Что будет если подключить вольтметр последовательно
Перейти к содержимому

Что будет если подключить вольтметр последовательно

Вольтметр. Назначение, устройство, как пользоваться и подключать вольтметр, принцип работы

Вольтметр – это электроизмерительный прибор, который предназначен для измерения электрического напряжения на полюсах источника тока или на каком-нибудь участке электрической цепи. Эта величина задается в единицах, называемых вольтами, отсюда и название прибора – “Вольтметр”. На практике значения электрического напряжения измеряются в различных диапазонах, от микровольт (мкВ) до мегавольт (МВ).

Эти приборы доступны в продаже, как в аналоговом, так и в цифровом исполнении.

Многие вольтметры по внешнему виду очень похожи на амперметры. Для отличия вольтметра от других электроизмерительных приборов на его шкале ставят букву V. На схемах вольтметр изображают кружком с буквой V внутри (см. рисунок 1).

Электрическая схема с вольтметром

Рисунок 1. Электрическая схема с вольтметром

Как подключать вольтметр и производить измерения?

Вольтметры всегда должны быть подключены параллельно с электрическим устройством или элементом, на котором измеряется электрическое напряжение (рисунок 2).

Способ измерения электрического напряжения на концах элемента R

Рис. 2. Способ измерения электрического напряжения на концах элемента R

Ключевая мысль состоит в том, что зажимы вольтметра присоединяют к тем точкам электрической цепи, между которыми надо измерить электрическое напряжение.

Однако следует помнить, что при таком соединении часть тока IV будет протекать через вольтметр, а не через проверяемый элемент R. Таким образом, мы имеем дело с ситуацией, когда действие измерения физической величины изменяет значение этой величины. Это не единственный подобный пример в физике.

Как видно из предыдущих рассуждений, для измерения истинного значения электрического напряжения на концах элемент цепи, нам понадобится вольтметр с бесконечным сопротивлением. Тогда через измерительный прибор не будет протекать электрический ток, поэтому измерения будут неискаженными. На практике бесконечное электрическое сопротивление в вольтметре реализовать невозможно. Тем не менее, в настоящее время продаются вольтметры с чрезвычайно высоким внутренним сопротивлением, превышающим 100 ТОМ.

Стоит отметить, что считанное значение напряжения всегда меньше истинного значения. Это пример систематической ошибки измерения.

Истинное значение напряжения на концах элемента R на рис. 2, согласно закона Ома для участка электрической цепи, составляет: U = I*R

Но, так как вольтметр имеет внутреннее сопротивление, то он показывает значение: UV = IV * RV = IR * R .

После простых преобразований получаем, что реальное значение электрического напряжения на концах проверяемого элемента цепи R имеет значение: U = UV * (1 + R/RV )

Эта формула подтверждает наше предыдущее утверждение о том, что идеальный вольтметр должен иметь бесконечное внутреннее сопротивление. Поскольку коэффициент сопротивления в этой формуле стремится к бесконечности, измеренное значение UV стремится к истинному значению U. Поскольку в реальности не существует прибора, удовлетворяющего этому идеальному условию, при проведении измерений необходимо выбирать вольтметр таким образом, чтобы величина вносимой им ошибки находилась в пределах предполагаемой погрешности измерений.

Вывод: Чем выше внутреннее сопротивление вольтметра, тем меньше погрешность измерения; поэтому вольтметры всегда имеют очень высокое электрическое сопротивление.

Как и у амперметра, у одного зажима вольтметра ставят знак “+“. Этот зажим необходимо обязательно соединять с проводом, идущим от положительного полюса источника тока. Иначе стрелка прибора будет отклоняться в обратную сторону. А отрицательный зажим, соответственно, соединяют с проводом, идущим от отрицательного полюса источника тока.

Расширение диапазона измерений.

У аналоговых вольтметров диапазон измерения в принципе ограничен концом шкалы; если на измерительный прибор подается более высокое напряжение, то, с одной стороны, стрелка прибора не может отклониться дальше, а с другой стороны, даже сам прибор может быть поврежден (выйти из строя). Чтобы расширить диапазон измерений в большую сторону, необходимо использовать подходящую электрическую схему, обеспечивающую подачу на вольтметр только части измеряемого напряжения.

Этого можно достичь, объединив вольтметр с последовательно подключенным резистором (эти резисторы ещё называют – “добавочными резисторами”). Например, если вольтметр с диапазоном измерения 50 мВ имеет внутреннее сопротивление 100 Ом, то последовательный резистор со значением 900 Ом вызывает падение напряжения на вольтметре только на 1/10. Таким образом, диапазон измерений увеличивается в 10 раз, поэтому вольтметры теперь могут измерять напряжение до 500 мВ.

Верхние пределы расширения диапазона измерения практически отсутствуют. Если последовательный резистор в вышеприведенном примере имеет значение 99 900 Ом, то общее сопротивление равно 100 000 Ом, и на вольтметре падает только 1/1000 от приложенного напряжения. Соответственно, можно измерить в 1000 раз большее напряжение, т.е. максимум 50 В.

Более наглядно посмотреть, как подключаются добавочные резисторы в электрическую цепь вы можете видеть на рисунке 3 ниже.

Расширение диапазона измерений вольтметра

Рис. 3. Расширение диапазона измерений вольтметра

Если мы хотим использовать вольтметр с диапазоном до UV для измерения напряжения до U1 , мы можем написать: U1 = I*RP + UV ,

В тоже время: UV = I*RV , тогда

после преобразований получаем, что сопротивление добавочного сопротивления должно иметь значение:

Мы также можем уменьшить диапазон измерения вольтметра. Для этого мы используем делители напряжения как на рис. 4.

Делитель напряжения для уменьшения диапазона измерения вольтметра

Рис. 4. Делитель напряжения для уменьшения диапазона измерения вольтметра с UV до U1

При использовании цифровых измерительных приборов, измерение выполняется электронным способом и отображается на дисплее в цифровом виде. Однако проблема погрешности измерений и принцип расширения диапазона измерений идентичны для аналоговых и цифровых измерительных приборов.

Как работает вольтметр?

Существует два типа вольтметров: аналоговые, показывающие значение путем наклона стрелки механического прибора, и все чаще используемые в настоящее время цифровые, оснащенные сложными электронными схемами.

Аналоговые вольтметры обычно представляют собой амперметры с последовательно соединенным резистором RV с очень большим значением электрического сопротивления. То есть, по сути, они измеряют ток IV, протекающий через него, а шкала показывает значение, которое является результатом расчета: UV = IV * RV .

Цифровые приборы, как правило, имеют обратную конструкцию (то есть они являются именно вольтметрами, а не амперметрами). Это связано с тем, что изготовить цифровой измеритель напряжения относительно просто. Если мы подключим его параллельно резистору с малым сопротивлением, то получим амперметр. Значение индикатора может быть рассчитано по уравнению: UV = IV * RV .

Существует, однако, тип аналогового вольтметра, принцип действия которого не основан на принципе работы амперметра. Это электростатический вольтметр. На практике это конденсатор с одной неподвижной обкладкой и другой подвижной. Электрическое взаимодействие обкладок вызывает перемещение указателя, прикрепленного к движущейся части. С помощью такого вольтметра можно можно измерять даже очень высокие электрические напряжения, а значение его внутреннего сопротивление почти бесконечно.

Устройство

Рассмотрим устройство электростатического и электромагнитного вольтметра и способ их подключения к схеме.

На рисунке 5 показана конструкция электростатического вольтметра (слева) и электромагнитного вольтметра (справа) и как они соединены в электрическую цепь. Подвижные части вольтметров отмечены красным цветом.

Различные элементы вольтметров показаны цифрами.

Устройство вольтметров

Рисунок 5. Устройство вольтметров (электростатического – слева, электромагнитного – справа)

Что показывает вольтметр подключенный параллельно источнику тока

Для измерения силы тока существует измерительный прибор – амперметр.

Условное обозначение амперметра на электрической схеме: При включении амперметра в электрическую цепь необходимо знать :

1. Амперметр включается в электрическую цепь последовательно с тем элементом цепи, силу тока в котором необходимо измерить.

2. При подключении надо соблюдать полярность: “+” амперметра подключается к “+” источника тока, а “минус” амперметра – к “минусу” источника тока.

ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ НА УЧАСТКЕ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Для измерения напряжения существуют специальный измерительный прибор — вольтметр.

Условное обозначение вольтметра на электрической схеме: При включении вольтметра в электрическую цепь необходимо соблюдать два правила:

1. Вольтметр подключается параллельно участку цепи, на котором будет измеряться напряжение;

2. Соблюдаем полярность : “+” вольтметра подключается к “+” источника тока, а “минус” вольтметра – к “минусу” источника тока.

Для измерения напряжения источника питания вольтметр присоединяют непосредственно к его зажимам.

ИЗМЕРЕНИЕ РАБОТЫ И МОЩНОСТИ ЭЛЕКТРИЧЕСКОГО ТОКА

Для определения работы или мощности тока можно использовать специальный измерительный прибор – ваттметр. При отсутствии ваттметра пользуются одновременным подключением двух измерительных приборов к нужному участку цепи: амперметра и вольтметра.

Далее проводится расчет работы и мощности тока по формулам.

P = UI . и . A = UIt

1. Что изменилось на участке цепи, если включенный параллельно вольтметр показывает уменьшение напряжения?

2. Какими способами можно определить напряжение в городской сети, имея в своем распоряжении любые приборы, кроме вольтметра?

Лаб. 4

= E/I — R; R = 4; 4.3/0.65 — 4 = 6.62 — 4 = 2.62 Ом.

  • ΔE = ΔиE + ΔоE; ΔE = 0.15 В + 0,18 В = 0,26 В;
  • ΔI = ΔиI + ΔоI; ΔI = 0.05 А + 0,025 А = 0,075 А.

Er = 0.25/4.3 + 0.075/0.65 + 0.1/4 = 0.06 + 0.12 + 0.025 = 0.21 В.

Δr = 0.21 В · 2,62 Ом = 0,55 Ом.

1. Почему вольтметр включают в цепь параллельно потребителю? Что произойдет, если вольтметр включить в цепь последовательно?

Вольтметр включают параллельно участку цепи, на котором измеряют напряжение. Напряжение на измеренном участке и напряжение на вольтметре будет одним и тем же, т.к. вольтметр и напряжение на вольтметре подключены к общим точкам.

Т.к. вольтметр обладает большим сопротивлением, то при его последовательном подключении к электрической цепи увеличится внешнее сопротивление цепи, а, значит, сила тока в цепи значительно уменьшится.

2. Почему сопротивление амперметра должно быть значительно меньше сопротивления цепи, в которой измеряют ток? Что произойдет, если амперметр включить параллельно потребителю?

Поскольку включение амперметра в электрическую цепь не должно изменять силу тока в ней, то сопротивление амперметра должно быть как можно меньше.

Сопротивление амперметра гораздо меньше сопротивления потребителя, поэтому при таком неправильном подключении почти весь ток пойдёт через амперметр. В итоге «зашкалит» и может перегореть, если вовремя не отключить. Такое включение амперметра недопустимо.

3. Почему показания вольтметра при разомкнутом и замкнутом ключе различаются?

Потому что у источника питания появляется нагрузка в виде резистора. Вольтметр, подключённый к полюсам источника питания ЭДС источника ε. При подключении нагрузки (резистора) напряжение на источнике будет падать, т.к. источник не идеальный.

4. Как можно повысить точность измерения ЭДС источника тока?

Самый простой способ — взять вольтметр с меньшей приборной погрешностью, т.е. более высокого класса точности.

Также повысить точность можно путём совершенствования методики измерения и обработки результатов, таким образом можно уменьшить систематические погрешности.

5. При каком значении КПД будет получена максимальная полезная мощность от данного источника тока? Каким должно быть при этом сопротивление внешней цепи по отношению ко внутреннему сопротивлению источника тока?

Коэффициент полезного действия источника тока определяется как отношение полезной мощности к полной, и зависит от сопротивления нагрузки и внутреннего сопротивления источника тока. Можно доказать, что КПД оказывается равным 50%.

Измерение тока.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи

Важным параметром этого прибора является его внутреннее сопротивление . Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1А. А схема, силу тока в которой нам нужно определить имеет следующий вид:


Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:


В данной задаче нам необходимо измерить ток . Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

Выразим ток шунта через ток амперметра:

Измеряемый ток равен:

Подставим в это уравнение предыдущее выражение для тока шунта:

Но сопротивление шунта нам также известно (). В итоге мы получаем:

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить

Что будет если вольтметр включить в электрическую цепь последовательно?

У вольтметра очень высокое внутреннее сопротивление, поэтому тока в цепи не будет, последовательное включение вольтметра равносильно разрыву цепи, а вольтметр покажет ЭДС источника, если он в этой цепи имеется.

Бесконечное входное сопротивление имеет только ламповый вольтметр. Все остальные вольтметры имеют конечное сопротивление. Источник ЭДС тоже имеет свое внутреннее сопротивление но очень маленькое. Образуется электрическая цепь из маленького сопротивления, большого и источника ЭДС. Вольтметр будет показывать падение напряжения на самом себе за вычетом падения напряжения на внутреннем сопротивлении источника ЭДС.

Вольтметр. Прибор для измерения напряжения в электрической цепи

Все мы знаем, что напряжение в бытовой розетке 220 В (стоит помнить, что не во всех странах). Но ведь оно иногда может быть больше или меньше и возникает логичный вопрос — а как померять напряжение? Для этого нам и нужен вольтметр.

И так, вольтметр — это прибор, который измеряет разность потенциалов (в Вольтах) или напряжение. Принцип работы классического вольтметра довольно прост — ток, который индуцируется в катушке при подключении к источнику напряжения, создает вращающий момент, который перемешает стрелку электроизмерительного прибора. Отклонение стрелки всегда прямо пропорционально разности потенциалов между измеряемыми точками. Стоит помнить, что вольтметр ВСЕГДА подключается параллельно к цепи, в которой ведется измерение напряжения.

Почему вольтметр всегда подключен параллельно?

Сопротивление у идеального вольтметра равно бесконечности. Но это у идеального, у реального оно значительно меньше, но все еще очень высоко. Поэтому при подключении измерительного прибора в цепь последовательно его показания не будут иметь ничего общего с правдой, а его внутреннее сопротивление окажет существенное влияние на электрическую цепь (практически разрыв цепи из-за большого внутреннего сопротивления).

Подключение вольтметра к цепи схема

Вольтметр всегда подключается параллельно цепи, так что падение напряжения на измерительном приборе никак не влияет на работу электрической цепи. Также если измерительный прибор является многопредельным (например 3, 15, 75 и 150 В), при переключении предела последовательно катушке измерения вводится добавочное сопротивление (как правило оно уже установлено в корпусе прибора, но стоит уточнить это в техпаспорте), которое предохраняет измерительную катушку электрического прибора от токов выше номинального и обеспечивают точность измерения.

Что произойдет, если вольтметр включить в цепь последовательно?

Ничего не будет. У вольтметра большое внутреннее сопротивление, поэтому он измерит ЭДС источника. Гораздо интереснее подключить амперметр к источнику параллельно нагрузке! Дымит красиво!

У идеального вольтметра бесконечно большое сопротивление, следовательно ток по цепи течь не будет, — вольтметр просто покажет ЭДС источника (если в цепи есть источник ЭДС)

Ничего не будет. У вольтметра большое внутреннее сопротивление, поэтому устройство, в цепь которого его включить последовательно, скорее всего работать просто не будет.

Ничего. Т. е. если для этого придётся разорвать цепь, дальнейшее подключение вольтметра есть по сути подключение к местам разрыва бес. большого сопротивления. Вольтметр должен обладать огромным сопротивлением, поэтому в идеале его подключение не должно сказываться на самой схеме. Подключают его между точками, между которыми следует измерить разность потенциалов (напряжение).. . в принципе без разницы как его подключать.

Вопрос явно — практический. Ну где-же в практике взять идеальный вольтметр? А поэтому он (вольтметр) покажет ту часть напряжения, которая останется на нём. Это, в свою очередь, зависит от сопротивления нагрузки, с которым последовательно включили вольтметр, и внутреннего сопротивления самого вольтметра. Например, сопротивление нагрузки — 100 Ом, вольтметра — 1 кОм. То есть, вольтметр покажет 1/1,1 от напряжения на входе цепи. А если ещё учесть и внутреннее сопротивление источника тока.. . То еще немного меньше :-)

Вольтметр покажет напряжение на самом себе.

Почему вольтметр имеет большое сопротивление?

Вольтметр имеет очень высокое внутреннее сопротивление, потому что он измеряет разность потенциалов между двумя точками цепи. Вольтметр не влияет на ток измеряемой цепи.

Если измерительный прибор имеет низкое сопротивление, через него будет проходить ток (согласно первому закону Кирхгофа ток будет распределяться между двумя ветвями цепи — часть тока будет протекать через нагрузку, а часть через вольтметр, именно поэтому его сопротивление должно быть как можно больше — чтоб минимизировать ток), и на выходе мы получим неверный результат. Большое сопротивление вольтметра не позволяет току проходить через него (разрыв цепи), и, таким образом, получают показания напряжения.

Влияние температуры на измерение тока

Амперметр — чувствительное устройство, на которое существенно влияет температура окружающей среды. Изменение температуры вызывает ошибку в показаниях. Вы можете использовать добавочное сопротивление (балластное сопротивление). Сопротивление с нулевым температурным коэффициентом называют добавочным сопротивлением (swamping resistance). Оно подключается последовательно с катушкой электроизмерительного прибора. Балластное сопротивление уменьшает влияние температуры на показания прибора.

Добавочное сопротивление амперметра и шунт

Амперметр имеет встроенный предохранитель, который защищает его от скачков тока (неправильное подключение). Если через амперметр протекает значительный ток, предохранитель перегорит, тем самым разорвав электрическую цепь и сохранив измерительную систему прибора. Соответственно прибор нельзя будет использовать, пока не будет заменена плавкая вставка.

Какие бывают типы вольтметров

Вольтметры, как и любые другие электроизмерительные приборы, классифицируются в зависимости от назначения и конструкции. Более подробно на рисунке ниже:

Типы вольтметров диаграмма

Вольтметр с подвижной катушкой и с постоянными магнитами (PMMC)

Такой прибор работает по магнитоэлектрическому принципу. В двух словах это означает следующее — в постоянное магнитное поле помещается катушка измерительного прибора, которая подключается к электрической цепи, в которой проводится измерение. При протекании тока через катушку электромагнитная сила создаст вращающий момент, который повернет стрелку измерительного прибора на определенный угол.

Вольтметр с подвижной катушкой и с постоянными магнитами (PMMC) используется только в сетях постоянного тока. Такой тип устройства имеет очень низкое энергопотребление и очень высокую точность. Единственным его недостатком является стоимость.

Электромагнитный вольтметр (MI вольтметр)

Электромагнитный вольтметр может использоваться для измерения как постоянного, так и переменного напряжения. В таком типе приборов отклонение стрелки зависит от напряжения катушки. Электромагнитные вольтметры разделяют на два типа:

  • электромагнитный измерительный прибор с плоской катушкой.
  • электромагнитный измерительный прибор с круглой катушкой.

Электродинамический вольтметр

Электродинамический вольтметр используется для измерения напряжения цепи переменного и постоянного тока. В приборах этого типа калибровка одинакова как для измерения переменного, так и постоянного тока.

Вольтметр с выпрямительной системой

Такой тип прибора используется в цепях переменного тока для измерения напряжения. Выпрямитель преобразует переменный ток в постоянный ток, после чего сигнал постоянного тока измеряется прибором с подвижной катушкой и с постоянными магнитами.

Аналоговый вольтметр

Аналоговый вольтметр используется для измерения переменного и постоянного напряжения. Он отображает показания через указатель, который зафиксирован на калиброванной шкале. Отклонение указателя зависит от крутящего момента, действующего на него. Величина развиваемого крутящего момента прямо пропорциональна измеряемому напряжению.

Цифровой вольтметр

Вольтметр, который отображает показания в числовой форме, известен как цифровой вольтметр. Цифровой вольтметр дает достаточно точный результат.

Прибор, который измеряет постоянное напряжение, известен как вольтметр постоянного напряжения, а вольтметр переменного напряжения используется в цепи переменного тока для измерения переменного напряжения.

Устройство

У стрелочных амперметров основа прибора – простейший электромагнитный (или иного типа) гальванометр или электроизмерительная головка.

Электромагнитный амперметр

Сам по себе гальванометр работает как нечто среднее между милливольтметром и микроамперметром. Включать его в цепь без нагрузки и балластных сопротивлений нельзя – обмотка катушек не рассчитана на значительную силу тока, что нужна силовым электроустановкам и потребителям, подключённым к ним: с большой долей вероятности его обмотка сгорит. Аналоговый гальванометр устроен следующим образом. В поле постоянных магнитов вращается катушка, по которой в момент подключения прибора начинает идти ток. Вырабатывая собственное магнитное поле, катушка поворачивается на определённый угол – пропорционально пропускаемому через неё току. А поворачиваться её заставляет вращательный момент, образующийся при взаимодействии поля постоянного магнита и поля катушки.

Вместе с катушкой поворачивается и стрелка, жёстко закреплённая на ней. Вся эта конструкция закреплена на неподвижной оси, расположенной в центре магнитного зазора. Плоская пружина, прикреплённая одним концом к жёсткой основе (каркасу) прибора, а другой – к оси со стрелкой, при выключении гальванометра из электрической цепи заставляет стрелку вернуться в исходное положение.

Помимо возвращающей пружины, на противовесе стрелки находится балансир – металлическая нить из мягкого и достаточно эластичного металла (например, платины), уравновешивающая стрелку и не дающая её концу задевать за шкалу – алюминиевую пластину с проградуированными делениями, закреплённую в качестве плоской рамки на лицевой части внутренностей гальванометра. В ряде случаев, чтобы не тратить дорогую платину, на противовес стрелки напаивается капля какого-нибудь легкоплавкого сплава (точно в миллиграммах или в сотнях микрограммов). Если балансир порвётся – результаты измерений будут неточными и прерывистыми либо вообще никакими. Правила обращения с гальванометрическим амперметром строго-настрого запрещают его бросать, подвергать жёсткой вибрации и сильным ударам – измерительные головки ломаются очень легко.

Подключение вольтметров к сети

Напряжение – с этим термином мы довольно часто сталкиваемся в повседневной жизни. Иногда нам нужно измерить напряжение в сети, чтобы понять, почему какое-либо устройство работает неудовлетворительно или лампа накаливания горит довольно тускло. Для данного рода измерений используют вольтметры. Вольтметр подключается к измеряемому устройству только параллельно, почему это так?

Как известно электрическое напряжение – это отношение работы, совершенной электрическим полем по перемещению заряда А, к величине заряда q, U=A/q. Также оно характеризует электрическое поле, которое возникает при прохождении электрического тока.

В системе международных обозначений СИ обозначается как U и измеряют в вольтах (1 В = 1 Дж/Кл). Для того чтобы измерять напряжение на устройстве необходимо параллельно к нему подключить вольтметр.

Для того, чтоб при параллельном включении снизить ток, потребляемый вольтметром и соответственно потери электрической энергии внутри устройства, внутреннее измерительное сопротивление выбирается как можно больше . Если включить вольтметр в цепь последовательно, то в связи с большим внутренним сопротивлением получим фактически разрыв цепи. То есть потери при измерении напряжения будет слишком большими, что неприемлемо, а также измерения будут некорректными. Поэтому вольтметр подключают только параллельно:

Если измеряется постоянное напряжение от 1 до 1000 мкВ могут использовать компенсаторами постоянного тока, но чаше пользуются цифровыми вольтметрами . Значения от десятков милливольт до сотен вольт измеряют приборами таких систем как: электромагнитной, электродинамической, магнитоэлектрической. Также не брезгуют и электронными аналоговыми и цифровыми вольтметрами. Также при измерении могут использовать добавочные сопротивления:

Где Rv – это внутреннее сопротивление вольтметра, Rдоб1…3 – добавочные сопротивления, UmV – максимальное которое может измерять сам вольтметр, а U1…3 – которые он может измерять с добавочными сопротивлениями.

Сопротивления добавочных резисторов определяется по формуле:

Где m – масштабный коэффициент.

Если проводят измерения постоянных напряжений в несколько киловольт, то в большинстве случаев используют вольтметры электростатические, реже используют измерительные устройства других систем подключаемых через делитель:

Где резисторы R1, R2 — резисторы выполняющие роль делителя, Rизм. – измерительное сопротивление, с которого снимается напряжение.

Если измеряют переменные напряжения до единиц вольт, то используют аналоговыми, выпрямительными и цифровыми устройствами. От единиц до сотен вольт и частотном диапазоне до нескольких десятков килогерц применяют выпрямительные системы, электромагнитные, электродинамические приборы. Если частота достигает нескольких десятков мегагерц, то в таком случае напряжение измеряют термоэлектрическими и электростатическими приборами.

В действующих значениях, как правило градуируют шкалы приборов для измерения величин переменного тока. Поэтому при измерении необходимо это учитывать (если необходимо измерять амплитудные и средние значения, то их как правило пересчитывают по соответствующим формулам).

При проведении измерении в сетях переменного тока напряжением выше 1000 В могут использоваться как делители, так и трансформаторы напряжения или измерительные трансформаторы. Чаще используют трансформаторы, так как трансформатор не только понижает значение напряжения, но потенциально разделяет измерительную цепь от силовой. Измерения могут проводится теми же приборами, что и в выше описанных случаях. Схема включения приведена ниже:

Где FU1, FU2 – предохранители, защищающие измерительную цепь от короткого замыкания.

Внешний вид трансформатора однофазного:

Как видим, при проведении измерение различного рода напряжений могут использоваться как различного рода приборы (цифровые, аналоговые и т.д.), так и устройства (делители, трансформаторы). При проведении измерений важно учитывать каждый способ проведения измерений, для получения как можно более точного результата, а также корректного проведения измерительных работ.

Похожие материалы:

  • «Подключение» специалистов экстренных служб
  • Волоконно-оптическое подключение: адаптация волокна…
  • Устройство контактора с управлением от сети постоянного тока

Принцип действия

Все устройства, которыми производятся измерения в электрических сетях, делятся на две группы: электромеханические и электронные.

Электромеханические аппараты

Это стрелочные приборы. Стрелка в них закреплена на рамке, на которую намотан провод. Эта катушка находится на одной оси с постоянным магнитом в приборах, используемых в сети постоянного тока, или с другой катушкой – в устройствах переменного напряжения.

Справка. Аппарат переменного тока в сети постоянного работать не будет, но устройство для измерения постоянного напряжения, если включить его через диодный мост, можно подключить в сеть переменного тока с потерей точности.

При прохождении тока по обмотке в ней наводится электромагнитное поле, взаимодействующее с магнитом или другой обмоткой, и рамка поворачивается. Вращению катушки со стрелкой препятствует пружина, поэтому угол поворота рамки соответствует току через неё и потенциалу на клеммах.

Для уменьшения колебаний стрелки устанавливается демпфер электромагнитный из алюминиевой пластины или пневматический, из поршня и цилиндра.

Для повышения точности стрелка снабжена противовесами, исключающими влияние силы тяжести, а сам механизм выполняется из легированной стали для уменьшения износа.

Электронные приборы

В электронных аппаратах чувствительным элементом является электронная плата, преобразующая входной сигнал в показания прибора. Питание такое устройство может получать от измеряемого напряжения или другого источника – внутренних батарей или внешнего питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *