Оптоволоконные линии связи: неограниченные возможности
Технологический век дал нам много ярких изобретений и открытий, но, по-видимому, именно возможность передачи информации на большие расстояния внесла один из наиболее весомых вкладов в развитие технологий. Носители, по которым передаются данные, прошли долгий путь развития от медной проволоки столетие назад до современных оптоволоконных кабелей. В результате многократно увеличились объемы информации, скорости и расстояния ее передачи, что расширило пределы технологического развития во всех областях.
Современные оптоволоконные кабели из стекла с малыми потерями обеспечивают практически неограниченную полосу пропускания и имеют массу других преимуществ над ранее созданными носителями. Простейшая оптоволоконная система передачи информации между двумя точками состоит из трех основных элементов: оптического передатчика, оптоволоконного кабеля и оптического приемника (рис. 1).
Рис. 1. Схема простейшей оптоволоконной системы передачи информации
Оптический передатчик преобразует аналоговый или цифровой электрический сигнал в соответствующий ему световой сигнал. Источником света может быть либо светодиод, либо твердотельный лазер. Чаще всего используются источники света с длиной волны 850, 1300 и 1550 нанометров.
Оптоволоконный кабель состоит из одного или нескольких стеклянных волокон, которые для света работают как волноводы (световоды). По конструкции оптоволоконный кабель похож на электрический, но содержит специальные элементы для защиты находящихся внутри него световодов. Соединение многокилометровых кабелей выполняется с помощью разъемных и неразъемных оптических соединителей.
Оптический приемник преобразует световой сигнал в копию исходного электрического сигнала. В качестве чувствительного элемента оптического приемника используется либо лавинный фотодиод, либо (чаще) PIN-фотодиод.
Оптоволоконные системы передачи информации — оптические приемник и передатчик, связанные оптоволоконным кабелем — имеют много преимуществ над обычными медными проводами и коаксиальными кабелями:
- они могут передавать значительно большее количество информации при большей достоверности, на большей скорости, на большее расстояние. Оптоволоконные системы очень удобны для передачи последовательных цифровых данных.
- оптоволоконный кабель совершенно не подвержен никаким внешним помехам, включая грозовые разряды, и не проводит электричество. По этой причине он может находиться в прямом контакте с высоковольтным электрооборудованием и силовыми линиями. При использовании оптоволоконных систем не образуются паразитные петли заземления.
- поскольку кабель изготовлен из стекла, он не восприимчив к действию большинства агрессивных химических веществ, вызывающих коррозию. Его, как правило, можно прокладывать непосредственно в грунте и использовать в корродирующей атмосфере на химических производствах.
- носителем информации в оптоволоконных кабелях является свет, и поэтому при повреждении кабеля не возникает никаких искр. Оптоволоконные линии могут использоваться даже в наиболее взрывоопасных атмосферах, они не пожароопасны и не несут опасности поражения электрическим током для ремонтного персонала.
- оптоволоконные кабели не подвержены вредному влиянию природных условий. Их можно прокладывать прямо на телефонных столбах или крепить к ранее проложенным кабелям, не заботясь о внешних наводках.
- даже многожильный оптоволоконный кабель значительно тоньше и легче медных кабелей с такой же пропускной способностью. Оптоволоконный кабель проще прокладывать, он занимает меньше места в кабельных каналах, а часто может прокладываться и вовсе без них.
- оптоволоконные кабели практически идеальны для организации защищенных систем передачи информации. Несанкционированное подключение к ним весьма затруднительно и легко обнаруживается. Оптическое волокно не создает вокруг себя никакого электромагнитного излучения.
Почему оптоволоконные системы обладают этими полезными свойствами? Прочитав эту брошюру и поняв принципы, лежащие в основе оптоволоконной технологии, вы получите ответ на этот вопрос. Каждому из трех компонентов оптоволоконных систем — передатчикам, приемникам и кабелям — посвящен свой раздел.
Оптические передатчики
Оптический передатчик преобразует электрический сигнал в модулированный световой поток, предназначенный для передачи по оптоволокну. В зависимости от типа сигнала могут использоваться различные способы модуляции — включение и выключение света или его плавное изменение между заданными уровнями пропорционально входному сигналу. На рис. 2 эти два основных способа модуляции показаны на графиках зависимости интенсивности света от времени.
Рис. 2. Основные методы модуляции светового потока
Чаще всего в оптических передатчиках в качестве источника света используются светоизлучающие диоды (светодиоды) и полупроводниковые лазеры (лазерные диоды). Для использования в оптоволоконных системах эти устройства изготавливаются в корпусах, позволяющих подвести оптоволокно максимально близко к зоне, излучающей свет. Это необходимо для того, чтобы направить как можно больше света в световод. Иногда излучатель оборудован микроскопической сферической линзой, позволяющей собрать весь свет «до последней капли» и направить его в волокно. В некоторых случаях стеклянная нить присоединяется непосредственно к поверхности излучающего свет кристалла.
У светодиодов площадь излучающего элемента довольно велика, и поэтому они излучают не так эффективно, как лазеры. Однако светодиоды широко используются на линиях связи малой и средней длины. Светодиоды гораздо дешевле лазеров, имеют почти линейную зависимость интенсивности излучения от величины электрического тока, интенсивность их излучения слабо зависит от температуры. Лазеры, напротив, имеют очень малую площадь излучающей поверхности и могут отдавать в оптоволокно гораздо большую мощность, чем светодиоды. Они тоже линейны по току, но очень сильно подвержены влиянию температуры и для достижения необходимой стабильности требуют применения более сложных электронных схем. Поскольку лазеры довольно дороги, они в основном используются там, где требуется передача данных на большие расстояния.
Применяемые в оптоволоконной связи светодиоды и лазеры излучают в инфракрасной части спектра электромагнитных волн и поэтому их свет невидим человеческим глазом без применения специальных средств. Длина волны излучения выбрана с учетом максимальной прозрачности материала световодов и наивысшей чувствительности фотодиодов. Наиболее часто используемые сейчас длины волн — 850, 1300 и 1550 нанометров. Для всех трех длин волн выпускаются как светодиоды, так и лазеры.
Как уже было сказано, световой поток светодиодов и лазеров модулируется одним из двух способов: «включено-выключено» или линейным непрерывным изменением интенсивности. На рис. 3 показаны упрощенные схемы, реализующие оба способа модуляции. Для управления излучателем используется транзистор, на базу которого поступает предварительно сформированный цифровой сигнал. Максимальная частота модуляции при этом определяется электронной схемой и свойствами излучателя. Со светодиодами легко достижимы частоты в несколько сотен мегагерц, с лазерами — в тысячи мегагерц. На схеме не показан узел термостабилизации (светодиодам он обычно вообще не требуется).
Линейная модуляция осуществляется с помощью схемы на основе операционного усилителя (рис. 3B). Модулирующий сигнал подается на инвертирующий вход усилителя, постоянное смещение поступает на неинвертирующий вход. Здесь также не показана схема термостабилизации.
Рис. 3. Методы модуляции светового потока светодиодов
и полупроводниковых лазеров
В цифровом сигнале, для передачи которого используется модуляция «включено-выключено», логические уровни могут кодироваться различными способами. В наиболее простом из них логической единице соответствует наличие света, логическому нулю — его отсутствие. Кроме того, применяются широтно-импульсная и частотно-импульсная модуляция. При широтно-импульсной модуляции используется непрерывный поток импульсов, двумя различными длительностями которых кодируются логические уровни сигнала. При частотно-импульсной модуляции все импульсы имеют одинаковую длительность, но частота их следования меняется в зависимости от передаваемого логического уровня.
Рис 4. Различные методы оптической передачи аналоговой
и цифровой информации
Для аналоговой модуляции также существует несколько методов. Простейший из них — линейная модуляция, где интенсивность источника света прямо связана с величиной передаваемого сигнала. В других методах передаваемый сигнал вначале модулирует высокочастотную несущую (а в некоторых случаях и несколько несущих), а затем этот сложный сигнал управляет яркостью источника света.
На рис. 4 показана зависимость интенсивности света от времени для этих методов модуляции.
Частота света (который тоже является электромагнитным излучением) весьма велика — порядка миллионов гигагерц. Полоса частот излучателей света (лазеров и светодиодов) достаточно широка, но, к сожалению, современная технология не дает возможности селективного использования этой полосы, как это делается при передаче информации по радио. В оптическом передатчике происходит включение и выключение всей полосы частот сразу, как это делалось в первых искровых передатчиках на заре эры радио. Со временем ученые преодолеют это препятствие и станет возможной «когерентная передача», что определит дальнейшее развитие оптоволоконной технологии.
Световоды
Ввод света в оптическое волокно
После того, как передатчик преобразовал входной электрический сигнал в нужным образом модулированный свет, его необходимо ввести в оптическое волокно. Как уже говорилось, для этого существует два способа: прямое соединение излучающего элемента со световодом, и размещение световода в непосредственной близости от излучателя. При использовании второго способа количество света, которое попадет в оптоволокно, зависит от четырех факторов: интенсивности излучения, площади излучающего элемента, входного угла световода и потерь на отражение и рассеяние. Кратко рассмотрим все эти факторы.
Интенсивность излучения светодиода или лазера зависит от его конструкции и обычно выражается как общая мощность излучения при определенном токе. Иногда эта цифра указывается как реальная мощность, передаваемая в оптоволокно конкретного типа. При прочих равных условиях чем выше мощность излучателя, тем больше света попадает в световод.
Отношение площадей излучающего элемента и сердцевины оптоволокна определяет долю общей мощности, которая попадает в световод — чем меньше это отношение, тем больше света окажется в волокне.
Входной угол оптоволокна характеризуют его числовой апертурой (numerical aperture, NA), которая определяется как синус половины входного угла. Типовые значения NA лежат в диапазоне от 0,1 до 0,4, что соответствует входному углу от 11 до 46 градусов. Только тот свет, который вошел в оптоволокно под углом, меньшим или равным входному, будет распространяться по световоду.
Потери. Кроме потерь от загрязнений на поверхности оптоволокна, всегда существуют неизбежные потери интенсивности света, вызванные отражением на входе в световод и выходе из него. Это так называемые френелевские потери (по имени французского физика О. Ж. Френеля), которые составляют примерно 4% общей интенсивности на каждой границе раздела стекло-воздух. При необходимости для снижения этих потерь на соединяемые стеклянные поверхности наносят немного специального оптического геля.
Типы оптического волокна
Сейчас используется два типа оптического волокна: со ступенчатым и плавным изменением показателя преломления вдоль радиуса (профилем). На рис. 5 показано, что свет распространяется по таким световодам по-разному.
Рис 5. Распространение света по оптоволокну со ступенчатым и плавным профилями показателя преломления
Как показано на рисунке, волокно со ступенчатым профилем показателя преломления состоит из сердцевины, изготовленной из стекла с малыми оптическими потерями, окруженной стеклянной оболочкой с более низким показателем преломления. Такое различие показателей преломления заставляет свет отражаться от границы между сердцевиной и оболочкой на всем пути распространения. Оптоволокно с плавным профилем состоит из стекла только одного сорта, но оно обработано так, что его показатель преломления плавно уменьшается от центра к периферии. В результате световод, подобно протяженной линзе, постоянно отклоняет распространяющийся по нему свет к центру.
Оптоволокно характеризуется толщиной сердцевины и оболочки, которую выражают в микрометрах. Сейчас наиболее распространены три типоразмера оптоволокна общего назначения, хотя существуют и другие типоразмеры для специальных применений. Это многомодовые световоды 50/125 и 62,5/125 мкм и одномодовые 8-10/125 мкм. Первые два типоразмера обычно используются вместе со светодиодными излучателями на линиях передачи малой и средней длины. Оптоволокно с сердцевиной 8-10 мкм чаще всего применяется в телекоммуникационных системах большой протяженности совместно с лазерными оптическими передатчиками.
Потери в оптическом волокне
Кроме потерь интенсивности сигнала в соединении излучателя и световода, потери происходят также и при распространении света по оптоволокну. Сердцевина оптического волокна делается из сверхчистого стекла с очень низкими потерями. Стекло должно иметь высочайшую прозрачность, поскольку по изготовленному из него волокну свет должен проходить километры. Давайте посмотрим на обычное оконное стекло. Оно прозрачно, но только потому, что его толщина всего 3-4 мм. Достаточно взглянуть на торец стеклянной пластины и увидеть его зеленую окраску, чтобы понять, как сильно она поглощает свет даже на длине в десяток-другой сантиметров. Легко представить, как же мало света пройдет через стометровую толщу оконного стекла!
Большинство световодов общего назначения дает на длине волны 850 нм потери от 4 до 6 децибел на километр (то есть на одном километре теряется от 60 до 75% света). На длине волны 1300 нм потери снижаются до 3-4 дБ/км (50-60%), а на 1550 нм они еще меньше — не является чем-то необычным значение 0,5 дБ/км (10%).
Основной причиной потерь является поглощение света неоднородностями и рассеяние на них. Другая причина потерь в оптоволокне — его чрезмерный изгиб, при котором часть света выходит из сердцевины. Во избежание таких потерь радиус изгиба оптоволоконного кабеля при прокладке должен быть не менее 2,5 см (а чаще и еще больше).
Полоса пропускания оптоволокна
Перечисленные выше потери не зависят от частоты модуляции, то есть уровень потерь в 3 дБ означает, что до получателя не дойдет 50% света независимо от того, модулирован он сигналом 10 Гц или 100 МГц. Однако полоса пропускания оптоволокна для модулированного сигнала ограничена, и тем сильнее, чем длиннее световод. Причину этого ограничения поясняет рис. 6. Свет, вошедший в оптоволокно под малым углом к его оси (M1) распространяется по более короткому пути, чем тот, который входит под углом, близким к предельному входному (M2). В результате различные лучи, исходящие от одного и того же источника (называемые модами), приходят к даль- нему концу световода не одновременно, что приводит к эффекту размывания — уширению коротких импульсов. Это ограничивает максимальную частоту сигнала, передаваемого по оптоволоконному кабелю. Говоря кратко, чем меньше мод в излучении, тем шире полоса пропускания оптоволокна. Чтобы уменьшить число распространяющихся мод, сердцевину волокна делают тоньше. Одномодовое волокно с диаметром сердцевины от 8 до 10 мкм имеет значительно более широкую полосу пропускания, чем многомодовые волокна с диаметром 50 и 62,5 мкм, по которым может одновременно распространяться большое число мод излучения.
Рис. 6. Полоса частот модуляции, пропускаемых оптоволокном,
ограничивается существованием различных путей распространения света
Типовая полоса пропускания для обычных волоконных световодов составляет несколько мегагерц на километр для волокна с очень большим диаметром сердцевины, несколько сотен мегагерц на километр для стандартного многомодового волокна и тысячи мегагерц для одномодовых оптических волокон. С ростом длины кабеля полоса пропускания пропорционально снижается. Например, кабель, имеющий полосу 500 МГц на длине 1 км, при длине 2 км сможет обеспечить полосу в 250 МГц, а при 5 км — лишь в 100 МГц.
Очень широкая полоса пропускания одномодовых световодов позволяет практически не обращать внимания на их длину. Однако для многомодовых волокон этот фактор важен, поскольку нередко частотный диапазон передаваемых сигналов превосходит полосу пропускания кабелей.
Конструкция оптоволоконного кабеля
Оптоволоконные кабели выпускаются разного диаметра и конструкции. Как и в случае коаксиальных, конструкция оптоволоконных кабелей определяется его предназначением. Внешне оптоволоконный кабель похож на коаксиальный. На рис. 7 схематично показано устройство стандартного оптоволоконного кабеля.
Оптоволокно имеет защитное покрытие, предохраняющее его от повреждений в производственном процессе. Оно помещается в облегающую его поливинилхлоридную трубку, где может свободно изгибаться при прокладке вокруг углов стен и в кабельных каналах.
Эта трубка окружена оплеткой из кевлара, принимающей на себя основное механическое усилие, которое действует на кабель при прокладке. Наконец, внешняя оболочка из поливинилхлорида защищает весь кабель и предотвращает проникновение влаги внутрь.
Кабели такой конструкции пригодны для прокладки внутри зданий, где не требуется значительная стойкость к внешним воздействиям. Существуют кабели практически для любого варианта прокладки, например, для прямой укладки в грунт, армированные устойчивой к грызунам внешней оболочкой из стали и сертифицированные UL негорючие кабели для прокладки над фальшпотолками. Выпускаются и многожильные кабели с цветовой кодировкой.
Рис. 7. Устройство стандартного оптоволоконного кабеля
Другие типы световодов
Еще два типа световодов — кварцевые с сердцевиной очень большого диаметра и целиком изготовленные из пластмассы — обычно не используются в телекоммуникациях. Кварцевые световоды используются для передачи мощных световых потоков, например в лазерной хирургии. Пластмассовые световоды применяются для передачи данных на очень малые расстояния внутри электронного оборудования совместно с недорогими светодиодами. Одно из стандартных применений таких световодов — оптическая развязка цепей управления в высоковольтных источниках питания.
Оптические соединители
С помощью оптических соединителей оптоволоконные кабели подключаются к оборудованию или соединяются между собой. Они похожи на электрические разъемы по функциям и внешнему виду, но требу- ют очень высокой точности изготовления. В оптическом разъемном соединении необходимо прецизионное совмещение и центровка сердцевины обоих волокон. Поскольку их диаметр весьма мал (например, 50 мкм), требования к точности очень высоки: допуск имеет порядок одного микрона.
Сейчас используются оптические разъемы множества различных типов. Разъем SMA, использовавшийся еще до изобретения одномодовых волокон, до недавнего времени оставался наиболее распространенным. На рис. 8 показаны детали конструкции этого разъема.
Рис. 8. Конструкция разъема SMA
Для многомодовых волокон сейчас чаще всего применяется разъем ST, разработанный компанией AT&T. В нем применен байонетный фиксатор, а общие потери меньше, чем в SMA. Подобранная пара разъемов ST обеспечивает уровень потерь менее 1 дБ (20%) и не требует дополнительных направляющих втулок или других подобных элементов. Специальный выступ, не дающий разъему поворачиваться, гарантирует, что при соединении оптические волокна всегда будут устанавливаться в одно и то же положение друг относительно друга, что обеспечивает стабильность характеристик разъемного соединения.
Разъемы ST выпускаются как для многомодовых, так и для одномодовых световодов — основное различие состоит в величине допусков. Следует иметь в виду, что многомодовые разъемы ST будут корректно работать только с многомодовыми световодами. Более дорогие одномодовые разъемы ST можно использовать как с одномодовыми, так и с многомодовыми световодами. Процедуры установки разъемов ST и SMA на кабель сходны и занимают примерно одинаковое время. На рис. 9 показаны основные элементы ставшего промышленным стандартом разъема ST.
Рис. 9. Основные элементы разъема ST
Неразъемные соединения световодов
Хотя для соединения двух световодов можно использовать оптические разъемы, существуют другие методы, обеспечивающие значительно более низкие потери. Два наиболее распространенных — механическое соединение и сварное соединение. Оба обеспечивают уровень потерь от 0,15 до 0,1 дБ (3-2%).
Для механического соединения концы световодов освобождаются от оболочек, их торцы очищаются и точно совмещаются с использованием специального механического приспособления. На место соединения наносится оптический гель, снижающий до минимума потери на отражение. Совмещенные концы световодов удерживаются на месте запорным механизмом.
Оптические приемники
Основная задача оптического приемника — преобразование модулированного светового потока, поступающего из оптоволокна, в копию исходного электрического сигнала, поданного на передатчик. В качестве детектора в приемнике обычно используется PIN- или лавинный фотодиод, который устанавливается на оптическом соединителе (подобном используемому для источников света). У фотодиодов обычно довольно большой чувствительный элемент (несколько микрометров в диаметре), поэтому требования к точности позиционирования оптического волокна не такие жесткие, как для передатчиков.
Интенсивность излучения, выходящего из оптоволокна, достаточно мала, и в оптических приемниках устанавливаются внутренние усилители с большим коэффициентом усиления. Поэтому важно использовать приемники только с тем типоразмером волокна, для которого они предназначены, иначе может возникнуть перегрузка усилителя. Если, например, пара передатчик-приемник, предназначенная для одномодового оптоволокна, используется с многомодовым, то в приемник поступит слишком много света, что вызовет его насыщение и серьезное искажение выходного сигнала. Аналогично, при использовании одномодового волокна с передатчиком и приемником, рассчитанными на многомодовое, до приемника дойдет мало света, и выходной сигнал будет содержать много шума или вообще не появится. Единственный случай, когда несоответствие приемника и передатчика типу волокна может оказаться полезным — чрезмерные потери в световоде. Тогда дополнительные 5-15 дБ, которые даст замена одномодового волокна на многомодовое, спасут положение и позволят получить работоспособную систему. Однако это экстремальная ситуация, и такое решение не рекомендуется для нормального применения.
Как и передатчики, оптические приемники выпускаются в аналоговом и цифровом вариантах. В них обоих используется аналоговый предварительный усилитель, за которым включен аналоговый или цифровой выходной каскад.
На рис. 10 показана функциональная схема простого аналогового оптического приемника. Первый каскад — операционный усилитель, включенный как преобразователь тока в напряжение. Слабый ток, генерируемый фотодиодом, преобразуется здесь в напряжение, амплитуда которого обычно составляет несколько милливольт. В следующем каскаде, представляющим собой простой усилитель напряжения, сигнал усиливается до необходимого уровня.
Функциональная схема цифрового оптического приемника показана на рис. 11. Как и в случае аналогового приемника, первый каскад представляет собой преобразователь тока в напряжение. Его выходной сигнал поступает на компаратор напряжения, который выдает чистый цифровой сигнал с малой длительностью перепадов. Регулятор уровня срабатывания компаратора, если он есть, используется для точной настройки симметрии восстановленного цифрового сигнала.
Часто в приемники для наиболее точного воспроизведения входного сигнала добавляются дополнительные каскады, которые работают как линейные усилители для коаксиальных кабелей, преобразователи протоколов и т.п. Следует помнить, что электронные приемники сигнала, в отличие от оптоволоконного кабеля, восприимчивы к электромагнитным помехам, поэтому при работе с ними следует использовать стандартные меры защиты — экранирование, заземление и т.п.
Рис. 10. Простейший аналоговый оптический приемник
Рис. 11. Простейший цифровой оптический приемник
Разработка оптоволоконной системы
При разработке оптоволоконной системы следует учитывать множество факторов, каждый из которых вносит свой вклад в конечную цель — гарантию того, что в приемник поступит достаточное количество света. Без достижения этой цели система не будет работать правильно. На рис. 12 указаны многие из этих факторов.
Рис. 12. Важнейшие параметры, которые необходимо учитывать
при разработке оптоволоконной системы
При инженерной разработке оптоволоконной системы рекомендуется использовать следующую пошаговую процедуру:
Для чего нужны волоконно оптические переходы
Что такое оптическая муфта?
Муфта — это своего рода контейнер в виде герметичного корпуса с кабельными вводами, в который помещаются концы оптических кабелей. Контейнер выполняет функцию защиты оптических волокон от внешних факторов и обеспечивает герметизацию мест соединения строительных длин оптических кабелей. В большинстве случаев корпус контейнера выполняется из высокопрочного ультрафиолетостойкого поликарбоната, который устойчив к механическим и химическим воздействиям. Внутри корпуса располагаются кассеты для укладки и защиты сварных соединений, лотки для укладки технологического запаса волокон, узлы крепления силовых элементов кабеля и заземляющие элементы. В настоящее время функционал муфт не ограничивается только функциями защиты и хранения. Например, современные модели муфт могут выполнять коммутационную функцию, обеспечивать разветвление линий связи и т.д.
Рассмотрим конструктивные элементы муфты подробнее. Огромное влияние на конструкцию муфты, а, следовательно, на ее конструктивные особенности оказывает назначение и условия эксплуатации. Для примера мы используем стандартную тупиковую оптическую муфту NMF-SC-1V-48-4MS от NIKOMAX.
Конструкция муфты
В большинстве случаев муфта включает следующие конструктивные элементы:
1. Крышка муфты – часто еще можно встретить обозначение «оголовник». Обеспечивает защиту внутреннего пространства муфты от внешних воздействий.
2. Пластиковый обруч – специальное устройство для фиксации крышки на основании муфты. Имеет оригинальный механизм фиксации и обеспечивает прочное и надежное соединение. Конкретно данный элемент является особенностью определенного типа муфт (купольные), в других видах муфт фиксация крышки на основании в основном производится обычными винтами.
3. Входные/выходные патрубки – служат для ввода/вывода кабеля. Также могут отсутствовать в определенных видах муфт, например, в проходной, где ввод кабеля осуществляется напрямую в корпус муфты.
4. Кассеты – одни из основных элементов любой муфты. Они предназначены для размещения и удержания соединений, а также размещения технологического запаса оптических волокон
5. Устройство фиксации кабеля – представляет собой прижимную планку, с помощью которой кабель фиксируется и удерживается внутри муфты.
6. Герметизирующая прокладка – обеспечивает герметизацию соединения между крышкой и основанием.
7. Лоток для укладки модулей – пластиковый поддон, который выполняет функцию хранения и защиты оптических модулей.
8. Устройство крепления силовых элементов – для фиксации силовых элементов кабеля.
Виды оптических муфт
Затронем тему классификации оптических муфт. В настоящее время существует много различных признаков, по которым классифицируют оптические муфты: материал корпуса, максимальная емкость, тип сращиваемого кабеля. Мы кратко рассмотрим общую классификацию.
Тупиковая оптическая муфта
Проходная оптическая муфта
Муфта с «горячим»
типом герметизации
>
Муфта с «холодным»
типом герметизации
- тупиковые – наиболее распространенный вид оптических муфт. Ввод кабелей осуществляется с одной стороны – через основание, а место соединения кабелей защищается внешним кожухом. В таких муфтах намного проще производить монтаж, а также работы по ее обслуживанию. Но в определенных ситуациях использование данного вида муфт приводит к дополнительным расходам, вследствие чего распространение получил и второй тип муфт – проходная;
По типу герметизации:
- «холодный» тип – данный тип герметизации подразумевает использование болтов, хомутов и защелок;
Монтаж оптической муфты
Оптические муфты имеют различную конструкцию и, соответственно, разную последовательность сборки. В комплект каждой оптической муфты, как правило, должна входить подробная инструкция по монтажу от производителя, но общий порядок монтажных операций в целом аналогичен для всех муфт. На примере оптической муфты NIKOMAX NMF-SC-1V-48-4MS мы рассмотрим порядок операции при монтаже и дадим некоторые рекомендации, которые упростят его процесс.
1) Организация рабочего места
Перед началом работ необходимо оснастить рабочее место:
- подготовить весь необходимый инструмент – от простых приспособлений для разделки оптического кабеля до дорогостоящего оборудования в виде сварочного аппарата и скалывателя оптических волокон;
2) Подготовка оптической муфты к монтажу
На данном этапе проверяется общее техническое состояние муфты и аксессуаров. Затем снимается крышка муфты, тем самым обеспечивается доступ непосредственно к ее внутренним элементам. Откручиваются и временно убираются в сторону все гайки в местах крепления силовых элементов и узлов заземления, убираются пластиковые гайки, прокладки и кольца с соответствующих входных/выходных трубок (кабельных вводов).
3) Определение длины волоконно-оптического кабеля, которая будет зачищена и закреплена
Это очень важный шаг, несоблюдение требований которого может привести к проблемам при выполнении последующих этапов!
На кабель надеваются все прокладки, гайки и герметизирующие кольца в той последовательности, как они располагались на вводе. Следующая информация о расположении меток носит скорее рекомендательный характер, но в большинстве случаев будет так:
- первая метка ставится на расстоянии 1720-2000 мм – этот запас будет использоваться для зачистки кабеля от оболочки, заведения защитных модулей в муфту, выделения волокон из модулей и последующей сварки;
Очень важно строго соблюдать требования, указанные в инструкции, и делать достаточный запас длины волокна на случай дефектов в процессе сварки.
Монтаж муфты
4) Разделка кабеля и очистка волокон
Снимаются защитные оболочки кабеля до меток, указанных в предыдущем шаге (для этого используется специальный нож). Затем при помощи стриппера производится вскрытие защитных модулей.
Небольшой совет, который значительно упростит данные действия: не нужно снимать всю оболочку кабеля целиком за один подход, намного удобнее счищать оболочки шаг за шагом небольшими участками.
5) Выполнение продольной герметизации и закрепление оптического кабеля
Необходимо еще раз убедиться, что гайки, прокладки и герметизирующие кольца надеты на кабель в правильном порядке. После удаления защитных оболочек для более плотного контакта на оболочку кабеля в месте крепления наматывается несколько слоев изоляционной ленты. Волоконно-оптический кабель вводится внутрь муфты и при помощи прижимной планки фиксируется на ее основании. Аналогичные действия выполняются и с силовым элементом, который помещается в фиксирующий разъем и прижимается обычной гайкой.
6) Закрепление и разделка модулей
Оптические модули маркируются при помощи липких маркеров из комплекта, затем вводятся в кассету и закрепляются на входе. При помощи стриппера снимается защитный модуль, а затем при помощи тканевой тряпки со специальной жидкостью удаляется гидрофобный заполнитель (если такой предусмотрен в конструкции кабеля).
7) Сварка оптических волокон
Сплайс-кассета
Данный процесс довольно сложный и требует профессиональных навыков от исполнителя, а также дорогостоящего оборудования. Процесс сварки выглядит следующим образом:
- перед процессом сварки на каждое волокно надевается гильза КДЗС;
8) Сборка корпуса муфты и размещение смонтированной муфты на месте
Перед сборкой проверяется, что во время процесса монтажа были соблюдены все технические требования:
- модули с оптическим волокном надежно закреплены на входе в кассету;
Затем крышка соединяется с основанием, и на место соединения надевается пластиковой обруч. После этого затягиваются гайки на кабельных вводах, и муфта готова к размещению в запланированном месте (опора, стена, кабельный колодец и т.д.)
Конечно, все вышеперечисленные шаги носят общий характер, и далеко не факт, что при монтаже муфты получится следовать им всем, а в каком-то случае данной информации будет просто недостаточно. Но для этого и предусмотрена подробная инструкция в комплекте.
Оптоволоконные сети – что это такое, и для чего они нужны?
Всем привет и сегодня речь у нас поёдет о не особо известных, но широко применяемых оптоволоконных связях. По-другому их можно ещё называть как ВОЛС или волоконно-оптические линии связи. Достаточно длинное название, поэтому в широких кругах чаще используется простое сокращение как «оптика» или «оптоволокно». На самом деле это не совсем одно и тоже, но обо всё по порядку.
ВОЛС — это специализированные линии связи, по которым передача информации идёт путём светового пучка в определённой кодировке. Эту технологию в первую очередь применяют для передачи данных в локальных и глобальных сетях на достаточно большое расстояние. Но её также используют и в военной промышленности, медицине и в других не сетевых сферах.
Принцип действия
И так мы уже разобрались, что такое ВОЛС, но каким же образом по ним передаётся информация. В подобных сетях используется оптоволокно. Оно состоит из центральной жили и имеет небольшой размер. Жила обычно сделана как вы, наверное, уже догадались из стекла. Именно по жиле и идёт передача данных пучком света.
Но тут сразу же встаёт вопрос – а как увеличить передачу на большее расстояние? Для этого используют второй слой стекла, который обволакивает центральную жилу и при передаче информации отражает свет. Ранее думали использовать в качестве отражения зеркала или подобие зеркальных поверхностей – но как оказалось, такой материал был бы очень дорогим.
Вы когда-нибудь бывали на море или озере в лучах заката. Помните, как свет от солнца под большим углом отражался от воды. Хотя как вы, наверное, знаете, вода прозрачная. Но при увеличении угла и плотности между двумя материалами – свет начинает отражаться от разных сред.
Именно эту технологию и используют в оптоволоконной связи. Сердечник и внешняя оболочка имеют разную плотность и структуру, из-за чего луч света, отражаясь, распространяется куда дальше. Для передачи и воспроизведения света используется полупроводниковый или диодный лазер.
Если окунуться в историю, то первыми трудами, который заложили основу «оптики» – было исследование Даниелем Колладоном и Жаком Бабинеттом. Они в первую очередь изучали возможности преломления света. Но если быть точнее, то прародителем стал Кларенс Хаснелл – он в первые применил свет для передачи изображения через специальные трубки.
Отличие от витой пары
Если окунуться в 2000-е годы, то возможно кто-то вспомнит, что тогда в России и других странах СНГ использовался только интернет по типу aDLS. Когда интернет пришёл в РФ, то страна была просто не готова к этому. По всей стране не было ничего подходящего, чтобы передавать информацию от компьютера к компьютеру.
Именно тогда пришла идея использовать старые телефонные провода. Напомню, что это обычные два проводка без оплётки и дополнительной защиты. В результате интернет всё же появился, но имел очень маленькую скорость. Также многие жаловались, на лаги, прерывания, постоянное отваливающийся интернет.
Все эти проблемы были связаны как раз со способом передачи информации. По двум проводкам без оплётки очень сложно было передавать данные – так как при передаче многие пакеты терялись или изменялись в результате помех от электромагнитных волн. На смену телефонным линиям пришла витая пара.
Витая пара — это скрученные пары проводов во одной внешней оплётке. Чаще всего используется именно витая пара с 4 парами (8 проводков). Данный вид коммуникации уже стал намного надёжнее телефонного кабеля. В качестве защиты от радиоволн придумали нехитрую штуку – а именно скручивание.
По одной паре передаётся одна и та же информация. При скручивании провод постоянно меняет своё положение. В результате первый проводок находится с внешней стороны и принимает весь удар окружающей среды. Второй провод прячется за него. Так передаваясь, информация по паре проводов в конце складывается. В результате также вычитается помехи.
Скорость при это выросла в несколько раз. Но была проблема быстрого затухания сигнала. Подобные провода могут бить до 100 метров, не дальше. А при увеличении скорости будет падать и диапазон действия.
Вот тут на смену пришла оптоволоконная связь. Скорость выросла ещё сильнее, но также увеличилось дальность отправки пакета. Если раньше приходилось каждые 100 метров устанавливать повторители, то при передаче с помощью «оптики» дальность стала больше на несколько километров.
Но что самое интересное – волоконная связь почти полностью защищена от электромагнитного воздействия. Также подобные провода почти неподвержены температурным скачкам и могут работать как в сильную жару, так и в дикий холод.
Частота передачи с помощью света выше поэтому минимальная скорость начинается от 1 Гбит в секунду. При передаче в витой паре при задействовании всех пар скорость будет 1 Гбит в секунду. Но при этом провод будет очень дорогим, так как для достижения такого результата нужно защитить каждый провод «экраном» от воздействия внешней среды.
К недостаткам ВОЛС можно отнести только сложность в монтаже и сварке. Для этого нужно специальное оборудования и знания. При «сварке» или по-другому соединении двух оптических кабелей – нужно добиться идеального соединения между центральными жилами и внешним стеклом. Иначе свет будет затухать именно на этом участке или коэффициент преломления будет не правильным.
Передача данных в сетях
Все происходит аналогично. Изначально отправительное устройство кодирует информацию в виде пакетов. Далее данные переводятся в тот формат, который можно передать с помощью света через ВОЛС. После этого информация отправляется по линиям связи. Почти моментально она доходит до приёмника. Ему же остаётся перевести данные в формат, понятный для компьютера, коммутатора, роутера или другого сетевого оборудования.
Сегодня оптоволоконные сети есть почти во всех городах. Подключение домов имеет непосредственно через «оптику». Кабель идёт к центральному коммутатору. Далее от него с помощью витой пары провода идут в каждый дом. Сейчас некоторые провайдеры начали подключать клиентов по оптоволокну. То есть вместо той же витой пары – используется «стекло».
Скорость на таких соединениях выше. При этом вырастает и качество связи и интернета. Из-за более высокой надёжности – значение отклика ниже и лагов меньше. Но тут нужно учитывать, что для подключения такого кабеля нужны специальные маршрутизаторы.
А еще у нас есть статья по схожей теме от Блондинки – ЧИТАЕМ ТУТ.
Переход волоконно-оптический
Изобретение относится к волоконно-оптической технике и может быть использовано для герметичного ввода оптического волокна через перегородку. Устройство содержит герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе частей с проходным отверстием для оптического волокна, закрепленного в установленном герметично на корпусе металлическом держателе. Держатель волокна выполнен в виде двух цилиндрических втулок, поджатых к корпусу со стороны входа и выхода волокна при помощи гаек и имеющих на посадочной поверхности диаметральные канавки с уплотнительными кольцами. Оптическое волокно металлизировано и герметично закреплено в осевом отверстии каждой втулки клеем. В одной из втулок волокно дополнительно закреплено при помощи пластичного металлического припоя. На посадочной поверхности обеих частей корпуса, размещенных с образованием внутренней полости между ними, выполнены канавки для установки в них уплотнительных колец. Место стыка частей закреплено снаружи накидной гайкой. Технический результат — повышение эксплуатационной надежности, герметичность и ударопрочность. 2 з.п. ф-лы, 2 ил.
Изобретение относится к волоконно-оптической технике, а именно к проходным устройствам для герметичного ввода оптического волокна через перегородку, и может быть использовано для ввода оптического волокна в загрязненную зону, в частности используется во взрывозащитной камере (ВЗК), содержащей после подрыва в ней взрывного устройства высокотоксичные экологически опасные продукты.
Известен узел продольной герметизации оптических кабелей [патент РФ №2091828, МПК 6 G02B 6/24, 6/44, опубл. 27.09.1997 г.], который представляет собой устройство гермоузла, применяемого в кабельных переходах между областями с различным давлением. Устройство содержит герметично установленный в стенке корпус с размещенными в нем оптическими кабелями, освобожденными от оплетки и помещенными в герметизирующий материал. На посадочной поверхности корпуса выполнены канавки для установки в них уплотнительных колец. Герметизирующий материал и корпус, представляющие единое целое, выполнены из одного и того же компаунда. В состав компаунда входит эпоксидная диановая смола, титанорганический сложный полиэфир, лапрол марки 503 и катализатор.
Данное устройство просто в выполнении. Отсутствие разнородных материалов исключает возникновение и накопление внутренних напряжений в узле, что препятствует снижению прочности оптических волокон и повышает срок их эксплуатации.
Однако недостатком данного узла герметизации является низкая надежность данного устройства из-за низкой ударопрочности при организации работ в условиях взрывного эксперимента. Так как корпус с волокнами, залитыми в компаунд, представляет единое целое, то площадь ударного воздействия относительно велика, что отрицательно влияет на ударопрочность. Так как компаунд является хрупким материалом для взрывного воздействия, то при ударах по корпусу возможны трещины или полное его разрушение. В данной конструкции герметизирующий элемент является единственным для всех волокон, размещенных в корпусе, что также является недостатком, так как появление трещины в одном из волокон приведет к нарушению герметичности всей конструкции. Кроме того, данный процесс герметизации пучка из волокон, освобожденных от оплетки оптического кабеля, является ненадежным при исследовании объекта, содержащего высокотоксичные экологически опасные продукты, после подрыва его в полости ВЗК. Так как каждое волокно представляет собой кварцевую нить, покрытую полимерным слоем, то при наличии высокого давления и высокотоксичных материалов возможно их проникновение между кварцевой нитью и полимерным покрытием. Удаление полимерного покрытия привело бы к возникновению царапин, рисок на кварцевой нити, что, в свою очередь, приведет к обрыву нити. Все это отрицательно влияет на герметичность и ударопрочность, снижая надежность конструкции перехода, и может привести к потере герметичности камеры при взрыве экологически опасных объектов в полости ВЗК.
Известен герметичный оптоволоконный ввод [патент США №4822130, МПК 6 G02B 6/36, опубл. 18.04.1989 г.]. Данное устройство содержит герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе частей, с проходным отверстием для оптического волокна, закрепленного в установленном герметично на корпусе металлическом держателе. Данное устройство принимается за прототип как наиболее близкое по технической сущности к заявляемому.
Части корпуса выполнены в виде двух резьбовых втулок, стянутых между собой по резьбе. Одна из втулок имеет фланец, которым поджимается к стенке (перегородке) затяжкой стопорной гайки, расположенной с противоположной стороны стенки. На посадочной поверхности фланца имеется канавка с уплотнительным кольцом. Держатель волокна выполнен в виде цилиндра с простирающимся сквозь него с воздушным зазором волокном, ограниченным по концам держателя медными втулками, которые служат для стыковки с внешними ответными частями (устройствами кабельных линий). Держатель волокна скреплен (припаян) своей средней частью с внутренним выступом одной из втулок.
Все элементы конструкции выполнены из металла, что повышает ударопрочность ввода в условиях взрывного воздействия по сравнению с вышеприведенным аналогом.
Однако недостатком данного ввода является низкая герметичность при работе в условиях взрывного эксперимента, что отрицательно влияет на надежность устройства. Так при попадании осколков на резьбовую втулку ее деформация приведет к деформации держателя волокна, разрушив герметизирующее соединение его с корпусом. Крепление в держателе концов оптического волокна путем обжатия медными втулками является негерметичным в условиях высокого давления при наличии высокотоксичных аэрозолей, что не отвечает требованиям экологической безопасности, особенно при ликвидации и экспериментальной отработке взрывных устройств, в состав которых могут входить экологически опасные высокотоксичные вещества. Кроме этого, обжатие волокна медными втулками может привести к сколу (разрушению, обрыву) волокна, что повлияет на получение измерительной информации. «Свободное» размещение волокна внутри держателя позволяет решить проблему возникновения и накопления внутренних напряжений в волокне при перепадах температур, но нарушение целостности держателя при воздействии на него осколков приведет к полной разгерметизации устройства путем образования течи аэрозолей между волокном и внутренней полостью держателя. Также установка данного ввода в стенке конструкции при помощи стопорной гайки, расположенной с противоположной стороны стенки, неприемлема в условиях возникновения динамических нагрузок, так как возможно ослабление (расстопорение) резьбовых соединений, отсюда разгерметизация устройства. Кроме этого, герметизация самого ввода со стенкой с помощью уплотнительного кольца путем затяжки стопорной гайки может быть использована в стенках небольшой толщины, что ограничивает область применения устройства.
Задачей изобретения является повышение эксплуатационной надежности устройства.
Технический результат, на достижение которого направлено изобретение, заключается в создании герметичного и ударопрочного перехода волоконно-оптического, позволяющего проводить исследования объекта, содержащего высокотоксичные экологически опасные продукты, после подрыва его в полости ВЗК.
Технический результат достигается тем, что в переходе волоконно-оптическом в загрязненную зону через металлическую стенку защитной конструкции, в частности взрывозащитной камеры (ВЗК), содержащем герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе частей, с проходным отверстием для оптического волокна, закрепленного в установленном герметично на корпусе металлическом держателе, согласно изобретению, держатель волокна выполнен в виде двух втулок, поджатых к корпусу со стороны входа и выхода волокна при помощи гаек и имеющих на посадочной поверхности диаметральные канавки с уплотнительными кольцами, оптическое волокно металлизировано и герметично закреплено в осевом отверстии каждой втулки клеем, при этом в одной из втулок волокно дополнительно закреплено при помощи пластичного металлического припоя, на посадочной поверхности обеих частей корпуса, размещенных с образованием внутренней полости между ними, выполнены канавки для установки в них уплотнительных колец, место стыка частей закреплено снаружи накидной гайкой.
Герметичное крепление оптического волокна в осевом отверстии каждой втулки клеем, в одной из втулок дополнительно волокно закреплено при помощи пластичного металлического припоя, при этом оптическое волокно металлизировано, наличие на посадочной поверхности каждой втулки диаметральных канавок с уплотнительными кольцами обеспечивают высокую механическую прочность (ударостойкость) и продольную герметичность соединения. Наряду с этим имеется возможность проведения дополнительной проверки на герметичность отдельно втулки с паяно-клеевым соединением волокна еще до окончательной сборки всего перехода (осуществить проверку высоким давлением и тонкой течью, позволяющей сымитировать высокотоксичные аэрозоли) и отбраковать, если это необходимо, заменив другой, что значительно повышает качество сборки конструкции, а значит и надежность устройства. Введение в конструкцию перехода металлизированного волокна (т.е. на кварцевую нить нанесен слой металла (например, меди) позволяет осуществить крепление волокна с помощью пластичного металлического припоя, что дает возможность выполнить требования по обеспечению условия герметичности перехода при проведении исследования объекта, содержащего высокотоксичные экологически опасные продукты, после подрыва его в полости ВЗК.
Крепление концов волокна в двух втулках, поджатых к корпусу со стороны входа и выхода волокна при помощи гаек, наличие образовавшейся воздушной внутренней полости между частями корпуса при их скреплении друг с другом дает возможность установить волокно с необходимой величиной «слабины», что позволяет обеспечить волокну «свободу» при возникновении и накоплении внутренних напряжений при температурных перепадах для сохранения его прочности (конструктивной целостности) в течение длительного времени эксплуатации. Все это повышает надежность перехода волоконно-оптического. Наличие уплотнительных колец на посадочной поверхности втулок и самого перехода (обеих частей корпуса) в стенке взрывозащитной камеры обеспечивает герметичность перехода.
Кроме этого выполнение корпуса составным из двух скрепленных по резьбе частей, место стыка которых закреплено снаружи накидной гайкой, позволяет создать двухуровневый волоконно-оптический переход, в котором условие повышения прочности (ударостойкости), герметичности и надежности решены таким образом, что каждая из частей корпуса представляет собой один из уровней герметизации. При возникновении удара по одной из частей (или при резком повышении давления) она может смещаться в сторону второй части, сминая резьбу накидной гайки и выбирая воздушный зазор, имеющийся между ними, гася тем самым ударную волну. При этом часть корпуса, находящаяся вдали от удара, является защищенной.
Кроме этого, миниатюризация крепления оптического волокна позволяет выполнить переход при необходимости многоканальным, т.е при незначительном увеличении внешнего диаметра корпуса появляется возможность разместить в нем несколько установленных аналогичным образом линий оптического волокна и повысить тем самым информативность герметичного перехода, расширив область его применения.
Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».
Новые признаки (выполнение держателя волокна в виде двух цилиндрических втулок, поджатых к корпусу со стороны входа и выхода волокна при помощи гаек и имеющих на посадочной поверхности диаметральные канавки с уплотнительными кольцами, оптическое волокно металлизировано и герметично закреплено в осевом отверстии каждой втулки клеем, при этом в одной из втулок волокно дополнительно закреплено при помощи пластичного металлического припоя, на посадочной поверхности обеих частей корпуса, размещенных с образованием внутренней полости между ними, выполнены канавки для установки в них уплотнительных колец, место стыка частей закреплено снаружи накидной гайкой) не выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».
Изобретение поясняется чертежами:
Фиг.1 — общий вид перехода волоконно-оптического;
Фиг.2 — поперечное сечение А-А на фиг.1.
Устройство выполнено следующим образом.
Переход волоконно-оптический состоит из скрепленных по резьбе двух стальных корпусов 1, 2 (фиг.1), через сквозные ступенчатые отверстия 3, 4 которых протянуто металлизированное оптическое волокно 5. Со стороны входа и выхода волокно 5 закреплено в цилиндрических втулках 6, 7, поджатых буртиками 8 с внешних сторон соответствующих корпусов 1, 2 при помощи гаек 9, 10. В осевом отверстии каждой втулки 6, 7 волокно 5 закреплено с помощью клея 11 и оснащено с внешнего торца заглушкой 12. Дополнительно во втулке 6 волокно 5 закреплено с помощью пластичного металлического припоя 13. Втулки 6, 7 имеют на посадочных поверхностях диаметральные канавки с уплотнительными кольцами 14. На посадочной поверхности в стенке ВЗК (не показано) корпусов 1, 2, размещенных с образованием внутренней полости 15 между ними, выполнены канавки для установки в них уплотнительных колец 16, 17, обеспечивающих герметичность перехода волоконно-оптического в стенке камеры. Место стыка корпусов 1, 2 закреплено снаружи накидной гайкой 18.
Переход снабжен элементами для установки других ответных частей.
В частном случае исполнения устройства переход волоконно-оптический выполнен с тремя линиями волокон, параллельных друг другу, закрепленных аналогичным образом (фиг.2), т.е. установлены по три втулки 6 и 7, равномерно распределенных по диаметру соответствующих корпусов 1, 2.
Сборка производится следующим образом.
Металлизированное волокно 5 закрепляют во втулке 6. Для этого осуществляют операцию впайки волокна 5: осевое отверстие втулки 6 диаметром 0,7-1,5 мм в зависимости от толщины волокна 5 (0,175-1,05 мм) заполняют легкоплавким припоем 13 на основе Pb-Sn, например ПОС-61. Затем в нем сверлят отверстие диаметром 0,4-1,3 мм, в которое вставляют волокно 5 соответствующей толщины, локально нагревают ТВЧ с применением припоя. Применение легкоплавкого припоя позволяет снизить термические напряжения в паяном шве. Далее выполняют операцию вклейки волокна 5 во втулку 6: зазоры, окружающие волокно 5 в осевом отверстии втулки 6, заполняют клеем 11 марки ЭЛ-20, который представляет собой смолу ЭД-20 (100 масс. долей) с отвердителем Л-20 (80 масс. долей), устанавливают заглушку 12 и подвергают термообработке до полного отверждения клеевого состава. Для этого выдерживают при температуре +45°÷50°C в течение 10 мин, затем вакуумируют при остаточном давлении не более 10 мм рт.ст. Общее время нагрева и вакуумирования клея не должно превышать 20 мин. Данный способ вклеивания позволяет работать устройству в течение 15 лет при воздействии перепадов температуры от -20° до +30°C. Припой 13 обеспечивает фиксацию волокна 5 до и в процессе полимеризации клея 11. Затем на втулку 6 устанавливают уплотнительные кольца 14, поджимают ее буртиками 8 к корпусу 1 затяжкой гайки 9 и проверяют конструкцию на герметичность, если необходимо, то отбраковывают, заменив другой, что обеспечивает надежность соединения волокна 5 в сборе.
После этого выполняют заделку второго конца волокна 5 в осевом отверстии втулки 7, предварительно установленной в корпус 2 с уплотнительными кольцами 14: волокно 5 (его свободный конец) вводят в проходное отверстие 4 корпуса 2 с обеспечением его небольшого изгиба (обеспечить «свободу» волокну), который оказывается в районе воздушной полости 15. Это позволяет избежать появления напряжений в волокне 5 при температурных перепадах. На корпус 2 устанавливают накидную гайку 18. Вращением гайки 18 соединяют корпуса 1 и 2 с образованием полости 15 между ними. Через осевое отверстие втулки 7 пропускают волокно 5. Втулку 7 буртиками 8 поджимают к корпусу 2 затяжкой гайки 10, устанавливают заглушку 12. Зазоры, окружающие волокно 5 в осевом отверстии втулки 7, заполняют клеем 11 марки ЭЛ-20, клей отверждают аналогичным образом, как и во втулке 6. На корпуса 1, 2 в выполненные кольцевые канавки устанавливают уплотнительные кольца 16, 17. Конструкцию еще раз проверяют на герметичность.
Данный процесс сборки выполняется одновременно с тремя, а при необходимости и с большим количеством волокон. Три линии волокон собирают параллельно аналогичным образом. Переход собран и готов к работе.
На предприятии был установлен переход волоконно-оптический в загрязненную зону через металлическую стенку ВЗК. Были проведены испытания, результаты которых подтверждают герметичность ВЗК в месте установки перехода как во время, так и после проведения испытаний. Переход, работая под высоким давлением до P=9,9 МПа (100 кгс/см 2 ), выдержал ударные нагрузки до 5000 g, сохранив герметичность. Попадание продуктов взрыва в окружающую среду при использовании известных методик и средств регистрации не было зафиксировано, что особенно важно в случае взрыва экологически опасных объектов.
Итак, представленные сведения свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:
— обеспечение повышения эксплуатационной надежности конструкции;
— обеспечение герметичности и ударопрочности ВЗК в месте перехода волоконно-оптического, позволяющего проводить исследования объекта, содержащего высокотоксичные экологически опасные продукты, после подрыва его в полости ВЗК;
— для заявляемого устройства в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления с помощью описанных в заявке и известных до даты приоритета средств и методов.
Следовательно, заявленное изобретение соответствует условию «промышленная применимость».
1. Переход волоконно-оптический в загрязненную зону через металлическую стенку защитной конструкции, в частности взрывозащитной камеры (ВЗК), содержащий герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе частей, с проходным отверстием для оптического волокна, закрепленного в установленном герметично на корпусе металлическом держателе, отличающийся тем, что держатель волокна выполнен в виде двух цилиндрических втулок, поджатых к корпусу со стороны входа и выхода волокна при помощи гаек и имеющих на посадочной поверхности диаметральные канавки с уплотнительными кольцами, оптическое волокно металлизировано и герметично закреплено в осевом отверстии каждой втулки клеем, при этом в одной из втулок волокно дополнительно закреплено при помощи пластичного металлического припоя, на посадочной поверхности обеих частей корпуса, размещенных с образованием внутренней полости между ними, выполнены канавки для установки в них уплотнительных колец, место стыка частей закреплено снаружи накидной гайкой.
2. Переход волоконно-оптический по п.1, отличающийся тем, что он снабжен элементами для подстыковки других ответных частей.
3. Переход волоконно-оптический по любому из пп.1 и 2, отличающийся тем, что он выполнен многоканальным с тремя установленными аналогичным образом параллельными линиями оптического волокна.