Всё что нужно знать о сопротивлении
Электрический ток — это однонаправленное перемещение заряженных частиц в электрическом поле. Способность проводника ограничивать величину электротока характеризуется физической величиной, именуемой электрическим сопротивлением. Расчёт конкретного сопротивления выполняется либо по формуле закона Ома, либо используются зависимости, в которых в качестве исходных данных выступают физические параметры проводника (геометрические размеры, удельное сопротивление или проводимость).
Электрический ток в разных веществах
На рисунке ниже схематично представлена модель возникновения электрического тока в двух разных случаях:
- Ток вызван перемещением отрицательных зарядов («минусов») в электрическом поле Е.
- Ток образован движением положительных зарядов («плюсов») в электрическом поле Е.
При этом направлением электротока считается в обоих случаях направление, в котором двигаются положительные заряды.
В зависимости от количества (концентрации) заряженных частиц и преимущественного типа проводимости (плюс или минус) вещества и среды делятся на:
- Проводники (металлы, электролиты).
- Диэлектрики.
- Полупроводники.
- Газы, плазму.
- Вакуум.
Далее речь будет идти о том, что такое сопротивление, и как найти его величину на примере металлических проводников.
Почему «сопротивляется» проводник
Структура металлов представляет собой жесткую кристаллическую решётку, в узлах которой расположены массивные, положительно заряженные ионы. В межузловом пространстве имеется большое количество свободных электронов, оторвавшихся с крайних, валентных орбит. В отсутствии электрического поля этот «электронный газ» пребывает в хаотическом движении. Как только к проводнику прикладывается напряжение (разность потенциалов) в металле возникает электрополе, которое создаёт однонаправленный поток электронов.
Электроны, набрав некоторую скорость в электрическом поле, начинают двигаться в одном направлении, но при этом они сталкиваются на своём пути с крупными препятствиями — заряженными и нейтральными атомами, хаотично колеблющимися в узлах решётки. После столкновений электроны теряют часть кинетической энергии, то есть «тормозятся». Такова физика электрического сопротивления проводника, величина которого зависит от массы атомов конкретного вещества, структуры решётки, температуры.
Закон Ома
Выдающийся европейский учёный Георг Ом исследовал на разных металлах зависимость величины электротока от электронапряжения. В 1827 г. он сделал открытие, названное в его честь законом Ома, которое выражается формулой:
Из данной формулы можно вычислить омическое сопротивление:
Единица измерения сопротивления (Ом) была названа также в честь первооткрывателя закона.
Вторая формула
Чтобы воспользоваться формулой, необходимо изначально провести измерения электронапряжения и электротока с помощью небольшой экспериментальной установки, показанной на рисунке.
В ХIХ веке многочисленные измерения исследователей разных стран, пытавшихся понять от чего зависит сопротивление проводника, нашли следующие закономерности:
- R увеличивается, когда возрастает длина экспериментального образца, т. е. R∼ L (прямо пропорционально).
- Сопротивление проводников уменьшается при увеличении поперечной площади S металлического образца, т. е. R∼1/S обратно пропорционально).
- Поскольку сопротивления идентичных по размерам образцов разных металлов существенно отличались друг от друга, учёные ввели дополнительную физическую величину, которая обозначается буквой ρ и называется удельным электрическим сопротивлением.
Полученные в ходе экспериментов данные корректно описывала итоговая формула для вычисления сопротивления:
Ниже приведена таблица удельных сопротивлений широко используемых металлов.
В чем измеряется
Общепринятая в системе СИ единица сопротивления — Ом. Он является производной от единиц напряжения (вольт, В) и тока (ампер, А). Определение единицы измерения электрического сопротивления следующее: сопротивлением 1 Ом обладает проводник, через который протекает ток величиной 1 А, а напряжение при этом равно 1 В:
В электро- и радиотехнике чаще используются кратные единицы омического сопротивления.
При решении научных задач более удобной бывает величина обратная электрическому сопротивлению 1/R, названная электропроводностью. Размерности этой единицы присвоено наименование «сименс» (См): [1 См] = [1 Ом -1 ].
Из второй формулы электрического сопротивления можно найти чему равно ρ:
Проанализировав данное равенство, можно сделать вывод, что единица измерения удельного сопротивления имеет размерность Ом*м, поскольку L и S измеряются в метрах и метрах квадратных соответственно: [ρ] = [Ом * м].
Для практики такая единица, равная сопротивлению провода длиной 1 м и площадью сечения 1 кв. м оказалась не очень востребованной из-за чрезмерно больших значений. Для электротехнических расчётов была введена внесистемная единица Ом*мм 2 /м, для которой S выражена в квадратных миллиметрах. Удобство такой единицы легко оценить, если учесть, что типичные сечения кабелей и проводов находятся в диапазоне 1.0-15.0 кв. мм.
Зависимость сопротивления от температуры
Удельное сопротивление металлов увеличивается с ростом температуры прямо пропорционально. Такая зависимость хорошо описывается линейной функцией:
В справочниках значение ТКС обычно указывается для комнатной температуры 20 градусов. Сопротивление с ростом тока меняется в связи с выделением джоулева тепла, приводящего к нагреву проводника.
При уменьшении температуры ρ плавно уменьшается, но при достижении сверхнизких показателей < 30°K некоторые металлы и сплавы переходят в сверхпроводящее состояние, то есть, их удельное сопротивление падает до нуля. Качественно физический эффект объясняется тем, что тепловое движение атомов «замораживается», и электроны начинают двигаться беспрепятственно. Теория, объясняющая, что такое нулевое сопротивление проводника, требует привлечения аппарата квантовой физики. На рисунке ниже представлена зависимость ρ(Т). Точка Ткр — переход в сверхпроводимость.
Примеры сопротивлений
При проектировании и тиражировании электронных и электротехнических устройств в качестве пассивных элементов, способных предсказуемо ограничивать рабочий ток и рассеивать излишки электрической энергии, применяются произведённые заранее виды сопротивлений заданной величины, для которых используется термин «резистор» (от англ. resist — сопротивляться).
В качестве резистивной основы используют не чистые металлы, а сплавы, имеющие низкий ТКС, например, нихром — сплав никеля (Ni) и хрома (Cr). Кроме металлических (проволочных) производятся резисторы на базе других материалов:
- Углеродистые — состоят из смеси порошковой керамики с углеродом.
- Металлоплёночные — тонкая плёнка Ni-Cr размещается на керамике.
- Металлооксидные — на керамику наносится оксид олова (SnO2) с добавлением примеси оксида сурьмы (Sb2O5).
- Композиционные — на базе соединения графита с органическими или неорганическими добавками.
- Интегральные — формируются внутри монокристалла интегральной схемы с помощью слабого легирования.
Тип резистора можно узнать из маркировки, нанесённой на его поверхность.
Средства измерения
Найти неизвестное сопротивление цепи можно без применения математических расчётов гораздо быстрее и точнее, если вооружиться современными приборами, на цифровом или стрелочном табло которых отобразится искомое значение R. Существуют омметры и мультиметры. Первые — узкоспециализированные приборы, ориентированные на измерение сопротивления. Имеются аналоговые и цифровые версии омметров. В зависимости от диапазона предполагаемых измерений различают:
- Микроомметры.
- Миллиомметры.
- Мегаоомметры.
- Гигаомметры.
- Тераомметры.
Мультиметры — комбинированные приборы, способные измерять не только электрическое сопротивление проводника, но и величину электронапряжений и электротоков.
Таким образом, с помощью приборов можно без особого труда найти сопротивление проводника и та формула, для которой требуются данные о геометрических размерах проводника и величине удельного сопротивления не понадобится. Можно также снять вольт-амперную характеристику и воспользоваться законом Ома. С помощью современных электро-измерительных приборов (омметров, мультиметров) достаточно просто определяется сопротивление, если его обозначение отсутствует на резисторах или других радиоэлементах.
от чего зависит сопротивление металов? и как оно выражается?
Электри́ческое сопротивле́ние — скалярная физическая величина, характеризующая свойства проводника и равная отношению напряжения на концах проводника к силе электрического тока, протекающему по нему.
В международной системе единиц (СИ) единицей сопротивления является ом (Ω, Ом) . В системе СГС единица сопротивления не имеет специального названия. Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно определить как
где
R — сопротивление;
U — разность электрических потенциалов на концах проводника, измеряется в вольтах;
I — ток, протекающий между концами проводника под действием разности потенциалов, измеряется в амперах.
Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой служит сименс.
Высокая электропроводность металлов связана с тем, что в них имеется громадное количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов) . При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.
В других средах (полупроводниках, изоляторах, электролитах, неполярных жидкостях, газах и т. д. ) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.
Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.
Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:
где ρ — удельное сопротивление вещества проводника, L — длина проводника, а S — площадь сечения.
Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади.
Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости) . Напротив, сопротивление полупроводников и изоляторов при снижении температуры растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.
Электропроводность металлов
Электропроводность металлов и сплавов – физическое свойство, которое учитывается при производстве разных видов изделий. Например, для изготовления электрических кабелей, микросхем используют металлы с высокими показателями электропроводности.
Данный параметр зависит от факторов окружающей среды: температуры, давления, агрегатного состояния, наличия магнитных полей и т. д. Если говорить о чистых металлах и влиянии температуры на их электропроводность, то с ростом она падает. Подробнее о том, что собой представляет электропроводность металлов, вы узнаете из нашего материала.
Природа электропроводности металлов
Электропроводностью называют способность тела, вещества проводить ток. Кроме того, этим термином обозначается физическая величина, которая численно характеризует данную способность. Электропроводность металла определяется числом свободных ионов в проводнике – их движение и является электрическим током. Данный показатель исчисляется в сименсах, а в международной системе единиц для его обозначения используется буква «S».
В зависимости от того, какой электропроводностью обладают металлы и иные вещества, среди них выделяют проводники, диэлектрики и полупроводники. Правда, между данными группами практически не существует четкого разграничения.
Чем обусловлена высокая электропроводность металлов-проводников? Они имеют большое количество свободных ионов. Среди веществ этой группы выделяют два рода, исходя из физической природы протекания тока. К первому относятся металлы с электронной проводимостью, по которым ток проходит благодаря движению свободных электронов.
Ко второму причисляют растворы кислот, щелочей, солей или электролиты, имеющие ионную проводимость. Иными словами, здесь интересующий нас процесс связан с движением положительных и отрицательных ионов. Уровень электропроводности проводников превышает 106(Ом·м)-1.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Диэлектрики обладают малым числом свободных ионов, поэтому отличаются низкой электропроводностью, практически не проводят ток. Такими материалами являются дерево, смолы, пластмассы, стекло, пр. Для них данный показатель составляет менее 106(Ом·м)-1.
По своим проводящим свойствам полупроводники занимают промежуточное положение между материалами описанных выше групп. К ним относятся германий, кремний, селен, прочие соединения, получаемые искусственно.
Существует зависимость электропроводности металлов и иных веществ от температуры, но она является индивидуальной для каждого материала. Повышение степени нагрева металлов приводит к сокращению времени свободного пробега электронов. Увеличение температуры влечет за собой возрастание тепловых колебаний кристаллической решетки, на которой рассеиваются электроны, что вызывает уменьшение электропроводности.
Полупроводникам свойственна другая зависимость электропроводности металлов от температуры: ее повышение провоцирует рост электропроводности, поскольку увеличивается число электронов проводимости и положительных носителей заряда. У диэлектриков электропроводность тоже может возрастать, однако для этого требуется очень высокое электрическое напряжение.
Металлы способны проводить ток, поскольку воздействие электромагнитного поля вызывает потерю связи между электроном и атомом из-за высокой степени ускорения.
Электрическое сопротивление металлов
Электрическое сопротивление является частью закона Ома и исчисляется в омах (Ом). Нужно понимать, что электрическое и удельное сопротивление являются разными явлениями. Если первое представляет собой свойство объекта, то второе характеризует материал.
Так, электрическое сопротивление резистора зависит от формы и удельного сопротивления материала, использованного для изготовления данного элемента электрической цепи.
Допустим, проволочный резистор состоит из длинной тонкой проволоки и обладает более высоким сопротивлением, чем аналогичный элемент, но выполненный из короткой и толстой проволоки. При этом оба они сделаны из одного металла.
Если сравнить два резистора из проволоки одинаковой длины и диаметра, то большим электрическим сопротивлением будет обладать тот, который состоит из материала с высоким удельным сопротивлением. А его аналогу из материала с низким удельным сопротивлением будет свойственно меньшее электрическое сопротивление.
В этом случае работает тот же принцип, что и в гидравлической системе, прокачивающей воду по трубам:
- Чем больше длина трубы и меньше ее толщина, тем с более высоким сопротивлением сталкивается жидкость.
- Вода будет испытывать на себе меньшее сопротивление в пустой трубе, чем в заполненной песком.
Под удельным сопротивлением понимают способность материала препятствовать прохождению электрического тока. В физике существует и обратная величина, известная как проводимость. Она выглядит таким образом:
Σ = 1/ρ, где ρ – удельное сопротивление вещества.
Электропроводность металлов и других веществ зависит от свойств носителей зарядов. В металлах присутствуют свободные электроны – на внешней оболочке их число доходит до трех. Во время химических реакций с элементами из правой части таблицы Менделеева атом металла отдает их. С электропроводностью чистых металлов все несколько иначе. В их кристаллической структуре эти наружные электроны общие и переносят заряд под действием электрического поля.
В случае с растворами в качестве носителей заряда выступают ионы.
Степень электропроводности разных металлов и сплавов
Развитием электронной теории электропроводности металлов занимался немецкий физик Пауль Друде. Именно благодаря его исследованиям стало известно о сопротивлении, наблюдаемом при прохождении электрического тока через проводник. В результате удалось разделить вещества на группы, исходя из степени их проводимости.
Данная информация необходима, например, чтобы выбрать наиболее подходящий металл для производства кабеля, обладающего определенным набором свойств. Ошибка в этом случае чревата перегревом под действием тока избыточного напряжения и последующим возгоранием.
Серебро – это металл, обладающий самой высокой электропроводностью. При +20 °C этот показатель равен 63,3×104 см-1. Тем не менее, производство серебряной проводки является нерентабельным, поскольку речь идет о достаточно редком металле. В большинстве случаев он идет на изготовление ювелирных изделий, украшений, монет.
Среди неблагородных цветных металлов самая высокая электропроводность характеризует медь – она составляет 57×104 см-1 при +20 °C. Помимо этого, медь хорошо справляется с постоянными электрическими нагрузками, долговечна, надежна, имеет высокую температуру плавления, поэтому может долго работать в нагретом состоянии. Все названные свойства позволяют активно применять данный металл для бытовых целей и на производстве.
Не реже меди используется алюминий, ведь по электропроводности он уступает только серебру, меди и золоту. Его температура плавления практически в два раза ниже, чем у меди, из-за чего алюминий не может выдерживать предельные нагрузки. По этой причине его применяют в сетях с невысоким напряжением. Узнать электропроводность остальных металлов можно в соответствующей таблице.
По проводимости любой сплав значительно уступает чистому металлу, что объясняется слиянием структурной сетки, вызывающим нарушение нормального функционирования электронов. Так, медные провода изготавливают только из металла с максимальной долей примесей 0,1 % или даже 0,05 %, если речь идет об отдельных разновидностях кабеля.
Приведенные показатели – это удельная электропроводность металлов, которая представляет собой отношение плотности тока к величине электрического поля в проводнике.
Опасность металлов с высокой электропроводностью
Щелочные металлы имеют крайне высокую электропроводность, объясняют этот факт тем, что в них электроны практические не привязаны к ядру и могут быть без труда выстроены в требуемой последовательности. Еще одна особенность этих металлов состоит в низкой температуре плавления в сочетании со значительной химической активностью, что обычно не позволяет использовать их в качестве материалов для кабелей.
Находясь в незащищенном виде, металлы с высокой электропроводностью несут в себе большую опасность. Прикосновение к оголенным проводам вызывает электрический ожог, разряд воздействует на внутренние органы, что нередко становится причиной мгновенной смерти человека.
Поэтому металл закрывают специальными изоляционными материалами, которые могут быть жидкими, твердыми, газообразными – конкретный тип подбирается в соответствии со сферой использования изделия. Вне зависимости от агрегатного состояния защиты она призвана изолировать электрический ток в цепи, чтобы не допустить его воздействия на окружающую среду.
Зависимость электропроводности металлов от факторов внешней среды
Проводимость не является постоянной величиной. В таблицах приведены сведения, характерные для нормальных условий или при температуре +20 °С. В реальной жизни сложно обеспечить идеальные условия для работы цепи. Удельное сопротивление, а значит, и проводимость, определяется такими характеристиками:
- температурой;
- давлением;
- наличием магнитных полей;
- светом;
- агрегатным состоянием вещества.
Изменения интересующего нас параметра зависят от условий среды и свойств конкретного материала. Электропроводность ферромагнетиков, в число которых входят железо и никель, увеличивается при совпадении направления тока с направлением силовых линий магнитного поля. Зависимость электропроводности от теплопроводности металлов и окружающей температуры практически линейная, даже есть понятие температурного коэффициента сопротивления – данную величину можно уточнить в таблицах.
Правда, направление зависимости определяется конкретным веществом: у металлов оно при увеличении температуры повышается, у редкоземельных элементов и растворов электролитов увеличивается в пределах одного агрегатного состояния.
Полупроводники характеризуются гиперболической и обратной зависимостью электропроводности от температуры: рост степени нагрева приводит к повышению электропроводности металлов. Данная особенность качественно отличает проводники от полупроводников. Зависимость ρ проводников от температуры выглядит следующим образом:
На графике отображено удельное сопротивление меди, платины, железа. Некоторые металлы характеризуются иначе: ртуть при понижении температуры до 4°K становится сверхпроводимой, почти полностью теряя удельное сопротивление.
У полупроводников зависимость будет представлена так:
Когда металл переходит в жидкое агрегатное состояние, его ρ повышается, а дальнейшее изменение свойств может быть разным. Так, висмут в расплавленном виде имеет более низкое удельное сопротивление, чем при комнатной температуре, а у жидкой меди оно повышается в десять раз. Никелю свойственно выходить из линейного графика уже при достижении температуры +400 °C, но далее ρ падает.
Температурная зависимость вольфрама так высока, что приводит к перегоранию ламп накаливания: ток нагревает спираль, из-за чего ее сопротивление многократно возрастает.
Удельное сопротивление сплавов зависит от задействованной при производстве технологии. Данное свойство простой механической смеси определяется как средний показатель ее компонентов. Тогда как для сплава замещения оно окажется иным и обычно отличается в большую сторону.
Рекомендуем статьи
Стоит пояснить, что под сплавом замещения понимают такой, в котором несколько элементов формируют одну кристаллическую решетку. Данная особенность прослеживается у нихрома, используемого для изготовления спиралей электроплит. Удельное сопротивление, а значит, и электропроводность этого металла совпадает с показателем проводников, а при подключении к сети он нагревается до красноты.
Выше были представлены только основные теории, касающиеся физических свойств металлов, а именно электропроводности, сопротивления. Например, не была затронута квантовая теория проводимости Зоммерфельда. Этого краткого знакомства вполне достаточно, чтобы понять, что сопротивление является сложным и комплексным понятием, которое невозможно полностью разобрать на основе простейшего закона Ома.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Электрическое сопротивление проводников
Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.
Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии.
Движущиеся электроны (от положительного полюса источника к отрицательному) ударяются о колеблющиеся ионы кристаллической решетки в проводнике и замедляют их движение
Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.
Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.
Омметр — прибор для измерения электрического сопротивления
Сопротивление обозначается латинскими буквами R или r .
За единицу электрического сопротивления принят ом в честь Георга Симона Ома (1784–1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением.
Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм 2 при температуре 0° С.
Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4 ом.
Для измерения сопротивлений большой величины принята единица, называемая мегомом.
Один мегом равен одному миллиону ом.
Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.
Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению.
Обратной величиной электрического сопротивления является физическая величина, называемая электропроводностью.
Медные токоведущие шины в распределительном устройстве
Электрической проводимостью (электропроводностью) называется способность материала пропускать через себя электрический ток.
Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/ R , обозначается проводимость латинской буквой g.
Единицей электрической проводимости является сименс. Она была так названа в честь немецкого ученого Вернера Сименса (1816 — 1892).
Слово сопротивление также относится к пассивному электрическому компоненту, правильное название которого — резистор, характеризующийся одним свойством — электрическим сопротивлением.
Причина включения резистора в электрическую цепь обычно состоит в том, чтобы уменьшить величину электрического тока или получить определенное падение напряжения. Резистор часто неправильно называют сопротивлением и это может привести к двусмысленности . Величину сопротивления резисторов обозначают либо написанием числа на резисторе, либо, что чаще, цветными полосками.
Резисторы для электронных схем
Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления.
Величина электрического сопротивления определяется материалом, формой и температурой проводника. Величина сопротивления зависит от длины проводника (прямопропорционально), от содержания в поперечном сечении проводника (обратно пропорционально), от материала проводника (удельное электрическое сопротивление) и от температуры.
Так как сопротивление различных проводников зависит от материала, из которого они изготовлены, то для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.
Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм 2 . Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.
Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа — 0,12, удельное сопротивление константана — 0,48, удельное сопротивление нихрома — 1-1,1.
Вещества, обладающие высоким удельным сопротивлением, являются изоляторами. Наиболее совершенным изолятором является янтарь, а также в качестве изоляторов применяют ПВХ, слюду, стекло, фарфор и т. д.
Электрический провод с медной жилой
Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.
Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь поперечного сечения проводника :
где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм 2 .
Площадь поперечного сечения круглого проводника вычисляется по формуле:
S = ( Пи х d 2 )/ 4
где Пи — постоянная величина, равная 3,14; d — диаметр проводника.
А так определяется длина проводника:
Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.
Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:
Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:
Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.
Поперечный разрез силового кабеля на 400 кВ с изоляцией из сшитого полиэтилена и медной жилой. Сечение кабеля — 1600 мм 2 . Такой кабель используется в воздушно-кабельной линии электропередачи 380 кВ в Берлине. Линия протяженностью 34 км построена в 2000-м году.
Это нужно запомнить:
1. Если к одному и тому же источнику электрического напряжения последовательно подключить проводники из разных материалов, но одинаковой длины и одинакового сечения, то мы будем измерять амперметром, что по каждому проводнику протекает электрический ток разной величины. Каждый материал оказывает различное сопротивление прохождению тока.
2. Если мы используем для измерения проводники из одного и того же материала, которые будут иметь одинаковый диаметр, но всегда разную длину, то амперметр будет определять разный проходящий ток для каждой длины проводника. Наибольший ток будет течь по самому короткому проводу.
3. Если мы используем для измерения проводники из одного материала одинаковой длины, но разного сечения, то мы будем измерять разные значения тока для каждого проводника с разным сечением. Наибольший ток будет течь по проводу с наибольшим сечением.
Медные клеммные колодки для соединения жил проводов и кабелей в электрощитах
Еще одной причиной, влияющей на сопротивление проводников, является температура .
Сопротивление проводников и полупроводников зависит от температуры. Сопротивление проводников увеличивается с повышением температуры (положительный температурный коэффициент электрического сопротивления), а сопротивление полупроводников, углерода и некоторых специальных сплавов металлов с повышением температуры уменьшается (отрицательный температурный коэффициент электрического сопротивления). Электрическое сопротивление всегда имеет положительное значение. Хорошие проводники имеют малое сопротивление, плохие — высокое.
Различные проводники имеют разное сопротивление. Соединительные провода в электрической цепи имеют низкое сопротивление, чтобы как можно меньше уменьшить ток, проходящий через цепь. С другой стороны, резистивные проводники, используемые в нагревательных кабелях и электрических нагревательных приборах и резистивные нити накаливания лампочек имеют относительно высокое сопротивление, которые значительно нагреваются из-за своего высокого сопротивления при достаточном напряжении.
Нагревательный элемент для электрической плиты
Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1° C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.
Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры.
При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника.
С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .
Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре — 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.
Новый сверхпроводящий материал, который был открыт в 2021 году, зажатый между алмазами, может проводить электричество без электрического сопротивления при комнатной температуре
При очень низких температурах, близких к абсолютному нулю, колебательное движение молекул настолько мало, что свободные электроны движутся в них без всякого сопротивления. Ток, введенный в такой сильно охлаждаемый проводник, протекает непрерывно и без малейших потерь.
Постепенно охлаждая образцы платины и золота, голландский физик и химик Хейке Камерлинг-Оннес (1853 — 1926) обнаружил, что их электрическое сопротивление уменьшается. Когда он проделал свой опыт с ртутью, то при температуре около 4,27 К ее сопротивление стало резко падать, а при температуре около 4,22 К полностью исчезло. В последующие годы он открыл сверхпроводимость и в других металлах.
В 2015 году физик Института химии им. Макса Планка Михаил Еремец и его команда сжали водород и серу для достижения сверхпроводимости при -70°C. Спустя несколько лет две исследовательские группы экспериментировали с соединениями лантана и водорода при высоком давлении. Эксперименты показали, что сверхпроводимость возможна при более высоких температурах, таких как -23°C и -13°C, но некоторые эксперименты были успешными и при 7°C.
Что еще почитать:
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика