого могут находиться в состояниях с энергиями и . Пусть в этом слое распространяется излучение резонансной частоты перехода . Согласно распределению Больцмана, при термодинамическом равновесии большее количество атомов вещества будет находиться в нижнем энергетическом состоянии. Некоторая часть атомов будет находиться и в верхнем энергетическом состоянии, получая необходимую энергию при столкновениях с другими атомами. Обозначим населенности нижнего и верхнего уровней соответственно через и . При распространении резонансного излучения в такой среде будут происходить все три процесса, изображенные на рис. 6.4.1. Эйнштейн показал, что процесс (a) поглощения фотона невозбужденным атомом и процесс (c) индуцированного испускания кванта возбужденным атомом имеют одинаковые вероятности. Так как поглощение фотонов будет происходить чаще, чем индуцированное испускание. В результате прошедшее через слой вещества излучение будет ослабляться. Это напоминает появление темных фраунгоферовских линий в спектре солнечного излучения. Излучение, возникающее в результате спонтанных переходов, некогерентно, распространяется во всевозможных направлениях и не дает вклада в проходящую волну.
Чтобы проходящая через слой вещества волна усиливалась, нужно искусственно создать условия, при которых , т. е. создать инверсную населенность уровней . Такая среда является термодинамически неравновесной. Идея использования неравновесных сред для получения оптического усиления впервые была высказана В. А. Фабрикантом в 1940 году. В 1954 году русские физики Н. Г. Басов и А. М. Прохоров и независимо от них американский ученый Ч. Таунс использовали явление индуцированного испускания для создания микроволнового генератора радиоволн с длиной волны . За разработку нового принципа усиления и генерации радиоволн в 1964 году все трое были удостоены Нобелевской премии.
Среда, в которой создана инверсная населенность уровней, называется активной . Она может служить резонансным усилителем светового сигнала. Для того, чтобы возникала генерация света, необходимо использовать обратную связь . Для этого активную среду нужно расположить между двумя высококачественными зеркалами, отражающими свет строго назад так, чтобы он многократно прошел через активную среду, вызывая лавинообразный процесс индуцированной эмиссии когерентных фотонов. При этом в среде должна поддерживаться инверсная населенность уровней. Этот процесс в лазерной физике принято называть накачкой .
Начало лавинообразному процессу в такой системе при определенных условиях может положить случайный спонтанный акт, при котором возникает излучение, направленное вдоль оси системы. Через некоторое время в такой системе возникает стационарный режим генерации. Это и есть лазер. Лазерное излучение выводится наружу через одно (или оба) из зеркал, обладающее частичной прозрачностью. На рис. 6.4.2 схематически представлено развитие лавинообразного процесса в лазере.
Существуют различные способы получения среды с инверсной населенностью уровней. В рубиновом лазере используется оптическая накачка, атомы возбуждаются за счет поглощения света. Но для этого недостаточно только двух уровней. Каким бы мощным не был свет лампы–накачки, число возбужденных атомов не будет больше числа невозбужденных. В рубиновом лазере накачка производится через выше расположенный третий уровень (рис. 6.4.3).
После вспышки мощной лампы, расположенной рядом с рубиновым стержнем, многие атомы хрома, входящего в виде примеси в кристалл рубина (около 0,05 %), переходят в состояние с энергией , а через промежуток они переходят в состояние с энергией . Перенаселенность возбужденного уровня по сравнению с невозбужденным уровнем возникает из-за относительно большого времени жизни уровня .
Лазер на рубине работает в импульсном режиме на длине волны (темно-вишневый свет), мощность излучения может достигать в импульсе. Исторически это был первый действующий лазер, построенный американским физиком Т. Майманом в 1960 г.
Одним из самых распространенных в настоящее время является газовый лазер на смеси гелия и неона. Общее давление в смеси составляет порядка при соотношении компонент He и Ne примерно . Активным газом, на котором в непрерывном режиме возникает генерация на длине волны (ярко-красный свет), является неон. Гелий – буферный газ, он участвует в механизме создания инверсной населенности одного из верхних уровней неона. Излучение He–Ne лазера обладает исключительной, непревзойденной монохроматичностью. Расчеты показывают, что спектральная ширина линии генерации He–Ne лазера составляет примерно . Это фантастически малая величина. Время когерентности такого излучения оказывается порядка , а длина когерентности , т. е. больше диаметра земной орбиты!
На практике многие технические причины мешают реализовать столь узкую спектральную линию He–Ne лазера. Путем тщательной стабилизации всех параметров лазерной установки удается достичь относительной ширины порядка , что примерно на 3–4 порядка хуже теоретического предела. Но и реально достигнутая монохроматичность излучения He–Ne лазера делает этот прибор совершенно незаменимым при решении многих научных и технических задач. Первый гелий-неоновый лазер был создан в 1961 году. На рис. 6.4.4 представлена упрощенная схема уровней гелия и неона и механизм создания инверсной населенности лазерного перехода.
Накачка лазерного перехода в неоне осуществляется следующим образом. В высоковольтном электрическом разряде вследствие соударений с электронами значительная часть атомов гелия переходит в верхнее метастабильное состояния . Возбужденные атомы гелия неупруго сталкиваются с атомами неона, находящимися в основном состоянии, и передают им свою энергию. Уровень неона расположен на 0,05 эВ выше метастабильного уровня гелия. Недостаток энергии компенсируется за счет кинетической энергии соударяющихся атомов. На уровне неона возникает инверсная населенность по отношению к уровню , который сильно обедняется за счет спонтанных переходов на ниже расположенные уровни. При достаточно высоком уровне накачки в смеси гелия и неона начинается лавинообразный процесс размножения идентичных когерентных фотонов. Если кювета со смесью газов помещена между высокоотражающими зеркалами, то возникает лазерная генерация. На рис. 6.4.5 изображена схема гелий-неонового лазера.
Современные высокостабильные гелий-неоновые лазеры производятся в моноблочном исполнении. Для этого используется стеклообразное вещество – ситалл, обладающий практически нулевым температурным коэффициентом расширения. В куске ситалла в форме прямоугольного параллелепипеда просверливается канал, к торцам которого на оптическом контакте приклеиваются лазерные зеркала. Канал заполняется смесью гелия и неона. Катод и анод вводятся через дополнительные боковые каналы. Такая моноблочная конструкция обеспечивает высокую механическую и тепловую стабильность.
Лазер. Устройство, принцип работы, свойства, применение лазера
Лазер (от англ. Light Amplification by Stimulated Emission of Radiation) – устройство, использующее явление вынужденного излучения для получения волны света.
С момента своего изобретения лазер нашел множество применений в промышленности, медицине, а также в повседневной жизни. Устройства для чтения дисков CD, DVD и Blu-ray основаны на том, что лазер направляет свой луч на поверхность диска. Этот луч после отражения от поверхности диска меняет свои свойства и, попав на детектор, позволяет считать информацию, записанную на диске.
Во многих исследованиях – и областях применения – физики хотели бы иметь такие волны, как схематически показано на рис. 1:
- со строго гармонической (синусоидальной) зависимостью от времени, а также от положения на линии, соответствующей направлению движения волны;
- с волновыми поверхностями, которые были бы плоскостями, перпендикулярными направлению движения волн;
- с образованием “параллельного луча”, который не расходится в стороны.
Строгое соблюдение этих условий просто невозможно. Тем не менее, свет, производимый лазерами, относительно близок к ним.
Рис. 1. Схематическое изображение идеальной волны
Простое объяснение принципа работы лазера
Лазерное излучение – это когерентное, сильно пучковое электромагнитное излучение с высокой интенсивностью и очень узкой полосой частот. Перемещаясь вдоль электромагнитного спектра, лазерное излучение простирается от дальнего инфракрасного до видимого и рентгеновского спектра.
Слово “лазер” относится как к устройству, так и к физическому эффекту. Лазер – это аббревиатура, которая расшифровывается как “Усиление света посредством вынужденного излучения”.
Для получения света такого качества лазеру необходимо как минимум три компонента.
Во-первых, вам нужна лазерная среда, которая в значительной степени определяет свойства лазера. Путем оптических переходов возбужденных атомов или молекул в энергетически предпочтительные состояния вы генерируете фотоны в этой среде. Существуют различные типы лазерных сред, такие как газы, кристаллы или диоды.
Далее необходим механизм накачки лазера (источник энергии), с помощью которого можно снабжать среду энергией, необходимой для возбуждения переходов. Это может быть, например, лампа-вспышка или электрический разряд в газах.
Наконец, вам нужен оптический резонатор. Это более или менее сложная система зеркал и других оптических элементов. С помощью резонатора вы обеспечиваете обратную связь и, таким образом, вынужденное излучение.
В зависимости от выбора этих отдельных компонентов существуют различные типы лазеров, которые отличаются по достижимой мощности и частотным характеристикам.
Объяснение принципа работы рубинового лазера.
Рубиновый лазер в предельном упрощении показан на рисунке 2.
Рис. 2. Упрощенная схема рубинового лазера
Его основная часть – рубиновый стержень, обычно несколько миллиметров в диаметре и несколько сантиметров в длину. Его концы очень тщательно отполированы и покрыты слоем серебра. Слева – зеркало, которое полностью отражает свет, справа – зеркало, которое отражает большую часть света, но пропускает немного света. Стержень освещается сильным ультрафиолетовым светом.
Предположим, что в рубиновом стержне случайно появилась волна определенной длины, и бегущая горизонтально вправо. По мере продвижения через среду её амплитуда будет увеличиваться. Волна будет отражаться поочередно от правого зеркала и от левого зеркала. В результате возникнет волна, похожая на стоячую волну, заполняющая весь объем стержня. Часть этой волны выйдет через правое зеркало наружу – это и будет интересующее нас лазерное излучение. Должен действовать закон сохранения энергии – энергия этой волны происходит из энергии ультрафиолетового излучения, освещающего рубиновый стержень.
Устройство лазера
Три компонента – рабочее тело (рабочая среда), механизм накачки и оптический резонатор – являются общими для каждого лазера. Они определяют тип лазера и то, чего вы можете достичь с его помощью. Далее мы расскажем обо всех трех компонентах более подробно.
Рис. 2. Устройство лазера: оптический резонатор с рабочей средой и ходом лучей
Рабочее тело (рабочая среда)
Вы генерируете фотоны в рабочей среде лазера. Это излучение происходит через оптические переходы в возбужденных атомах или молекулах. В результате этих переходов частицы переходят в энергетически более благоприятные состояния. Важнейшим условием лазерной среды является возможность создания эффекта инверсии электронных населённостей.
Для этого он должен иметь как минимум три энергетических уровня. Энергетические уровни – это собственные значения энергии квантово-механических систем. Атом или молекула может находиться только на одном из этих уровней. Самый низкий уровень – это основное состояние, а все остальные – возбужденные состояния.
Инверсия электронных населённостей означает, что верхнее состояние оптического перехода с большей вероятностью будет занято, чем нижнее. Такие среды могут быть газообразными, жидкими или твердыми.
Механизм накачки
Оптическая накачка – это процесс, с помощью которого вы добавляете энергию в среду. Это делается путем возбуждения рабочей среды с помощью внешнего источника энергии, например, других лазеров или лампы-вспышки. Таким образом, достигается инверсия электронных населённостей без того, чтобы процесс накачки конкурировал с вынужденным излучением. Поэтому, накачивается другой квантово-механический переход, нежели тот, который в конечном итоге используется для излучения фотонов.
Оптический резонатор
С помощью оптического резонатора вы определяете скорость излучения и свойства фотонов. С помощью отражения вы позволяете отдельным фотонам пройти через среду несколько раз. Это индуцирует дальнейшее излучение в нужном направлении и позволяет усилить свет.
Для этого фотоны должны распространяться перпендикулярно отражающей среде. Фотоны, испускаемые таким образом, имеют те же квантовые числа, что и запущенные фотоны. Любые спонтанные выбросы, которые могут произойти, сами по себе не генерируют никаких дальнейших фотонов, так как очень маловероятно, что они будут излучаться перпендикулярно отражающей среде.
Благодаря такому выбору достигается очень узкое направление лазерного луча.
Функции лазера
Вы возбуждаете атомы или молекулы лазерной среды до более высоких уровней энергии. Таким образом, вы создаете лазерный луч. Эти уровни энергии имеют максимально возможное среднее время распада. Таким образом, вы сохраняете вероятность спонтанной эмиссии как можно более низкой, и энергия процесса накачки сохраняется дольше. Непрерывная откачка создает желаемую инверсию электронных населённостей. Это означает, что больше частиц находится в одном из своих возбужденных состояний, чем в основном состоянии.
Теперь для того, чтобы возбужденный атом вернулся из своего возбужденного состояния в основное, необходимо лишь стимулировать его фотоном. При этом он испускает фотон в том же направлении и с той же энергией, что и исходный фотон. В данном случае равная энергия означает, что новый фотон имеет ту же частоту и длину волны, что и исходный фотон. Фазовое положение обоих фотонов также одинаково.
Как описано ранее, фотоны отражаются в резонаторе и проходят через среду несколько раз. Этот процесс приводит к цепной реакции, в ходе которой производится все больше и больше фотонов, которые, в свою очередь, производят все больше и больше фотонов и так далее…
Одна сторона резонатора частично проницаема, что позволяет лазерному лучу отклоняться. В результате отражающее свойство резонатора сохраняется, и происходит дальнейшее излучение.
Спонтанное излучение
Спонтанное излучение – это квантово-механическое явление. Это происходит, когда атомы или молекулы испускают фотоны при переходе с более высоких энергетических уровней на более низкие. Предсказать этот тип излучения невозможно. Это процесс распада, возникновение которого можно оценить с определенной вероятностью.
Итак, спонтанное излучение – это излучение, испускаемое при самопроизвольном переходе атома из возбужденного состояния в основное.
Спонтанное излучение разных атомов происходит некогерентно, так как каждый атом начинает и заканчивает излучать независимо от других.
Математически это можно выразить следующим образом:
Формула гласит, что число N спонтанных выбросов или возбужденных частиц на объем V и время t пропорционально плотности числа частиц n в возбужденном состоянии.
Вынужденное излучение
Работа лазера основана на вынужденном излучении. Здесь излучение фотона не происходит спонтанно.
Напомним, что при переходе атома из стационарного состояния с большей энергией в состояние с меньшей энергией он излучает квант энергии (фотон). Такое излучение может быть самопроизвольным . При этом атомы излучают фотоны разной частоты, что определяется переходами на разные энергетические уровни.
Можно сделать так, что атом, находящийся в возбуждённом состоянии, будет излучать энергию под воздействием внешних факторов, например под действием падающего на него света. Такое излучение называют вынужденным (индуцированным).
Предположим, что атом может перейти из состояния с энергией 2 в состояние с энергией 1 и испустить при этом фотон
с энергией hv = E2 – E1. Если он взаимодействует с фотоном такой же частоты, то вероятность вынужденного излучения достаточно велика и в итоге получаются два фотона одинаковой частоты. Таким образом, излучаемая световая волна не отличается от
той, которая падает на атом. Она имеет такую же частоту и фазу.[2]
Для создания вынужденного излучения необходимо увеличить число атомов, имеющих высокий энергетический уровень. Осуществить это можно, используя вещества, атомы которых могут находиться в возбуждённом состоянии достаточно долго, не излучая самопроизвольно.
Продольные моды
В зависимости от конструкции резонатора, в нем может образовываться различное количество стоячих волн определенной длины. Таким образом, определенные длины волн и их кратные значения могут быть особенно усилены таким резонатором. Такие различные формы колебаний называются модами. Имея число продольных мод, вы знаете, сколько волн может колебаться в резонаторе. Колебания вдоль направления распространения излучения называются продольными. Это пики и долины интенсивности с интервалом в половину длины волны.
В лазерах различают одномодовые лазеры, которые колеблются почти на одной частоте, и многомодовые лазеры.
Поперечные моды
Поперечная мода относится к распределению фазы волны перпендикулярно направлению распространения. Следовательно, режим, который не перпендикулярен зеркалам резонатора, приводит к сдвигу частоты лазера. Причиной этого является увеличение длины резонатора, что теперь приводит к образованию стоячих волн с узлами в профиле лазера.
Если вы используете цилиндрический резонатор, ваш луч в идеале имеет гауссову форму. При использовании мод, не перпендикулярных зеркалам резонатора, вместо них формируются профили с радиальной и угловой зависимостью. Они изменяют длину резонатора, поскольку длина пути между зеркалами изменяется. Это может исказить спектры продольных мод, поскольку различные поперечные моды накладываются друг на друга.
Свойства лазера
Невозможно сделать общее заявление о свойствах лазера. На самом деле они определяются различными аспектами. В первую очередь, резонатор лазера определяет его качества. В этом контексте также неверно, что лазеры всегда представляют собой узконаправленные пучки с малой шириной частоты.
Однако верно то, что лазеры могут быть использованы для превосходного манипулирования светом, а их свойства позволяют очень плотно связывать лучи. Это позволяет достичь очень высокой плотности мощности.
Наиболее важными свойствами лазеров являются когерентность, поляризация и частота или длина волны.
В отличие от других источников света, свет лазера состоит не только из одной длины волны. Волны также почти фазово синхронны друг с другом. Отсюда происходит термин “длина когерентности”. Этот термин дает представление о расстоянии, на котором волны лазера находятся в фазе.
Поляризация поперечной волны описывает направление ее колебаний. В лазерах все волны имеют одинаковую поляризацию. В основном это линейная поляризация, но в зависимости от области применения устанавливаются и другие поляризации. Различные поляризации достигаются с помощью оптических компонентов в резонаторе или на пути луча.
Длина волны лазера определяется рабочей средой. В зависимости от энергетических переходов среда может быть возбуждена для генерации на различных длинах волн или только в очень узкой полосе пропускания.
Опасности, связанные с лазером
В зависимости от мощности лазеры вызывают повреждение биологических тканей.
Мощность в милливаттах уже повреждает глаз. Линза фокусирует параллельный лазерный луч на сетчатке глаза. Это вызывает повреждение сетчатки глаза, что приводит к частичной слепоте.
Более высокие уровни мощности приводят к повреждению кожи, напоминающему солнечный ожог, что также может вызвать рак кожи. Это повреждение может доходить до серьезных ожогов.
Особое внимание следует обратить на рассеянный свет. Лазерное излучение, уже отраженное от стены или другой поверхности, приводит к соответствующему повреждению. Поэтому при работе с лазерами необходимо всегда учитывать меры предосторожности.
Применение лазера
Развитие лазера значительно изменило наш мир. Он проникает во все сферы нашей жизни.
В повседневной жизни лазеры можно встретить в лазерных принтерах и в каждом оптическом приводе – от CD до проигрывателей дисков Blue-Ray. Но вы наверняка знаете и лазерную указку, в названии которой есть слово “лазер”. Лазеры также используются каждый раз, когда вы делаете покупки на кассе для идентификации штрих-кодов на товарах. Конечно, существует множество других применений в повседневной жизни.
Но лазеры также постоянно используются для сбора данных, в промышленности, медицине, науке и военном деле.
Использование лазеров совершило революцию в электронных средствах связи. Оказалось, что лазер можно использовать как мощный генератор высокочастотных волн, в том числе с частотой, равной частоте видимого света. И эта частота может использоваться в качестве несущей частоты при передаче радио- или телевизионных сигналов. Информационная ёмкость такого способа передачи информации многократно превосходит все предыдущие: так, расчёты показывают, что в одном лазерном луче может уместиться до 80 миллионов телевизионных каналов или до 50 миллиардов одновременных телефонных разговоров!
[4]
С помощью лазеров удалось создать трёхмерные изображения, которые называются голографическими. Рассматривая голограмму под разными углами, вы можете видеть изображённый на ней предмет с разных сторон: например, на голограмме можно «заглядывать за предметы, расположенные на переднем плане.
Как видите, лазеры – это не просто устройства из научной фантастики. Лазеры являются неотъемлемой частью нашей повседневной жизни.
Виды лазеров: 4 метода классификации
Лазер известен как одно из четырех великих изобретений 20-го века, лазерный луч — это не свет, существующий в природе, а свет, изобретенный человеком на основе квантовой теории. От естественного света лазер отличают характеристики и процесс его генерации.
Лазер называют «самым быстрым ножом, самым ярким светом и самой точной линейкой»:
По сравнению с естественным светом лазер обладает такими характеристиками, как высокая интенсивность, хорошая монохроматичность, хорошая когерентность и хорошая направленность.
Лазер — это продукт атомного стимулированного излучения:
Возбужденный энергией источника накачки, атом может перейти в высокоэнергетическое состояние. В это время, если он столкнется с внешним фотоном с определенной частотой, он испустит идентичный фотон. Эти два фотона заставят больше атомов перейти и выпустить такой же фотон. Этот процесс называется стимулированным излучением, а генерируемый свет — «лазерным».
Частота, фаза, направление распространения и состояние поляризации фотонов, испускаемых стимулированным излучением, и посторонних фотонов абсолютно одинаковы, поэтому лазер имеет характеристики высокой интенсивности, хорошей монохроматичности, хорошей когерентности и хорошей направленности.
Схематическая диаграмма перехода на атомный энергетический уровень
Схематическая диаграмма процесса стимулированного излучения
Особенности лазеов:
- Хорошая направленность;
- Хорошая монохроматичность;
- Высокая мощность;
- Высокая когерентность.
История создания лазерного оборудования
- Эйнштейн впервые предложил идею стимулированного излучения в 1917 году;
- В 1960 году появился первый в мире рубиновый твердотельный лазер;
- Коммерческое использование началось в 1970-х годах и сейчас находится на стадии бурного развития:
- После изучения механизма взаимодействия лазерного луча с материей, область применения лазера также расширяется. После 1990-х годов промышленное применение перешло в стадию высокоскоростного развития.
История развития лазерных технологий
Два вида применения лазера
Характеристики высокой интенсивности, хорошей монохроматичности, хорошей когерентности и хорошей направленности определяют два сценария применения лазера:
Энергетический лазер
Лазер обладает выдающимся преимуществами — высокой плотностью энергии, что находит важное применение в обработке материалов, производстве оружия, медицине и других областях.
Информационный лазер
Лазер обладает хорошей монохроматичностью и направленностью. Он подходит для передачи информации (оптическая связь) и измерения расстояния (оптическое измерение). По сравнению с традиционной электрической связью, оптическая связь имеет такие преимущества, как большая емкость, большое расстояние, хорошая конфиденциальность и легкий вес.
Оборудование для лазерной обработки
Лазерная обработка является представителем технологии точной обработки. Основной движущей силой роста является замещение традиционных методов обработки:
По сравнению с другими станками, лазерные станки имеют такие преимущества как высокая эффективность, высокая точность, низкое потребление энергии, малая деформация материала, большой ряд обрабатываемых материалов и простота управления.
Эти преимущества тесно связаны с двумя характеристиками бесконтактной обработки и высокой плотностью энергии лазерной обработки:
Бесконтактная обработка
Работа лазера полностью завершается за счет тепла, выделяемого при взаимодействии лазера с материалом.
Во время всего процесса нет контакта между обрабатывающим инструментом и материалом, поэтому обрабатываемый материал не подвергается силовому воздействию, а остаточное напряжение относительно невелико.
Поскольку диаметр луча можно контролировать до очень малого, точность также высока;
Высокая плотность энергии
Плотность мощности лазерной обработки может достигать более 107 Вт/см, в тысячи и даже десятки тысяч раз превышая плотность мощности пламени, дуги и других методов обработки.;
Более высокая плотность мощности означает, что лазер может обрабатывать очень маленькую область на объекте обработки, не затрагивая материалы вокруг микрообласти, поэтому точность обработки и эффективность обработки выше.
Многоточечные преимущества
- Высокая эффективность;
- Высокоточный;
- Низкое потребление энергии;
- Малая деформация;
- Легко контролировать.
Лазер: основной блок лазерного оборудования
Лазер — это компонент, используемый для генерации лазерного луча и основной компонент лазерного оборудования:
- Стоимость лазера составляет 20% — 40% от общей стоимости полного комплекта оборудования для лазерной обработки, или даже выше;
- В лазере происходит накачка, стимулированное излучение и другие процессы;
- Типичный лазер состоит из рабочего материала лазера (энергия излучения), источника накачки (энергии подъема), оптического резонатора (распространяющая энергия) и т.д.
Основная структурная схема лазера
Типы лазеров
Существует множество методов классификации лазеров, среди которых наиболее часто используются четыре наиболее часто используемые:
По рабочему веществу:
По рабочему веществу лазеры можно разделить на газовые, твердотельные, жидкостные (на красителях), полупроводниковые, эксимерные и т.д;
Газовый лазер
Принимая газ в качестве рабочего материала, распространенными являются CO2 лазер , He-Ne лазер, аргонионный лазер, He-Cd лазер, лазер на парах меди, различные эксимерные лазеры и др. лазер, He-Cd лазер, лазер на парах меди, различные эксимерные лазеры и т.д., особенно CO2 лазер наиболее часто используется в промышленности.
Твердотельные лазеры
Ионы металлов, способные производить стимулированное излучение, легируются в кристалл и используются в качестве рабочих материалов. Обычно используемые кристаллы включают рубин, корунд, алюминиевый гранат (широко известный как YAG), тунгстат кальция, фторид кальция, алюминат иттрия и бериллат лантана, среди которых YAG является наиболее распространенным кристаллом в настоящее время.
Твердотельный лазер
Лазер на красителях
В качестве рабочего вещества используется раствор, образующийся при растворении некоторых органических красителей в жидкостях, таких как этанол, метанол или вода.
Полупроводниковые лазеры
Также известны как лазерные диоды, в качестве рабочего вещества используются полупроводниковые материалы, такие как арсенид галлия (GaAs), сульфид кадмия (CDS), фосфид индия (INP), сульфид цинка (ZnS) и т.д.
Полупроводниковые лазеры
Оптоволоконный лазер:
В качестве рабочего материала используется стекловолокно, легированное редкоземельными элементами. Волоконный лазер — это лазер, использующий волокно в качестве рабочей среды.
Волоконный лазер
Волоконный лазер имеет отличные характеристики и известен как лазер третьего поколения:
- Поскольку волокно имеет характеристики малого объема, намотки, низкого отношения площади к объему и высокой скорости фотоэлектрического преобразования, волоконный лазер имеет преимущества миниатюризации и интенсификации, хорошего рассеивания тепла и высокой скорости фотоэлектрического преобразования;
- В то же время, лазерный выход волоконного лазера может быть получен непосредственно из волокна, поэтому волоконный лазер имеет высокую технологичность и может адаптироваться к применению обработки в любом пространстве;
- По структуре, волоконный лазер не имеет оптической линзы в резонансной полости, поэтому он обладает такими преимуществами, как отсутствие регулировки, отсутствие технического обслуживания и высокая стабильность.
- Кроме того, качество луча волоконного лазера также превосходно.
Типы лазеров | Стандартный тип | Длина лазерной волны | Максимальная выходная мощность | Эффективность преобразования энергии | Особенности |
Газовый лазер | CO2 лазер | Около 10.6um инфракрасного излучения | 1-20 кВт | 8%~10% | Хорошая монохроматичность и высокая эффективность преобразования энергии |
Жидкостный лазер | 6G лазер на красителях | УФ к ИК | – | 5%~20% | Длина волны на выходе плавно регулируется, мощность преобразования энергии высокая, низкая стоимость |
Твердотельные лазеры | YAG/рубиновый лазер | От видимого до ближнего инфракрасного диапазона | 0,5-5 кВт | 0.5%~1% | Низкая выходная мощность, низкий коэффициент преобразования энергии и хорошая монохроматичность. |
Полупроводниковые лазеры | Диодный лазер GaAs | 100 nm―1.65 um | 0,5-20 кВт, двухмерный массив может достигать 350 кВт | 20% — 40%, лабораторные 70% | Высокая мощность преобразования энергии, малый объем, легкий вес, простая структура, длительный срок службы и слабая монохроматичность. |
Волоконный лазер | Импульсный/Постоянный волоконный лазер | 1.46 um―1.65 um | 0.5-20 кВт | 30%-40% | Миниатюризация, интенсификация, высокая эффективность преобразования, высокий выход энергии, высокое качество луча, отсутствие оптической коллимации и меньшее техническое обслуживание. |
Форма выходного сигнала энергии (рабочий режим):
По форме выходного сигнала лазеры можно разделить на непрерывный, импульсный и квазинепрерывный. Импульсный лазер можно дополнительно разделить на миллисекундный лазер, микросекундный лазер, наносекундный механизм, пикосекундный лазер, фемтосекундный лазер, аттосекундный лазер и т.д.;
Непрервные лазеры
Непрерывно выдают стабильную форму волны энергии в течение рабочего времени, с высокой мощностью, и могут обрабатывать материалы с большим объемом и высокой температурой плавления, такие как металлические пластины;
Импульсный лазер
По ширине импульса импульсные лазеры могут быть далее разделены на миллисекундные лазеры, микросекундные лазеры, наносекундные механизмы, пикосекундные лазеры, фемтосекундные лазеры и аттосекундные лазеры;
Фемтосекундные и аттосекундные лазеры называются сверхбыстрыми лазерами.
Мощность импульсного лазера намного ниже, чем у непрерывного лазера, но точность обработки выше, чем у непрерывного лазера. Как правило, чем меньше ширина импульса, тем выше точность обработки;
Квази-КВ лазер
Помимо непрерывного лазера и импульсного лазера, высокоэнергетический лазер может быть выведен многократно в течение определенного периода.
Способ классификации | Категория лазера | Особенности |
Классификация по режиму работы | Непрерывный лазер | Возбуждение рабочего материала и соответствующий лазерный выход может осуществляться непрерывно в большом диапазоне времени |
Импульсивный лазер | Он относится к лазеру с длительностью одного лазерного импульса менее 0,25 секунды и работает только один раз с определенным интервалом. Он имеет большую выходную пиковую мощность и подходит для лазерной маркировки, резки и ранжирования. | |
Классификация по длительности импульса | Миллисекундный лазер (MS) | 10 -3 S |
Микросекундный лазер (US) | 10 -6 S | |
Наносекундный лазер (NS) | 10 -9 S | |
Пикосекундный лазер (PS) | 10 -12 S | |
Фемтосекундный лазер (FS) | 10 -15 S |
Выходная длина волны (цвет):
По длине выходной волны лазеры можно разделить на рентгеновские, ультрафиолетовые, инфракрасные, видимые и т.д;
Мощность:
Можно разделить на лазеры низкой мощности 100 Вт, лазеры средней мощности 100-1500 Вт и лазеры высокой мощности больше 1500 Вт.
Классификация лазеров
Если вам понравилась статья, то ставьте лайк, делитесь ею со своими друзьями и оставляйте комментарии!
Что такое лазер?
Лазер — полезнейшее изобретение, нашедшее применение во многих сферах жизни. Чтобы понять, как оно покорило мир, проследим историю появления лазеров, рассмотрим их виды, а также попытаемся спрогнозировать, по какому из направлений эта технология будет развиваться в дальнейшем.
Лазеры вызывают восторг и неизменно ассоциируются с фантастическими фильмами и наукой будущего. Эти устройства кажутся сверхъестественными, что умело использовали создатели таких популярных блокбастеров, как «Люди X» или «Звездные войны», где джедаи эффектно сражаются на лазерных мечах.
Тем не менее лазеры — это уже давно не фантастика, а рабочий инструмент во многих областях современной науки. Эти устройства, будучи очень функциональными, окружают современного человека в повседневной жизни.
Как расшифровывается?
Английское выражение Light Amplification by Stimulated Emission of Radiation переводится как «Усиление света посредством вынужденного излучения». По первым буквам этого выражения образована аббревиатура LASER.
Попросту говоря, лазер производит поток света, обладающий чрезвычайной концентрацией.
Кто изобрел лазер?
Первые открытия, подарившие человечеству лазер, были сделаны еще на заре XX века.
Эйнштейн
Еще в 1917 году Альберт Эйнштейн написал революционную работу, в которой заложил основы квантово-механического принципа действия лазера. Революционность заключалась в том, что автор предсказал абсолютно новое явление в физике — вынужденное излучение. Из теории Эйнштейна следует, что свет может излучаться и поглощаться не только спонтанно. Существует также возможность вынужденного (или стимулированного) излучения. Это значит, что возможно «принудить» электроны излучать свет необходимой длины волны в одно и то же время.
Майман
Реализовать эту идею на практике удалось только в 60-е годы двадцатого века. Самый первый лазер создал калифорнийский физик Теодор Майман 16 мая 1960 года. В работе этого лазера использовались кристалл рубина и резонатор Фабри — Перо. Лампа-вспышка являлась источником накачки. Работа лазера была импульсной, волна имела длину 694,3 нм.
Басов, Прохоров и Таунс
В 1952 году академики из СССР Николай Басов и Александр Прохоров рассказали всему миру, что возможно создание микроволнового лазера, работающего на аммиаке. Эта же идея параллельно и независимо развивалась физиком из Америки Чарлзом Таунсом. Он создал и показал, как работает такой лазер, в 1954 году. Спустя десятилетие, в 1964 году, все трое удостоились за эти достижения Нобелевской премии по физике.
Наши дни
Сегодня мы можем наблюдать очень интенсивное развитие лазеров. Практически ежегодно изобретаются новые их виды — химические, эксимерные, полупроводниковые, лазеры на свободных электронах.
ПРинцип работы лазера
Чтобы понять, как работает лазер, посмотрим на его структуру. Типичный лазер выглядит так: трубка, внутри которой размещен твердый кристалл, чаще всего рубин. С обоих торцов она закрыта зеркалами: прозрачным и не полностью прозрачным. Под воздействием электрической обмотки атомы кристалла генерируют световые волны. Эти волны перемещаются от одного зеркала к другому до того момента, пока не наберут интенсивность, достаточную для прохождения через не полностью прозрачное зеркало.
Как создается лазерный луч?
- 1-я стадия — выключенный лазер.
Электроны всех атомов (на картинке — черные точки на внутренних окружностях) занимают основной энергетический уровень.
- 2-я стадия — момент после включения.
Под действием энергии из разрядной трубки электроны перемещаются на более высокие энергетические орбиты (на картинке — внешние окружности).
- 3-я стадия — возникновение луча.
Электроны начинают покидать высокие энергетические орбиты и спускаться к основному уровню. При этом они начинают испускать свет и побуждают к этому остальные электроны. Образуется общий результирующий пучок света с одинаковой длиной волны у каждого источника. Чем больше новых электронов вернется к низким орбитам, тем мощнее свет лазера.
Резкость фокусировки
Длина световой волны в лазерном пучке только одна, следовательно, и цвет также один. Этот свет четко фокусируется линзой почти что полностью в одной точке.
(См. рисунок: слева — свет лазера, справа — естественный свет). Если сравнить свет лазера с естественным светом, то будет видно, что последний не способен иметь настолько резкий фокус. Благодаря концентрации в узком луче огромной энергии лазер способен передать этот луч на гигантские расстояния, избегая рассеяния и ослабления, присущих многоцветному свету — естественному. Эти качества лазера превращают его в незаменимый инструмент для человека.
Физическое обоснование
Разберем вышеописанный механизм работы лазера подробнее. Выясним, какие именно физические законы делают возможным его функционирование.
Активная среда
Для лазерного излучения необходима так называемая « активная среда » . Только в ней оно может происходить. Как же создается активная среда? Прежде всего, нужно специальное вещество, которое обычно состоит из кристаллов рубина или алюмоиттриевого граната. Собственно, это вещество и есть активная среда. Сформированный из него цилиндр или стержень вставляют в резонатор. Резонатор состоит из двух параллельных друг другу зеркал. Переднее зеркало наполовину прозрачно, а заднее не пропускает свет. Рядом с со стержнем (цилиндром) монтируется импульсная лампа. Цилиндр и импульсная лампа окружены зеркалом. Оно чаще всего изготовлено из кварца, на который нанесен слой металла. При помощи зеркала свет собирается на цилиндре.
Энергетические уровни атомов
Важный момент: состав активной среды таков, что у каждого ее атома есть как минимум три энергетических уровня. В спокойном состоянии атомы активной среды располагаются на низшем энергетическом уровне Е0. Как только включается лампа, атомы поглощают энергию ее света, поднимаются на уровень Е1 и довольно долго пребывают в таким возбужденном состоянии. Именно это и обеспечивает лазерный импульс.
Инверсная заселенность
Инверсная заселенность — фундаментальное физическое понятие. Это такое состояние среды, когда число частиц на каком-то верхнем энергетическом уровне атома (любом из существующих) больше, чем на нижнем. Собственно, активной и называется та среда, в которой уровни являются инверсно заселенными.
Фотоны и световой пучок
Электроны атома не располагаются хаотично. Они занимают определенные орбиты, окружающие ядро. Атом, получающий квант энергии, с огромной вероятностью переходит в состояние возбуждения, характеризующееся сменой орбиты электронами — с самой низкой (метастабильной или основной) на обладающую более высоким уровнем энергии. На такой орбите длительное нахождение электронов невозможно, поэтому происходит их самопроизвольное возвращение к основному уровню. В момент возвращения каждый электрон испускает волну света, называемую фотоном. Одним атомом запускается цепная реакция, и электроны многих других атомов также перемещаются на орбиты с более низкой энергией. Одинаковые световые волны движутся огромным потоком. Изменения этих волн согласованы во времени и в результате формируют общий мощный световой пучок. Этот пучок света и зовется лазерным лучом. Мощность луча у каких-то лазеров настолько огромна, что им можно разрезать камень или металл.
Классификация лазеров
Существует несколько видов лазера, отличающихся друг от друга по принципу агрегатного состояния активной среды и по способу ее возбуждения. Перечислим основные.
Твердотельные лазеры
С этих лазеров все начиналось. Активная среда в них была твердой и состояла из кристаллов рубина и небольшого количества ионов хрома. Накачка осуществлялась при помощи импульсной лампы. Самый первый рубиновый лазер собрал американец Т. Майман в 1960 году. Твердотельные лазеры также изготавливают из стекла с примесью неодима Nd, алюмоиттриевого граната Y2Al5O12 с примесью хрома и неодима — все это также вещества для активной среды твердотельного лазера.
Газовые лазеры
В газовых лазерах активная среда формируется из газов с очень низким давлением или из их смесей. Газы заполняют стеклянную трубку, в которую впаяны электроды. Американцы А. Джаван, У. Беннетт и Д. Эрриот стали первыми создателями газового лазера в 1960 году. В качестве накачки такого лазера обычно применяют разряд электричества, производимый генератором высоких частот. Излучение газового лазера отличается своей непрерывностью. Плотность газов невысока, так что требуется довольно длинный стержень активной среды. Интенсивность излучения обеспечивается в этом случае за счет массы активного вещества.
Газодинамические, химические и эксимерные лазеры
По большому счету эти три вида можно классифицировать как газовые лазеры.
- Газодинамический лазер по принципу работы схож с реактивным двигателем. В нем по сути происходит сгорание топлива, в которое добавлены частицы газов активной среды. В процессе сгорания молекулы газов приходят в возбуждение, а потом, будучи охлажденными сверхзвуковым течением, испускают мощнейшее когерентное излучение, тем самым отдавая энергию.
- В химическом лазере импульс излучения появляется в результате химической реакции. В самом мощном лазере этого типа работает атомарный фтор в реакции с водородом.
- Работу эксимерных лазеров обеспечивают особые молекулы, которые всегда находятся в возбужденном состоянии.
Жидкостные лазеры
Первые жидкостные лазеры появились почти тогда же, когда и твердотельные — в 60-х годах XX века. Для создания активной среды в них используются разнообразные растворы органических соединений. Плотность такого вещества выше, чем у газа, хотя и ниже, чем у твердых тел. Поэтому такие лазеры способны генерировать достаточно сильное излучение (до 20 Вт), при том что объем их активного вещества сравнительно невелик. Работать они могут и в импульсном, и в непрерывном режимах. В качестве накачки используются импульсные лампы и другие лазеры.
Полупроводниковые лазеры
В 1962 году появились и первые полупроводниковые лазеры — в результате параллельной работы нескольких ученых из США: Р. Холла, М.И. Нейтена, Т. Квиста и их групп. Теоретически работа этого лазера была обоснована ранее, в 1958 году, русским физиком Н.Г. Басовым.
В полупроводниковом лазере в качестве активной среды используется кристалл-полупроводник, например арсенид галлия GaAs. Поэтому на первый взгляд его можно было бы отнести к твердотельным лазерам. Однако он принципиально отличается тем, что излучательные переходы в нем происходят не между энергетическими уровнями атомов, а между энергетическими зонами или подзонами кристалла.
Накачка такого лазера производится постоянным электрическим током. Грани кристалла-полупроводника тщательно полируются, и из них получается отличный резонатор.
Лазеры в природе
В нашей Вселенной учеными были найдены лазеры с естественным происхождением. Существуют гигантские межзвездные облака, созданные конденсированными газами. В них инверсная заселенность образуется естественным образом. Свет ближних звезд или другие излучения в космосе выполняют роль накачки, а газовые облака сами по себе являются превосходной активной средой протяженностью в несколько сотен миллионов километров. Возникает естественный астрофизический лазер, который не нуждается в резонаторе, — вынужденное электромагнитное излучение образуется в них самопроизвольно, как только проходит волна света.
Свойства лазерного излучения
Свет от лазера имеет особенные и очень ценные свойства, выгодно отличающие его от света обычных, тепловых источников.
- Излучение лазера когерентно и практически полностью монохроматично. Ранее подобные свойства были лишь у радиоволн от хорошо стабилизированных передатчиков.
- Распространение вынужденного излучения происходит только вдоль оси резонатора. В связи с этим расширение лазерного луча очень слабое, имеет почти незаметную расходимость (несколько угловых секунд).
- Благодаря вышеназванным свойствам лазерный луч способен фокусироваться в точку невероятно маленького размера. Энергия в точке его фокуса имеет огромную плотность.
- По причине монохроматичности излучения и чрезвычайной плотности энергии, лазерное излучение может достигать очень высоких температур. К примеру, температура излучения импульсного лазера мощностью порядка петаватта (10 15 Вт) составляет более 100 миллионов градусов.
Применение лазеров
Свойства лазерного излучения уникальны. Это превратило лазеры в незаменимый для самых различных областей науки и техники инструмент. Кроме этого, лазеры широко используются в медицине, в быту, в индустрии развлечений, в сфере транспорта.
Технологические лазеры
- Благодаря огромной мощности лазеры непрерывного действия активно используются для того, чтобы разрезать, сваривать или спаивать детали, изготовленные из самых различных материалов. При высокой температуре лазерного излучения становится возможным сваривать даже те материалы, которые нельзя соединить между собой другими методами. Например, сваривание металла и керамики для получения нового материала — металлокерамики, обладающего уникальными свойствами.
- Для того чтобы изготовить микросхемы, используется лазерный луч, который способен сфокусироваться в одну мизерную точку, имеющую диаметр порядка микрона.
- Еще одно замечательное свойство лазерного луча — его идеальная прямота. Это позволяет использовать его как самую точную « линейку » в строительстве. Также в строительстве и геодезии при помощи импульсных лазеров производят измерения огромных расстояний на местности, засекая время, за которое световой импульс продвигается от одной точки до другой.
Лазерная связь
Появившиеся лазеры вывели на принципиально новый уровень технику связи и записи информации.
Радиосвязь, развиваясь, постепенно переходила на все более короткие длины волн, поскольку было доказано, что высокие частоты (с наименьшей длиной волны) предоставляют каналу связи наибольшую пропускную способность. Настоящим прорывом стало понимание того, что свет — это такая же электромагнитная волна, просто короче во множество десятков тысяч раз. Следовательно, через лазерный луч возможно передавать объем информации, в десятки тысяч раз превосходящий объем, передаваемый высокочастотными радиоканалами. В результате этого были усовершенствованы различные виды связи по всему миру.
Также при помощи луча лазера записываются и воспроизводятся компакт-диски со звуками — музыкой, и изображениями — фото и фильмами. Индустрия звукозаписи, получив такой инструмент, сделала гигантский шаг вперед.
Применение лазеров в медицине
Лазерные технологии широко применяются как в хирургии, так и в терапевтических целях.
- Например, благодаря его уникальным возможностям, луч лазера возможно легко ввести сквозь глазной зрачок и «приварить» отслоившуюся сетчатку, исправить в труднодоступной области глазного дна существующие дефекты.
- В современной хирургии при сложных операциях используется лазерный скальпель, который минимизирует повреждение живых тканей.
- Лазерное излучение небольшой мощности ускоряет регенерацию поврежденных тканей. Оно также оказывает воздействие, по свойствам похожее на иглоукалывание, практикуемое восточной медициной, — лазерная акупунктура.
- В косметологии активно используются диодные и пикосекундные лазеры.
Современные научные исследования
- Поскольку энергия лазера имеет высокую плотность, а излучение — огромную температуру, становятся возможными исследования веществ в таком экстремальном состоянии, в каком они существуют в раскаленных звездных глубинах.
- Современные ученые ставят перед собой цель создать термоядерную реакцию. Для этого лазерными лучами необходимо сжимать ампулу со смесью дейтерия с тритием (так называемый термоядерный синтез).
- Лазер незаменим в генной инженерии и нанотехнологиях (которые работают с объектами размером порядка миллионной доли миллиметра — 10 –9 м). При помощи лучей лазера преодолеваются масштабные ограничения — разрезаются, передвигаются и соединяются между собой невидимые для глаза составляющие части генов, биологических молекул и нанотехнологические детали.
- Лазерные локаторы — лидары, используются для исследований свойств атмосферы.
Военные лазеры
В военных целях спектр применения лазеров очень велик. Например, их используют в разведке — для поиска целей и связи. Но все же в первую очередь при помощи лазеров изобретают и изготавливают новейшие виды оружия. Лучи химических или эксимерных лазеров наземного или орбитального базирования обладают колоссальной мощностью. Они способны без особых усилий уничтожать или выводить из строя вражеские боевые спутники и самолеты во время военных действий. Уже сегодня ведутся разработки и существуют примеры лазерных пистолетов, которыми планируется вооружать экипажи военных орбитальных станций. И это не сюжет фантастического фильма, а новейшие научные разработки!
Лазеры в индустрии развлечений
Лазеры нашли широкое применение в индустрии развлечений. Многие знакомы с лазерным шоу: такие представления часто сопровождают фестивали, концерты, праздничные мероприятия. Лазерное шоу может быть создано как внутри помещения, так и на свежем воздухе. Организатор способен выбрать оборудование под свои задачи и проецировать изображение любой сложности в любом цветовом диапазоне.
Так, одним из самых ярких и масштабных событий, которое сопровождалось лазерным шоу, стал концерт знаменитого музыканта Jean-Michel Jarre на Воробьевых горах в 1995 году. Он был приглашен Юрием Лужковым по случаю празднования 850-летия Москвы.
Музыкант выступал перед зданием МГУ, во время мероприятия на фасад университета проецировались фрагменты истории города.
Но в наше время лазерным шоу никого не удивишь. В Нью-Йорке в ноябре 2012-го появилась кратковременная лазерная установка с названием Global Rainbows — 35-километровым лазерным лучом в небо. Установка представляла собой
пучок из семи мощных лазерных лучей всех цветов радуги, которые могли быть направлены как в одну сторону, так и в разные. Конструкция была установлена после того, как на город обрушился ураган «Сэнди» в октябре 2012 года. Гигантская радуга показывала: город пережил катастрофу, и его жизнь продолжается.
Еще одним интересным примером применения лазера в индустрии развлечений стал лазерный костюм для вечеринок, разработанный тайваньским дизайнером по имени Wei-Chieh Shih. Одежда представляет собой лазерную установку и способна освещать все вокруг красным светом, генерируя лучи, направленные в разные стороны.
Лазеры в сфере транспорта
Лазеры могут быть полезны и в сфере транспорта. Так, например, в Нидерландах планируют внедрить установку лазерных излучателей на локомотивах поездов: это позволит убирать мусор и опавшие листья с путей прямо во время движения. Ведь все посторонние предметы, прилипшие к колесам, увеличивают тормозной путь и повышают риск катастрофы.
Лазер может быть использован и при езде на велосипеде. Велосипедными дорожками оснащены далеко не все улицы. А в темное время суток автомобилисты могут не увидеть разметку. В «умных» байках появилась необычная функция: они могут проецировать велосипедную дорожку при помощи лазерной установки. Такой подход повышает безопасность: велосипедист становится видимым и для других участников дорожного движения в темное время суток.
Еще один схожий способ применения лазера предложили создатели инновационной системы уличной безопасности Guardian. Смысл разработки — в установке специальных излучателей на столбах возле светофоров. Когда горит красный свет для пешеходов, проход закрыт лазерным лучом. Как только загорается зеленый, красный свет закрывает путь автомобилистам. Система направлена на повышение безопасности на дорогах: она работает как сдерживающий психологический фактор.
Лазерные гаджеты
Лазер встроен в некоторые современные гаджеты. Так, например, устройство Magic Cube способно проецировать виртуальную клавиатуру на рабочий стол или другую поверхность. Гаджет ориентирован на пользователей планшетов и смартфонов.
Применение лазеров в спорте
Интересное применение лазера придумала компания Nike. Разработка представляет собой мобильную установку, которая может проецировать поля для игры в футбол при помощи лазерных лучей. Площадку можно создать на любой ровной поверхности — как в городе, так и за его пределами.
Выводы
Мы нисколько не преувеличиваем, когда говорим, что, появившись в середине XX века, лазеры сыграли в нашей жизни такую же значимую роль, как электричество и радио. Лазер проник практически во все области деятельности человека, и если вдруг изъять его, то мир перестанет быть таким привычным и комфортным. Даже текст этой статьи, читаемый вами сегодня с компьютера или смартфона, доступен благодаря полупроводниковым лазерам, активно используемым в новейших оптических средствах связи. Без лазеров невозможно представить компьютеры, а значит, и огромный пласт современной жизни человека. Будучи очень интересно устроенным, лазер открывает перед современной наукой новые перспективы развития. Свойства его невероятно многогранны, и можно смело сказать, что лазерный луч « высвечивает » себе путь абсолютно во всех сферах человеческой жизни, делая ее качественнее и счастливее!
Поделитесь этим с друзьями!
Автор HiTecher с 2019 года, редактор, педагог. Имеет степень бакалавра с отличием по английской литературе, сертификат PGCE в квалификации преподавателя PCET. Живет в Саутгемптоне (Великобритания).