Кто придумал пакетную схему
Перейти к содержимому

Кто придумал пакетную схему

Какой ученый главным своим творением назвал многотомный труд о бабочках?

Именно он спроектировал первую ракету на гибридном топливе ГИРД-09, придумал пакетную схему многоступенчатой ракеты-носителя, первым заговорил о спутнике, реализовал идею использования на спутниках солнечных батарей и подготовил проект тяжёлого межпланетного корабля. При этом руководителем он никогда не был и не стремился им стать. А главным своим творением назвал многотомный труд о бабочках, над которым корпел в свободное время. О ком идет речь?

  • Константин Циолковский
  • Фридрих Цандер
  • Алексей Богомолов
  • Михаил Тихонравов
  • Николай Тихомиров

Пыталась я ответить на этот вопрос через поиск автора многотомного труда о бабочках, но не смогла этого сделать, нет упоминания об этом факте, я даже подставляла все эти пять фамилий, но так ничего и не нашла. Зато нашла имя человека, который спроектировал ракету ГИРД-09.

Уже из вопроса этот человек мне очень симпатичен и этим трудом о бабочках и нежеланием быть руководителем, начальником, для меня это говорит очень о многом. Качества, заставляющие человека или дающие ему возможность стать начальником, обычно предполагает отсутствие в человеке качеств, которые гораздо важнее для меня в моей системе ценностей. Речь в вопросе идет о Михаиле Тихонравове.

Большая ракета Сталина

28 июня 1954 года было выпущено секретное постановление Совета Министров СССР «О плане НИР по специальным изделиям», которым среди прочего определялся порядок и сроки выполнения работ над баллистической ракетой с прицельной дальностью 8000 км. В этом документе советское правительство указывало, что от теории пора переходить к практике и проект «чудо-оружия», которое ещё вчера считалось невозможным, должен стать приоритетным в деле укрепления обороноспособности страны.

Ракеты Дальнего Действия

Вторая мировая война породила множество технических новинок, которые заставили иначе взглянуть на условное поле боя. Атомные бомбы, реактивные самолёты, установки залпового огня и баллистические ракеты поменяли не только тактику, но и стратегию. Если говорить о видах оружия, использующих реактивное движение, то в Советском Союзе перед войной наиболее перспективными считались ракетные перехватчики и мобильные миномётные установки. К примеру, будущий главный конструктор ракетно-космической техники Сергей Павлович Королёв полагал, что самым прямым путём к достижению запредельных высот и скоростей полёта станет строительство ракетоплана — самолёта с ракетным двигателем на жидком топливе. Однако восторженное освещение военных побед гвардейских реактивных миномётов БМ-13 («Катюша»), которое ширилось с осени 1944 года, и сведения о новом немецком оружии, применяемом против западных союзников по антигитлеровской коалиции, побудило советских специалистов внимательнее отнестись к баллистическим ракетам.

Изменение взглядов можно проследить по инициативам Королёва. В январе 1943 года он возглавил группу №5 Опытно-конструкторского бюро 4-го Спецотдела НКВД СССР при Казанском авиамоторном заводе №16 (ОКБ-16), которая занималась самолётными реактивными установками, и активно продвигал свой проект истребителя РП с ракетным двигателем. Однако 14 октября 1944 года в письме заместителю наркома авиационной промышленности Петру Васильевичу Дементьеву он предлагал начать работы по «Ракетам Дальнего Действия» (РДД). Позднее Королёв перешёл к конкретике, выдвинув на рассмотрение начальства два предэскизных проекта: неуправляемого оперённого ракетного снаряда Д-1 и управляемого крылатого ракетного снаряда Д-2.

​Эскиз ракеты дальнего действия, выполненный С.П. Королёвым в 1944 году. Из фонда Музея космонавтики в Москве - Большая ракета Сталина | Warspot.ruЭскиз ракеты дальнего действия, выполненный С.П. Королёвым в 1944 году. Из фонда Музея космонавтики в Москве
​Черновые наброски ракетных конструкций, выполненные С.П. Королёвым в 1944 году. Из фонда Музея космонавтики в Москве - Большая ракета Сталина | Warspot.ruЧерновые наброски ракетных конструкций, выполненные С.П. Королёвым в 1944 году. Из фонда Музея космонавтики в Москве

«Объект Д-1» предлагалось создать на основе реактивных снарядов РС, которые к тому времени производились серийно и прошли испытания как в гвардейских миномётных частях, так и в авиации. Д-1 со стартовым весом 1000 кг, запускаемый с особого наклонного станка, должен был иметь дальность полёта до 13 км и предназначался для решения задач артиллерии (его действие можно было бы сравнить с артиллерийским снарядом калибра 305 мм), но превосходил её в мобильности и мощности огневого налёта.

В основу «объекта Д-2» была положена схема крылатой ракеты 217/II, с которой в 1935-1936 годах проводились экспериментальные работы на полигоне Реактивного научно-исследовательского института (РНИИ, НИИ-3). Снаряд со стартовым весом 1200 кг, запускаемый вертикально без станка, при дальности полёта 76 км превосходил артиллерию, поэтому, как отмечал Королёв в описании, его можно было рассматривать в качестве боевого средства, позволяющего «наращивать артиллерийский огонь» или вступающего «во взаимодействие с бомбардировочной авиацией оперативного тыла». По сравнению с последней Д-2 имел преимущества в независимости от погодных условий, скрытности сосредоточения, тактической внезапности и мощности огневых налётов, которые можно осуществлять в течение нескольких минут.

В качестве ракетного топлива на начальном этапе Королёв предлагал использовать существующие пороха (П1). При замене на пороха замедленного горения при пониженных давлениях (П2) ожидалось улучшение характеристик: дальность Д-1 увеличивалась до 60,5 км, а Д-2 — до 115 км. Кроме того, Королёв указывал, что применение для «объектов Д» жидкого топлива позволит увеличить дальности полёта до 150 км.

​Ракетные снаряды конструкции С.П. Королёва. Иллюстрация А. Шлядинского из книги А. Первушина «Красный космос» (2007) - Большая ракета Сталина | Warspot.ruРакетные снаряды конструкции С.П. Королёва. Иллюстрация А. Шлядинского из книги А. Первушина «Красный космос» (2007)

30 июня 1945 года конструктор вновь обратился в Наркомат авиационной промышленности с предложением об организации Специального бюро по ракетам дальнего действия. На этот раз он сформулировал свои перспективные планы более конкретно, остановившись на разработке «объекта Д-2» как ближайшей задаче на 1945-1946 годы. Подчёркивая реалистичность своих предложений, Королёв предлагал начать работы над ракетным снарядом с продувок моделей в аэродинамических трубах Центрального аэрогидродинамического института (ЦАГИ).

В «объектах Д» проявлена преемственность советской школы ракетостроения: от реактивных снарядов залпового огня к «изделиям», запускаемым вертикально на большую дальность. Однако к тому времени военные инженеры успели познакомиться с немецкими баллистическими ракетами А-4 («Фау-2») и убедиться, что те намного превосходят самые смелые отечественные инициативы.

8 сентября Королёв в составе группы специалистов выехал в Германию. В марте следующего года его назначили главным инженером института «Нордхаузен», организованного для изучения и обобщения опыта создания А-4.

Проблема выбора

Надо сказать, что у советских ракетчиков послевоенного времени довольно долго не было единого руководства. Первоначально Сталин собирался поручить работу по освоению трофеев Наркомату боеприпасов (НКБ). Например, 21 марта 1945 года вождь подписал постановление Государственного комитета обороны №7876сс «О вывозе оборудования по производству реактивных снарядов с немецких заводов “Гута Банкова” в г. Домброво Гурне и “Ферум” в г. Катовице», в котором наркому боеприпасов Борису Львовичу Ванникову предписывалось заняться проблемой и принять ракетные трофеи под свою ответственность. 19 апреля появилось постановление ГКО №8206сс «Об организации в системе Наркомата боеприпасов конструкторского бюро и опытного завода по реактивным снарядам», а 31 мая — постановление ГКО №8823сс «О вывозе оборудования, материалов и образцов узлов реактивных снарядов с германского реактивного научно-исследовательского института в г. Пенемюнде (остров Узедом)». И, наконец, 3 августа 1945 года было подписано постановление ГКО №9716сс «О вывозе оборудования и материалов с немецкого подземного завода в районе г. Нордхаузена для Наркомата авиационной промышленности и Наркомата боеприпасов».

Для изучения ракетных трофеев в Москве было создано Государственное Центральное конструкторское бюро реактивных снарядов (ГЦКБ-1) с опытным производством на базе завода №67 НКБ. В качестве основной испытательной станции подчинённые Ванникова собирались использовать авиабомбовый полигон, расположенный в восточной части Крыма. В то же самое время проблемой занимались специалисты из Научно-исследовательского института №1 Наркомата авиационной промышленности (НИИ-1 НАП), которые по решению наркома Алексея Ивановича Шахурина отправились в Германию с целью сбора информации о многочисленных ракетопланах, созданных инженерами Третьего рейха, и тоже претендовали на свою часть находок.

Чтобы как-то скоординировать деятельность групп, представлявших разные наркоматы, потребовалось учредить Комиссию по сбору материалов и изучению немецкого опыта создания реактивной техники. Соответствующее постановление ГКО за №9475сс появилось 8 июля 1945 года. Среди её членов был генерал-майор артиллерии Лев Михайлович Гайдуков, который активно занялся организацией работ на оккупированных территориях и в марте 1946 года возглавил институт «Нордхаузен». В свою очередь, именно более успешная деятельность его подчинённых в сравнении с теми, кто оставался в Москве, показала военно-политическому руководству страны, что имеющегося опыта конструирования реактивных миномётов и ускорителей для самолётов при освоении передовой ракетной техники явно недостаточно.

​Советские ракетчики в Германии. Стоят слева направо: Н.А. Пилюгин, А.Г. Мрыкин, И.Б. Бровко, С.Г. Чижиков, В.И. Харчев, В.С. Будник. Сидят слева направо: Л.А. Воскресенский, неизвестный, В.А. Бакулин, С.П. Королёв, В.П. Мишин, Ю.А. Победоносцев. Бляйхероде, февраль 1946 года. Фото из фонда Государственного музея истории космонавтики им. К.Э. Циолковского - Большая ракета Сталина | Warspot.ruСоветские ракетчики в Германии. Стоят слева направо: Н.А. Пилюгин, А.Г. Мрыкин, И.Б. Бровко, С.Г. Чижиков, В.И. Харчев, В.С. Будник. Сидят слева направо: Л.А. Воскресенский, неизвестный, В.А. Бакулин, С.П. Королёв, В.П. Мишин, Ю.А. Победоносцев. Бляйхероде, февраль 1946 года. Фото из фонда Государственного музея истории космонавтики им. К.Э. Циолковского
​Генерал-майор Л.М. Гайдуков (слева) и инженер-полковник С.П. Королёв (справа) в институте «Нордхаузен», Германия, 1946 год. Фото сделал В.П. Глушко historykorolev.ru - Большая ракета Сталина | Warspot.ruГенерал-майор Л.М. Гайдуков (слева) и инженер-полковник С.П. Королёв (справа) в институте «Нордхаузен», Германия, 1946 год. Фото сделал В.П. Глушко
historykorolev.ru

17 апреля 1946 года наркомы, причастные к стратегическим программам и ставшие месяцем ранее министрами, направили Сталину докладную записку, в которой отмечали, что количество реактивных «изделий», доставшихся «в наследство» от Германии, велико, но «неотложный теоретический и практический интерес» представляют ракеты дальнего действия с жидкостными двигателями, особенно в свете того, что ими плотно занялись англичане и американцы. Поэтому воспроизведение «Фау-2» следует выделить в особое научно-исследовательское и опытно-конструкторское направление, которое готово взять на себя Министерство вооружения во главе с Дмитрием Фёдоровичем Устиновым.

29 апреля по поводу записки состоялось вечернее совещание в кремлёвском кабинете Сталина, на котором вождь поддержал инициативу. 13 мая вышло постановление Совета Министров №1017-419 «Вопросы реактивного вооружения», которое сегодня принято называть «историческим». В нём предписывалось создать Специальный комитет по реактивной технике под председательством Георгия Максимилиановича Маленкова, который должен был осуществлять:

«а) наблюдение за развитием научно-исследовательских, конструкторских и практических работ по реактивному вооружению, рассмотрение и представление непосредственно на утверждение Председателя Совета Министров СССР планов и программ развития научно-исследовательских и практических работ в указанной области, а также определение и утверждение ежеквартальной потребности в денежных ассигнованиях и материально-технических ресурсах для работ по реактивному вооружению;

б) контроль за выполнением Министерствами и ведомствами заданий Совета Министров СССР о проведении научно-исследовательских, проектных, конструкторских и практических работ по реактивному вооружению;

в) принятие совместно с соответствующими Министрами и руководителями оперативных мер по обеспечению своевременного выполнения указанных заданий».

Согласно постановлению, ракеты дальнего действия доставались Министерству вооружений, а непосредственная работа по их проектированию, изготовлению и испытаниям возлагалась на «Научно-исследовательский институт реактивного вооружения и Конструкторское Бюро на базе завода №88», которые позднее стали ядром ракетно-космической отрасли страны.

​Страница из постановления Совета Министров №1017-419 «Вопросы реактивного вооружения» sputnik.rusarchives.ru - Большая ракета Сталина | Warspot.ruСтраница из постановления Совета Министров №1017-419 «Вопросы реактивного вооружения»
sputnik.rusarchives.ru
​Страница из постановления Совета Министров №1017-419 «Вопросы реактивного вооружения» sputnik.rusarchives.ru - Большая ракета Сталина | Warspot.ruСтраница из постановления Совета Министров №1017-419 «Вопросы реактивного вооружения»
sputnik.rusarchives.ru

Впрочем, нельзя сказать, что решение о необходимости принятия на вооружение ракет дальнего действия в те дни было принято окончательно. После того как на полигоне Капустин Яр осенью 1947 года состоялись успешные испытания «Фау-2», привезённых из Германии и собранных на заводе №88, встал вопрос о дальнейшем продолжении работ по созданию более совершенных «изделий». В то же время имевшаяся ракета давала более чем скромный результат в качестве оружия, поэтому возникли сомнения, стоит ли продолжать дело, и не лучше ли направить ресурсы на развитие стратегической авиации. Чтобы определиться с выбором, Сталин созвал новое совещание, на которое был приглашён и Королёв — главный конструктор ракеты Р-1 (8А11), которая проектировалась по образу и подобию «Фау-2». Оно состоялось поздним вечером 9 марта 1948 года.

Известный журналист-историк Ярослав Кириллович Голованов рассказал об этом совещании через свидетельство академика Виктора Ивановича Кузнецова (его в тот вечер, согласно рассекреченным документам, в кабинете у Сталина не было, поэтому приходится довериться пересказу пересказа):

«Выступать <…> начали артиллеристы. Больше всех горячился [маршал Николай Дмитриевич] Яковлев:

— Зачем нам ракета с дальностью в 260 километров, если она даёт разброс точности в четыре километра?! Насколько проще в этом случае использовать авиацию! Не только проще, но и дешевле — не надо строить стартовую позицию, кстати, не столь уж мобильную и весьма уязвимую для самолётов противника…

Сталин, как вспоминает Кузнецов, усадив всех, по своему обыкновению молча ходил вдоль стола, посасывая потухшую трубку. <…> Сталин спросил Устинова, какой-то пустяк, что-то о вагонах для транспортировки ракет, и Устинов не просто встал, а стремительно ввинтился в пространство над собой. Рядом с Устиновым сидел Яковлев. Надо сказать, что Королёв очень ценил и уважал Яковлева. Едва ли кто другой помогал ему так в строительстве Капустиного Яра, в работе над Р-1.

— Кто ещё хочет высказаться? — спросил Сталин, на секунду остановившись и оглядывая стол. — Пожалуйста, товарищ Королёв.

Королёв поднялся, не отрывая взгляда от рыжих глаз Сталина, как учил всех Устинов. Он начал крушить Яковлева с первой фразы, обвиняя его в недальновидности, технической отсталости, отсутствии чувства нового. Военные за столом переглядывались. Королёв припомнил Яковлеву всё, даже записку, которую тот написал в начале войны, критикуя «катюши».

— Был ли товарищ Яковлев тогда прав? Да, был. У «катюши» действительно было большое рассеивание. Он был прав тогда так же, как прав сегодня, — правдой только сегодняшнего, текущего дня. К счастью для всех нас, тогда товарища Яковлева не послушались. Думаю, что и сегодня мы не будем руководствоваться лишь данными сегодняшнего дня и не будем слушаться товарища Яковлева… <…>

Сталин продолжал бесшумно ходить. Стояла пронзительная тишина. Наконец он остановился и, плавно поводя мундштуком трубки в воздухе, сказал задумчиво:

— Я думаю, что военные всё-таки правы. Оружие с такими характеристиками нам не нужно. — И опять начал ходить.

Королёв сидел белый как мел. Сталин снова остановился:

— Но я считаю, что у ракетной техники большое будущее. Ракету надо принять на вооружение. И пусть товарищи военные приобретают опыт в эксплуатации ракет. Давайте попросим товарища Королёва сделать следующую ракету более точной, чтобы не огорчать наших военных…»

14 апреля 1948 года было принято постановление Совета Министров №1175-440, которым утверждался план дальнейших опытных работ по реактивному вооружению, предусматривавший в том числе начало испытаний новой советской ракеты Р-1.

Пакетная схема

С самого начала ракетчики думали о том, чтобы увеличить дальность полёта своих «изделий». Однако проблема доставки боевого заряда до территории США, казалось, не имеет решения в обозримом будущем. Для увеличения дальности до 7000-8000 км существовало два варианта: либо снабдить ракету крыльями, либо сделать её многоступенчатой. Оба варианта требовали проведения значительных исследовательских работ.

Шаг в нужном направлении сделал Михаил Клавдиевич Тихонравов — талантливый инженер и давний соратник Королёва. Когда летом 1944 года начался сбор сведений о «Фау-2», он в составе группы от НИИ-1 НКАП отправился на немецкий ракетный полигон Хайделагер (Heidelager), расположенный у польского города Дембица, и одним из первых сумел ознакомиться с секретным оружием гитлеровцев.

Через год Тихонравов в соавторстве с Николаем Гавриловичем Чернышёвым предложил проект пилотируемого варианта «Фау-2», получивший название ВР-190 («Победа»). Инициатива не была реализована, но способствовала переходу группы Тихонравова осенью 1946 года в Научно-исследовательский институт №4 Академии артиллерийских наук (НИИ-4 ААН), где он, имея звание инженер-полковника, получил должность заместителя начальника института, собственный сектор и возможность реализовать дальние планы.

​Инженер-конструктор М.К. Тихонравов с фрагментом двигательной установки ракеты А-4 («Фау-2»), Дембица, Польша, 1944 год. Фото Ю.А. Победоносцева из фонда Государственного музея истории космонавтики им. К.Э. Циолковского - Большая ракета Сталина | Warspot.ruИнженер-конструктор М.К. Тихонравов с фрагментом двигательной установки ракеты А-4 («Фау-2»), Дембица, Польша, 1944 год. Фото Ю.А. Победоносцева из фонда Государственного музея истории космонавтики им. К.Э. Циолковского

Одной из главных проблем многоступенчатых ракет была нерешённая задача запуска двигателей второй и последующих ступеней во время полёта. При этом было очевидно, что размеры межконтинентальной или космической ракеты, сконструированной по последовательной схеме, будут титаническими: придётся строить огромную монтажную башню, да и само «изделие» от увеличения длины не станет надёжнее.

В то время Тихонравов занимался подготовкой к изданию собрания трудов Константина Эдуардовича Циолковского. Среди прочего он обратил внимание на статью «Наибольшая скорость ракеты», которую основоположник теоретической космонавтики написал в январе 1935 года. В ней излагалась концепция «эскадры ракет», которая обещала получить любые скорости и дальности полёта — разумеется, применительно к проблеме межпланетных путешествий. Показав, что одиночная ракета «едва достаточна для роли близкого земного спутника», Циолковский сообщал:

«Мы сейчас укажем на иные приёмы получения гораздо больших скоростей ракеты. Они состоят в том, чтобы отправляться в путь нескольким одинаковым и скромным (по скорости) ракетам. Они, кроме последней, расходуют только половину взятого запаса взрывчатого вещества, а остальной половиной снабжают друг друга. Только последняя ракета приобретает необходимую скорость. Остальные освободившиеся от запаса снаряды планированием опускаются на землю. <…>

Имеем много совершенно одинаковых ракет. <…> С помощью эскадры этих ракет путём переливания запасов взрыва мы можем получить высшие скорости, которых одна ракета получить не может».

Тихонравов изучил не только рукопись «Наибольшая скорость ракеты», но и её изложение, которое сделал знаменитый популяризатор науки Яков Исидорович Перельман в книге «Циолковский. Жизнь и технические идеи» (1937). Тот писал, фактически выступив соавтором основоположника:

«Прибавлю от себя следующий вариант осуществления этой счастливой идеи. Разрозненные 512 ракет можно конструктивно соединить в один агрегат. Преимущества проекта сохраняются в полной мере, но процедура переливания топлива значительно упрощается и легко может быть автоматизирована; точно так же может быть сделано автоматическим и отбрасывание опорожнённых ракет».

«Счастливая идея» настолько захватила Тихонравова, что он поручил заняться её проработкой отделу жидкостных ракет, которым руководил Павел Иванович Иванов. Непосредственным исполнителем был назначен только что прибывший в НИИ-4 молодой научный сотрудник Игорь Марианович Яцунский.

​Иллюстрация к идее «эскадры ракет» из книги Я. Перельмана «Циолковский. Жизнь и технические идеи» (1937) - Большая ракета Сталина | Warspot.ruИллюстрация к идее «эскадры ракет» из книги Я. Перельмана «Циолковский. Жизнь и технические идеи» (1937)

В декабре 1947 года был выпущен «Предварительный отчёт об исследовании эффективности составных ракет». В нём отмечается, что современное состояние техники заставляет искать решение вопроса о достижении больших дальностей «при помощи составных ракет, части которых после сгорания топлива постепенно бы отпадали, тем самым облегчая вес ракеты в полёте». Далее Яцунский показывал, что «многоступенчатая ракета предполагает в связи с отбрасыванием отработанных частей возможность уменьшения относительного пассивного веса и, следовательно, значительного увеличения скорости по сравнению с одиночной ракетой. В этом главное преимущество составных ракет перед одиночными».

Вскоре Яцунский получил новое задание. Много позже он вспоминал:

«Мне он [Тихонравов] дал задание — найти закон, по которому надо отбрасывать ракеты после их опорожнения, т.е. найти оптимальное распределение отбрасывания масс. Это задание я выполнил к середине 1948 г. На основании этих расчётов он поручил мне подготовить материал (графики, плакаты) для доклада, который он решил сначала сделать в институте».

Интерпретация идеи «эскадры ракет» состояла в том, чтобы запускаемые одновременно ракеты, имеющие, по Циолковскому, только гидравлические связи, снабдить дополнительно механическими связями, объединив в один «пакет». При этом напрашивалось сразу несколько вариантов соединения однотипных ракет. По схеме «матрёшка» вначале стартовала одна из ракет, в которую вставлены все остальные. Когда первая израсходует топливо, она отпадает, и начинает работать следующая. Собственно «пакетная» схема представляла собой чистое параллельное соединение. Запуск двигателей всех ракет осуществляется одномоментно на старте. Топливо к ним подаётся сначала от одной ракеты, которая после опустошения отваливается; топливное питание двигателей производится из другой ракеты и так далее. Третья схема, названная «ракетным комплексом», похожа на обычную пакетную, но топливо перекачивается в центральные ракеты, когда баки наполовину опорожняются, после чего пустые ракеты опять же сбрасываются.

Составные ракеты, собранные по описанным схемам, теоретически не имеют ограничений по дальности полёта — то есть сначала задаёшь дальность, а потом проектируешь под неё «пакет».

Научно-технический совет НИИ-4 принял доклад насторожённо. Критики указывали на плохую аэродинамику соединения ракет, уязвимость механических соединений и трудность запуска «пакета». Тем не менее, Тихонравов решился представить расширенный вариант доклада под названием «Пути осуществления больших дальностей стрельбы ракетами» на сессии Академии артиллерийских наук, состоявшейся 14 июля 1948 года в Центральном доме Красной армии.

Выступление Тихонравова вызвало бурю негодования. В то время мало кто из военных специалистов верил в практическую возможность достижения дальностей выше 1000 км с помощью баллистических ракет. Поэтому сообщение о том, что «пакет» способен достичь любых дальностей и даже вывести на орбиту искусственный спутник Земли, взбудоражило зал, вызвало отрицательные и даже язвительные отклики. Только два авторитетных конструктора из присутствующих поддержали идею — Сергей Павлович Королёв и Юрий Александрович Победоносцев.

​А.А. Космодемьянский, Б.Н. Воробьёв, М.К. Тихонравов и С.П. Королёв на праздновании 90-летия со дня рождения К.Э. Циолковского, Москва, 12 сентября 1947 года. РГАНТД. Ф.211, оп.7, д.501 - Большая ракета Сталина | Warspot.ruА.А. Космодемьянский, Б.Н. Воробьёв, М.К. Тихонравов и С.П. Королёв на праздновании 90-летия со дня рождения К.Э. Циолковского, Москва, 12 сентября 1947 года. РГАНТД. Ф.211, оп.7, д.501

Революционная работа едва не стала катастрофой для научной карьеры Тихонравова. Отдел Иванова был расформирован как «занимающийся неактуальными проблемами», его руководитель в знак протеста покинул НИИ-4. Яцунского перевели на другой проект, и Тихонравов с большим трудом добился, чтобы молодой учёный продолжал работать с ним по тематике «пакета».

В декабре был подготовлен отчёт «Исследование вопроса о дальностях полёта бескрылых составных ракет на жидком топливе». Проделанные исследования были охарактеризованы следующим образом:

«1) решена задача об оптимальном распределении весов ступеней составных ракет с различными значениями скоростей истечения и различными коэффициентами эффективности конструкции для каждой ступени;

2) произведено исследование влияния гравитационного поля Земли;

3) произведено исследование влияние сопротивления воздуха;

4) даны соображения о применении оптимальных соотношений к соединениям одинаковых ракет (пакеты)».

Интересен момент применения пакетной схемы к «Фау-2». Тихонравов писал:

«Расчёт показывает, что мы можем взять 7-7,5 т полезного груза; выпустив пять ракет типа А-4 пакетом, мы перенесём груза больше, чем в случае, если бы выпустили их поодиночке.

Главный вывод, который можно сделать из всего вышесказанного следующий: всю проблему дальней стрельбы ракетами возможно решить с помощью одной рационально выбранной ракеты. Система ракетных пакетов позволяет ограничиться одной ракетой, с помощью которой могут быть достигнуты все дальности стрельбы. Таким образом, проблема создания разных ракет на разные дистанции заменяется проблемой создания одной ракеты, размерность которой должна быть выбрана очень тщательно, так как от неё зависит величина и громоздкость пакетов, в состав которых она должна входить».

В июле 1949 года Тихонравов пригласил Королёва в НИИ-4 и показал ему свои выкладки. Главный конструктор был впечатлён и дал высокую оценку, сказав дословно: «Вы — Инженеры с большой буквы». 16 декабря он направил институту техническое задание на выполнение работ по теме «Исследование возможностей и целесообразность создания составных ракет дальнего действия типа “пакет”».

Межконтинентальная «семёрка»

Для Королёва идея «пакета» представляла большой интерес в связи с работами над ракетой Р-3, создаваемой под дальность полёта 3000 км. Как раз в декабре 1949 года состоялась защита эскизного проекта. В разделе под названием «Анализ схем баллистических ракет» Королёв писал:

«Баллистическая составная схема №3. В этой схеме имеется как бы параллельное соединение ступеней. На первой ступени активного участка траектории все двигатели питаются топливом, находящимся во внешних топливных баках. После того как этот запас топлива израсходован, конструкция этих баков вместе с двумя двигателями сбрасывается, и внутренняя часть продолжает полёт на оставшемся двигателе».

Вслед за Тихонравовым он подчёркивал, что для реализации возможностей «пакета» необходимо разработать одноступенчатую баллистическую ракету, которая «достаточно полно исчерпала бы возможности несоставных ракет», что позволило бы «использовать эту ракету как звено одной из более сложных составных схем». Такой «рационально выбранной» ракетой, по мнению Королёва, могла стать Р-3.

​Эскизный проект ракеты Р-3 (8А67). РКК «Энергия» - Большая ракета Сталина | Warspot.ruЭскизный проект ракеты Р-3 (8А67). РКК «Энергия»

Группа Тихонравова приступила к выполнению заказа, и в течение 1950 года провела большое исследование, результаты которого обобщили в отчёте «Исследование возможности и целесообразности создания составных ракет дальнего действия» (первая часть отчёта утверждена в августе, вторая — 5 декабря). Яцунский рассказывал:

«Был исследован двухступенчатый пакет из 3-х мощных ракет последней на тот период разработки ОКБ С.П. Королёва [ракеты Р-2 и Р-3]. Анализ движения такого пакета ракет показал, что он может вывести на орбиту искусственный спутник Земли достаточно большого веса. Пожалуй, это была первая в СССР проработка вопроса создания ИСЗ, базирующаяся на конкретных проектных разработках одноступенчатых ракет, поэтому её результаты были весьма реальны».

В то же самое время бюро Королёва столкнулось с большими трудностями при проектировании конкретных узлов Р-3. В частности, во время экспериментально-доводочных испытаний ракеты Р-2 (8Ж38), проходивших на полигоне Капустин Яр с 21 октября по 20 декабря, было отмечено разрушение стабилизирующей цилиндрической оболочки («юбки») головной части. Доктор технических наук Виктор Фёдорович Гладкий вспоминал:

«То, что каждая вторая машина терпела аварию, не удручало конструкторов. Они оперативно реагировали — устраняли все обнаруженные недоработки, в основном производственного характера. С пониманием относилась к ним и Госкомиссия, так как боевые части остальных машин падали туда, куда нужно. Но вот перед последним пуском один молодой офицер заметил (при посещении района их падения), что образуемые ими воронки меньше, чем у головок экспериментальной ракеты Р-2Э, несмотря на большую скорость «приземления». Баллистики пожимали плечами, а конструкторы посмеивались. Королёв же забеспокоился и попросил начальника полигона В.И. [Василия Ивановича] Вознюка послать туда солдат и прочесать бескрайнюю степь. И солдаты нашли сплюснутую, но целую хвостовую оболочку («юбку») головки, обеспечивавшую её устойчивое движение в атмосфере носиком вперёд. Причём нашли «юбку» довольно далеко от ближайшей воронки, что свидетельствовало о её отрыве в полёте и последующем падении головки плашмя с небольшой скоростью. <…>

Разобраться в причине такого феномена аварийная комиссия не смогла вследствие полного отсутствия телеметрической информации о характере полёта головки, и главный конструктор велел просто увеличить вдвое число [крепёжных] болтов. К великому удивлению, не помогло! «Юбку» снова оторвало, хотя и на несколько меньшей высоте. Ситуация мгновенно обострилась — места для установки дополнительных болтов уже просто не было.

Аварийная комиссия, подтвердив правильность выбора параметров «юбки», пришла к выводу об ошибочном подходе к прогнозированию действующих на неё нагрузок, в частности, изгибающих моментов. <…> Такой момент мог практически возникнуть вследствие мгновенной потери устойчивости движения ОГЧ [отделяемой головной части] при максимальном скоростном напоре (у земли) из-за сплющивания «юбки» в полёте, вызванного разрушением подкрепляющих её шпангоутов от нагрева, который не учитывался при её проектировании.

Я предложил снизить величину этого нагрева путём увеличения вдвое толщины оболочки «юбки». Так и сделали, ибо иных предложений не имелось. И таким образом, эта недоработка, которая показалась всем рядовой, была успешно устранена, что подтвердили последующие в июле [1951 года] испытания второй партии машин Р-2.

Казалось бы, проблема успешно решена. Но <…> фактически ракетная техника подошла к «тепловому барьеру», причём намного раньше, чем предполагалось. И принятый варварский способ его преодоления на ракете Р-2 наносил смертельный удар проекту ракеты Р-3, поскольку масса конструкции её ОГЧ при этом возрастала настолько, что не оставалось места для самого боевого заряда.

Королёв был потрясён тем, что совершенно неожиданно для себя оказался на дне пропасти. И достаточно глубокой. Ведь это происходило в период, когда в стране нарастала очередная волна репрессий. И у него на шее всё ещё висела петля судимости за «вредительство». И за проект отвечал в первую очередь он, а не наука. <…>

Как ни парадоксально, но Королёву сильно повезло, что он очутился в таком положении уже после защиты проекта Р-3. Ведь не было бы у него своего КБ [конструкторского бюро], если бы последний был забракован на корню. Более того, этот «тепловой барьер» мог бы тогда вообще привести к отказу от разработки ракет баллистического типа по примеру американцев.

Воспользовавшись тем, что создание Р-3 официально рассматривалось в качестве промежуточного этапа проектирования межконтинентальной ракеты, Королёв решил привязать к ней все изыскания, связанные с выявлением способов преодоления злополучного «барьера».

Мы <…> (посвящённые в тайну проекта Р-3) настойчиво твердили о целесообразности полной защиты оболочки головной части от теплового воздействия нанесением соответствующего покрытия, как это делалось в металлургии. Упирали на то, что продолжительность её нагрева, измеряемая секундами, а не часами и сутками, как в домнах, существенно облегчает подобное решение проблемы.

Проведя при посредничестве руководителя отдела материаловедения института В.Н. [Виктора Николаевича] Иорданского серию консультаций в этом направлении, главный конструктор убедился в принципиальной возможности создания такого покрытия из сравнительно лёгких материалов с высокой температурой плавления и низкой теплопроводностью. Металлурги усматривали трудности лишь в обеспечении целостности покрытия при огромных скоростных напорах воздуха, то есть в технологии его нанесения на наружные поверхности конических оболочек».

​Автопоезд с ракетой дальнего действия Р-2 (8Ж38) на полигоне Капустин Яр mil.ru - Большая ракета Сталина | Warspot.ruАвтопоезд с ракетой дальнего действия Р-2 (8Ж38) на полигоне Капустин Яр
mil.ru

Несмотря на то, что путь к решению проблемы определился, создание стенда, позволявшего моделировать тепловые процессы на головной части ракет, требовало много времени и сил. Оказывался под угрозой срыва план не только по Р-3, но и по «предварительной» ракете Р-3А. Ситуация складывалась таким образом, что Королёв был заинтересован в том, чтобы свернуть проект ракеты на дальность 3000 км в пользу двухступенчатой ракеты с межконтинентальной дальностью, теоретическое обоснование которой он получил благодаря изысканиям группы Тихонравова.

4 декабря 1950 года бюро Королёва занялось комплексной поисковой работой по теме Н-3 «Исследование перспектив создания баллистических ракет дальнего действия (БРДД) различных типов с дальностью 5…10 тысяч километров и массой боевой части 1…10 тонн». Главный конструктор выдал соответствующее задание НИИ-4 и получил два отчёта под общим заголовком «Исследование принципа ракетных пакетов для достижения больших дальностей стрельбы» (первый был утверждён 30 мая, второй — 24 сентября 1951 года).

В то же время стало ясно, что концепция «эскадры» одинаковых ракет с перетеканием топлива слишком сложна для быстрой технической реализации, поэтому от неё отказались в пользу «простейшего пакета» из ракет, которые унифицированы, но соединены только механическими связями и отличаются друг от друга тем, что в них заливается различное количество топлива, необходимое для сжигания на определённом участке полёта. Варианты новой конфигурации БРДД взялись рассчитать учёные из группы Мстислава Всеволодовича Келдыша в Математическом институте Академии наук (МИАН). В отчёте «Баллистические возможности составных ракет» они показали, что сборка из трёх Р-3 со стартовой массой 200 т при массе полезной нагрузки 3 и 10 т вполне может развить конечную скорость 7,5 км/с и 5,5 км/с, преодолев расстояние 10 000 и 4 000 км соответственно.

В октябре 1951 года Королёв, получив в свои руки научное обоснование, обратился к Устинову с предложением создать ракету средней дальности Р-5, чтобы оперативно решить две задачи: поставить на вооружение носитель атомного заряда и испытать прототип унифицированного блока для «пакета» межконтинентального носителя. Идея выглядела очень привлекательной, и министр дал своё согласие.

Обе задачи были решены успешно. Серийная модификация ракеты Р-5М (8К51) с атомной боеголовкой была принята на вооружение в июне 1956 года, а опытно-конструкторские изыскания в рамках проекта межконтинентальной ракеты были выполнены на ракетах Р-5Р (пуски состоялись в мае-июне 1956 года) и М5РД (пуски состоялись в июле-сентябре 1956 года).

Однако переход от одноступенчатых ракет к многоступенчатым требовал проведения исследований более широких масштабов, чем могли осуществить специалисты НИИ-4 и МИАН. Поэтому 13 февраля 1953 года Сталин подписал постановление Совета Министров №443-213 «О плане научно-исследовательских работ по ракетам дальнего действия на 1953-1955 гг.», в котором «особо важными задачами» признавались изыскания, «обеспечивающие разработку управляемой двухступенчатой баллистической ракеты» с дальностью полёта 8000 км и весом боевой части не менее 3000 кг. При этом первая партия из семи экспериментальных ракет должна была появиться в первом квартале 1955 года.

​Страница из постановления Совета Министров №443-213 «О плане научно-исследовательских работ по ракетам дальнего действия на 1953-1955 гг.» sputnik.rusarchives.ru - Большая ракета Сталина | Warspot.ruСтраница из постановления Совета Министров №443-213 «О плане научно-исследовательских работ по ракетам дальнего действия на 1953-1955 гг.»
sputnik.rusarchives.ru

Исследования пакетной схемы были продолжены, теперь — в рамках тем Т-1 и Т-2. Первая предусматривала изучение баллистических ракет с последовательным, параллельным и последовательно-параллельным соединением ступеней, вторая — баллистических ракет с крылатой последней ступенью или крылатой боевой частью. Всего было изучено около шестидесяти различных вариантов. Хотя Королёв, будучи по образованию авиационным инженером, увлекался ракетопланами, в итоге он остановился на чистой баллистической схеме, предусматривавшем соединение пяти однотипных ракет: одной центральной и четырёх боковых.

В мае выбор «пакета» был утверждён. В этом проекте двигатели РД-105 и РД-106 ступеней ракеты, которыми занимался коллектив под руководством Валентина Петровича Глушко, выполнялись в однокамерном варианте. Однако в октябре 1953 года по указанию заместителя председателя Совета Министров Вячеслава Александровича Малышева, который сменил Лаврентия Берию на посту руководителя Первого главного управления, занимавшегося атомной программой, заряд решили заменить термоядерным; при этом масса полезной нагрузки ракеты увеличилась до 5,5 т при сохранении прежней дальности полёта. Королёв обратился к Келдышу с просьбой «пересчитать» ракету, а Глушко пришлось отказаться от однокамерных двигателей в пользу принципиально новой конструкции — блока из четырёх камер сгорания с общим турбонасосным агрегатом.

Основные вехи в развитии методов пакетной коммутации

В начале 60-х годов прошлого столетия технология коммутации каналов, несмотря на присущие ей недостатки, зарекомендовала себя достаточно хорошо. Большинство специалистов данную технологию рассматривало как единственную, и говорить о ее замене не приходилось. К тому же еще 80 лет назад — в 1880-х годах, механизм выделения необходимой пропускной способности на все время сеанса связи (а именно на этом принципе построена коммутация ка­налов) был более предпочтительным по сравнению с динамическим выделением необходимых ресурсов (телеграфные службы). Но в то время, когда положение коммутации каналов казалось очень прочным, появляются новые технологии, требующие других механизмов передачи данных и решающие совершенно иные задачи.

В предлагаемом историческом очерке рассказано об основных этапах развития технологий коммутации пакетов — дейтаграммном режиме и методе виртуального канала. Рассказано также о напряженной научно-исследовательской деятельности тех, кто оказал непосредственное влияние на развитие идей пакетной коммутации. В первую очередь, это американские специалисты Леонард Клейнрок и Поль Бэрэн, а также английский ученый Дональд Дейвис. В связи с тем, что развитие дейтаграммного режима совпало с началом создания глобальной сети Интернет, в статье содержится материал, описывающий эволюцию глобальной сетевой инфраструктуры.

Основные принципы

Прежде чем приступить к историческому описанию того, как по­явилась на свет технология коммутации пакетов, кратко напомним основные принципы, достоинства и недостатки другого способа коммутации — коммутации каналов.

Основная особенность метода коммутации каналов заключается в том, что на время соединения между взаимодействующими устройствами устанавливается канал связи. Как правило, коммутируемый канал предоставляет фиксированную скорость передачи данных. Важной особенностью технологии коммутации каналов является то, что канал устанавливается до начала передачи данных. Таким образом, пропускная способность канала выделяется на все время установления соединения и остается недоступной для других приложений. В случае голосового соединения дуплексный канал используется только на 50 %, т.к. обычно в один момент времени говорит только один абонент, а другой слушает. При этом полоса пропускания выбирается такой, чтобы обеспечить приемлемое качество речи.

Использование данного метода коммутации при передаче данных между двумя компьютерами малоэффективно, что объясняется несколькими причинами. Во-первых, при организации связи между двумя рабочими узлами канал, как правило, свободен значительную часть времени, что приводит к неэффективному использованию пропускной способности системы. Во-вторых, технология коммутации каналов предоставляет взаимодействующим устройствам фиксированную скорость передачи, что значительно ограничивает возможности сети при организации связи между разнообразными устройствами.

В качестве альтернативы была предложена технология коммутации пакетов. Говорить о том, что данная технология была изобретена, не совсем корректно, правильнее было бы сказать, что она была заново открыта. Подобные технологии применялись еще в XIX в. Примером может служить пересылка почты или передача телеграфных сообщений. Основная идея метода коммутации пакетов заключается в том, что данные разбиваются и передаются в виде блоков, называемых кадрами или пакетами. Каждый пакет, помимо передаваемых данных, также включает заголовок и целый ряд других служебных полей, расположенных в начале или конце пакета (рис. 1).

Организация связи в этом случае выглядит следующим образом. Рабочая станция посылает данные в виде последовательности пакетов. Сначала пакеты посылаются на узел, к которому непосредственно подключена передающая станция; данный узел по полю заголовка определяет маршрут следования пакетов и на основании этого перенаправляет пакеты на порты, подключенные к соответствующим каналам.

    К основным преимуществам пакетной коммутации можно отнести следующее.
  • В связи с тем, что при передаче пакетов от различных приложений каждый узел может динамически распределять собственные ресурсы, данная технология позволяет более эффективно использовать линии связи. Если на передающем узле будет скопление пакетов, превышающее емкость узла, то пакеты будут записаны в буфер с установлением очередности передачи.
  • При возрастании потока пере­даваемой информации в случае с коммутацией каналов сеть окажется перегруженной, а возможность уста­новки соединения будет блокирована. В сетях с коммутацией пакетов даже при большой загруженности передача данных будет продолжаться, но лишь с меньшей скоростью и со значитель­ными задержками.
  • Технология коммутации паке­тов позволяет использовать систему приоритетов. Т.е. при передаче паке­тов, принадлежащих нескольким при­ложениям, первыми будут передава­ться пакеты, имеющие более высокий приоритет.
  • В сетях с коммутацией пакетов возможно динамическое изменение скорости передачи данных во время сеанса связи. Это, в свою очередь, позволяет организовать соединение между узлами сети, связанными меж­ду собой каналами связи с различной пропускной способностью. Подобный механизм преобразования скорости добавляет дополнительную гибкость при передаче данных.

Рассмотрев некоторые общие вопросы, касающиеся метода коммутации пакетов, перейдем к непосредственному описанию того, кем и когда впервые была предложена пакетная коммутация.

Дейтаграммный режим

Леонард Клейнрок

Леонард Клейнрок

Одним из пионеров в области пакетной коммутации является Леонард Клейнрок. Клейнрок родился в 1934 г . в Нью-Йорке. После окончания в 1957 г. городского колледжа он стал инженером-электриком. Свое образование Л. Клейнрок продолжил в Массачусетском технологическом институте, где в 1959 г. получил степень магистра, а в 1963 г. защитил докторскую диссертацию. После получения докторской степени он стал профессором в области компьютерных наук в Калифорнийском университете в Лос-Анджелесе (США). В этом учебном заведении им был образован Сетевой измерительный центр ( Network Measurements Center ), сотрудниками которого, как правило, становились студенты, окончившие университет. Данный центр станет первым узлом глобальной сети Интернет.

По воспоминанию самого Л. Клейнрока, работы над теорией пакетной коммутации были начаты им в 1959 г. В июле 1961 г. он опубликовал свою первую работу, посвященную цифровым сетям связи — "Информационные потоки в больших сетях связи". Новые идеи пакетной коммутации были изложены Л. Клейнроком в тезисах к докторской диссертации. Спустя год идеи были им доработаны и опубликованы в книге "Сети связи" ("Communication nets").

Практическая реализация принципов пакетной коммутации состоялась в 1965 г . В феврале этого года директор Бюро по методам обработки информации ( IPTO — Information Processing Techniques Office ) Айвен Сьюзерланд подписал с молодым специалистом Лоуренсом Робертсом контракт на создание местной компьютерной сети. В июле этого же года к Л. Робертсу присоединился молодой психолог Томас Мэрилл. В октябре 1965 г. совместная работа двух молодых ученых увенчалась успехом — им удалось связать низкоскоростной коммутируемой телефонной линией на скорости 1200 бит/с два компьютера — ТХ-2 из Lincoln Lab Массачусетского технологического института и AN / FSQ -32 из System Development Corporation, находившийся в Санта Монике (штат Калифорния, США). Данная компьютерная сеть стала первой сетью с пакетной коммутацией. И хотя в данной сети время доставки сообщения было слишком большим, а надежность системы оставляла желать лучшего, это был шаг вперед на пути к новым технологиям.

Поль Бэрэн

Поль Бэрэн

В октябре 1966 г. Л. Робертс и Г. Мэрилл опубликовали книгу "В направлении к кооперативным сетям с компьютерами, разделенными во времени" ("Toward a Cooperative Network of Time — Shared Computers"), в которой подробно описывалась совместная деятельность обоих ученых. В ходе данного эксперимента стало очевидно, что телефонная сеть с коммутацией каналов абсолютно непригодна для построения компьютерной сети. Данное обстоятельство лишний раз подтвердило убежденность Л. Клейнрока в том, что сети будущего будут строиться с использованием коммутации пакетов.

В 1966 г. Л. Робертс стал руководителем группы по разработке компьютерной сети ARPANET, ставшей предшественницей Интернета. В основу создания этой разветвленной цифровой сети связи, охватывающей большую территорию, Л. Робертс положил идеи Л. Клейнрока. В октябре 1968 г. Л. Робертс заключил контракт с возглавляемым Л. Клейнроком центром на проведение измерений в сети ARPANET. В сентябре 1969 г. сотрудники центра подключили к интерфейсному процессору сообщений один из своих компьютеров, ставший первым хостом сети Интернет.

Леонард Клейнрок

Л. Клейнрок рядом с первым коммутатором IMP, который в сентябре 1969 г. был установлен в Сетевом измерительном центре университета Лос-Анджелеса

Паралелльно с Л. Клейнроком аналогичный метод коммутации пакетов предложил Поль Бэрэн. П. Бэрэн родился в 1926 г . в Польше. В 1928 г . его родители переехали в США — сначала в Бостон, а затем в Филадельфию. После окончания школы Поль поступил в Дрексельский уни­верситет на факультет электротехни­ки. После окончания данного учебно­го заведения он устроился на работу в качестве техника в Eckert — Mauchly Computer Corporation . Вскоре он переехал вместе с семьей в Лос-Анджелес, где начал работать в Hughes Aircraft Company. Одновременно молодой человек начал посещать в Калифорнийском университете в Лос-Анджелесе ночные учебные курсы для повышения квалификации специалистов, которые успешно закончил в 1959 г.

В том же 1959 г. он ушел из Hughes Aircraft Company и перешел на работу в RAND (Research and Development) Corporation. В начале 70-х годов П. Бэрен покинул RAND Corporation и начал заниматься частной практикой. Он основал компанию Metricom и был соучредителем Com 21. com . За активную научную деятельность и огромный вклад в развитие глобальной информационной инфраструктуры П. Бэрэн награжден многими почетными наградами, включая медаль им. Александра Грэхэма Белла и награду от Международного общества Маркони — MIF ( Marconi International Fellow ­ ship ).

Свои первые исследования по пакетной коммутации П. Бэрэн опубликовал, уже будучи сотрудником RAND Corporation в августе 1964 г. в 11-томном отчете "On Distributed Communications". В разработках П. Бэрэна и Л. Клейнрока было очень много общего. Отчасти это объясняется тем, что основной целью их было создание сети связи, способной выдержать ядерный удар. Первоначально П. Бэрэн назвал данный вид коммутации режимом "горячей картошки" ( hot potato operation ). Позже он будет переименован в дейтаграммный режим.

дейтаграммный режим

рис. 2 Передача пакетов в дейтаграммном режиме

дейтаграммный режим

рис. 3. Передача пакетов при формировании виртуального канала

При таком режиме каждый пакет передается независимо от других пакетов, передаваемых до или после него (рис. 2). При передаче пакета каждый сетевой узел на основании заголовка пакета и собственной информации об окружающих узлах сети выбирает следующий узел, на который следует перенаправить пакет. При этом различные пакеты, имеющие один и тот же адрес назначения, от станции отправителя к станции получателя, следуют разными путями. Восстановление правильной последовательности пакетов происходит либо на конечном узле маршрута, либо непосредственно на станции назначения. Функции обнаружения и восстановления пакетов так же организуются либо на конечном узле, либо на станции назначения. Основные преимущества дейтаграммного режима состоят в следующем. Во-первых, отсутствует фаза установления виртуального канала. Во-вторых, дейтаграммные сети более гибки в эксплуатации, что обусловлено их простотой. В-третьих, в какой-то мере передача дейтаграмм более надежна, т.к. в сетях с виртуальным каналом повреждение узла приводит к разрушению всех проходящих через него каналов и необходимости создания новых.

Принимая во внимание, что основным достоинством данного метода является простота механизма передачи пакетов, он был выбран в качестве основы при построении целого ряда корпоративных сетей в университетских и научно-исследовательских кругах, а также сети ARPANET. В качестве коммутаторов в сети ARPANET использовались специальные процессоры IMP ( Interface Message Processor — интерфейсный процессор сообщений) (рис. 3). Каждый такой процессор, принимая от удаленных рабочих станций и терминалов данные, разбивал их на 128-байтные блоки. Из каждого такого блока путем добавления заголовка, содержащего адреса отправителя и получателя, формировался пакет. Затем процессор IMP на основе динамически обновляемой таблицы маршрутизации пересылал данные пакеты по наиболее быстрому маршруту.

Бурное развитие сети ARPANET недвусмысленно продемонстрировало, что технология коммутации пакетов может использоваться в качестве основы при построении многочисленных сетей передачи данных. Практическая реализация данной технологии на примере сети ARPANET развеяла серьезные опасения большинства специалистов, будто бы данная технология станет невозможной из-за большого числа петель и огромных очередей, которые будут образовываться на большинстве сетевых узлов. Первая публичная демонстрация новой технологии состоялась на проводимой в Вашингтоне (США) в октябре 1972 г . Первой международной кнференции по компьютерным коммуникациям — ICCC ( International Con ­ ference on Computer Communications ).

Параллельно и независимо от разработок Л. Клейнрока и П. Бэрэна аналогичные исследования проводились и в Старом свете. Английским специалистом Национальной физической лаборатории NPL (National Physical Laboratory) Дональдом Дейвисом также были начаты исследования в области пакетной коммутации. Д. Дейвис родился 7 июня 1924 г. в английском городе Треорчи. После окончания школы он поступил в Имперский колледж в Лондоне. В 1943 г. Д. Дейвис получил степень бакалавра в области физики, а в 1947 г. — и в области математики. С 1943 по 1947 гг. молодой человек участвовал в проводимых в Бирмингемском университете исследованиях в области атомной физики. Там он посещал лекции Джона Вомерслея, тогдашнего руководителя математического отдела Национальной физической лаборатории. Основу данных лекций составляли редкие в то время материалы по цифровым компьютерам. Потенциальные возможности и перспективы новой технологии глубоко взволновали Д. Дейвиса, и в сентябре 1947 г. он стал работать в небольшой группе, руководимой Аланом Тьюрингом. Под его руководством в данной группе была создана одна из первых в мире программ для цифровых компьютеров. Совместно с Тедом Нейманом и Джимом Вилкик-сом Д. Дейвис принимал участие в проектировании и разработке первого в Англии цифрового компьютера, а позже — и его более совершенной версии.

По мере того, как компьютеры из лабораторных установок становились промышленными приборами, Д. Дейвис стал все больше интересоваться их применением к практически значимым задачам. Так, он разработал одну из первых программ моделирования трафика на автодорогах. В 1958 г. по его инициативе стал разрабатываться проект компьютерного перевода технических текстов с русского языка на английский.

В 1963 г. Д. Дейвис стал руководителем государственного проекта по созданию и внедрению в промышленности Великобритании современной компьютерной техники. В 1966 г. он возглавил атомный отдел в Национальной физической лаборатории. Вскоре данный отдел стал также проводить исследования в области компьютерной техники. Главным направлением разработок руководимой Д. Дейвисом лаборатории стала реализация выдвинутого им в 1965 г. метода коммутации пакетов. После А. Тьюринга Д. Дейвис был первым крупным ученым, который сформировал концептуальные положения компьютерного программирования. В 1979 г. Д. Дейвис оставил административный пост и полностью посвятил себя работе над техническими проектами. Скончался Д. Дейвис в Австралии 28 мая 2000 г.

В начале 60-х годов Д. Дейвис принимал участие в ряде конференций по вычислительной технике в США. Занимаясь построением компьютерной сети у себя на родине, ученый пришел к выводу, что технология коммутации каналов, основанная на методике статистического распределения сетевых ресурсов, совершенно не соответствует самой природе компьютерных сетей, основной особенностью которых является так называемая пачечность — чередование небольших периодов активной передачи данных с длительными паузами. В качестве альтернативы Д. Дейвис предложил метод коммутации сообщений, широко применяющийся при передаче телеграмм. Данный метод, являясь в отличие от коммутации каналов, динамическим методом управления пропускной способностью, обеспечивал более высокую степень использования сетевых ресурсов. Основным недостатком метода коммутации сообщений стали большие непредсказуемые задержки, особенно часто возникающие в тех случаях, когда через узел одновременно передавались и короткие, и длинные сообщения.

Д. Дейвис

Д. Дейвис

В августе 1965 г. Д. Дейвис организовал в США расширенный технический семинар. После плодотворных обсуждений, основной темой которых было дальнейшее развитие новых сетевых технологии, ученый решил объединить технологию коммутации сообщений с использованием компьютеров в режиме разделения времени. По мнению Дейвиса если длинные информационные сообщения будут делиться на блоки, тогда с приходом на коммутатор длинных сообщений и сообщений небольшой длины, обслуживание первых не окажет сильного влияния на увеличение задержки при обслуживании вторых. Первоначально для обозначения данных блоков Д. Дейвис предложил использовать термин «короткие сообщения», но, проконсультировавшись с лингвистами из Национальной физической лаборатории, в конце концов заменил его на более звучное и к тому же легче переводимое на иностранные языки слово «пакет». 10 ноября 1965 г. данные идеи были впервые опубликованы в небольшом корпоративном отчете, познакомившем специалистов Национальной физической лаборатории с новой технологией.

В марте 1966 г. Д. Дейвис организовал в Национальной физической лаборатории научно-технический семинар, на который было приглашено более 100 ведущих специалистов в области телекоммуникаций. Д. Дейвис поделился с обширной аудиторией своими идеями по технологии коммутации пакетов и ее реализацией в компьютерных сетях. Выступление ученого было опубликовано в июне 1966 г. под названием «Предложения по построению цифровой сети связи» («Proposal for a digital communication network»). Это была первая в мире публикация, где было использовано слово «пакет». По окончании семинара к Д. Дейвису подошел сотрудник Министерства обороны США А. Ле-веллин и рассказал, что большинство из поднятых на семинаре вопросов касательно метода коммутации пакетов затронул еще в 1964 г. в своей работе сотрудник RAND Corporation П. Бэрэн. Это было удивительно — ученые, находясь на разных континентах, одновременно и совершенно независимо друг от друга пришли к похожим выводам. Мало того, и Д. Дейвис, и П. Бэрэн выбрали одинаковую для пакетов длину -128 байт!

Вклад Д. Дейвиса в создание систем с пакетной коммутацией был отмечен в 1974 г. Британским компьютерным обществом премией Джона Плэйра. В 1975 г. ученый стал Почетным членом этого общества, а в 1983 г. — его вице-президентом. В 1987 г. Д. Дэйвис был избран членом Королевского общества.

Несмотря на то, что работы американских и английского ученых во многом совпадали, все же они имели и существенные различия. Разработки Д. Дейвиса велись под непосредственным контролем Британского почтового ведомства — ВРО (British Post Office), являющегося национальным монополистом в отрасли связи. Это сильно отразилось на характере проводимых исследований. Основная задача Д. Дейвиса заключалась в создании сетей с гарантированной доставкой информации. Позже метод коммутации пакетов, предложенный Д. Дейвисом получит название метода виртуального канала.

При использовании метода пакетной коммутации (рис. 3) перед тем, как приступить к отправке пакетов, создается определенный маршрут следования для установления логического соединения. Подобный фиксированный маршрут называется виртуальным каналом. В этом случае в служебные поля пакета добавляется идентификатор виртуального канала. Легко заметить, что виртуальный канал аналогичен коммутируемому каналу в сетях с коммутацией каналов. Несмотря на внешнее сходство, у данных технологий есть одно серьезное отличие — при перегрузке в каком-либо сегменте сети пакеты помещаются во входные и выходные буферы. Главное же отличие от дейта-граммного режима состоит в том, что в случае с виртуальным каналом сетевые узлы не принимают решения, куда будет следовать каждый входящий пакет. Подобное решение принимается только один раз — при формировании виртуального канала. Основные преимущества данного вида технологии коммутации перед методом отправления дейтаграмм особенно заметны при длительном сеансе связи. Во-первых, значительно облегчены механизмы определения правильного порядка следования пакетов, службы контроля ошибок, а также службы управления потоком (данный метод гарантирует, что отправитель не сможет «завалить» получателя данными). Во-вторых, в связи с тем, что сетевые узлы не принимают решений о выборе маршрута следования, время прохождения пакетов через узлы значительно сокращается.

История коммутационных технологий еще не закончена. В середине 80-х годов прошлого века в Европе и США широкое распространение получили новые методы коммутации — асинхронное временное разделение — ATD (Asynchronous Time Division) и быстрая коммутация пакетов — FPS (Fast Packet Switching). Позже данные методы войдут в основу технологии ATM (Asynchronous Transfer Mode — асинхронный режим передачи), внедрение которой придется на 90-е годы XX столетия. В это время также начнется создание новой технологии, сочетающей достоинства ATM коммутации и IP маршрутизации — MPLS (Multiprotocol Label Switching — Многопротокольная коммутация по меткам).

Принимая во внимание масштаб, а также огромную значимость данных технологий для современных сетей связи, их история может служить предметом отдельного очерка.

Автор выражает признательность М.А. Быховскому за ценные замечания, учтенные при написании данной статьи.

  1. Убайдуллаев P.P. Волоконно-оптические сети. — М.: ЭКО-ТРЕНДЗ, 1998.
  2. Kleinrock L. The Birth of the Internet
  3. http://www.lk.cs.ucla.edu/LK/Inet/birth.html
  4. Kleinrock L. Len Kleinrock on the Origins of the Internet: "This is login’", in IEEE Internet Computing Online , 1997, March-April. — Vol. 1. — № 2.
  5. http://www.lk.cs.ucla.edu/personal_history.html
  6. http://livinginternet.com/i/ii_kleinrock.htm
  7. http://www.thocp.net/biographies/davies_donald.htm
  8. Davies D. Historical Note on the Early Development of Packet Switching.
  9. http://www.cs.utexas.edu/users/kata/HISTORY/DAVIES/DaviesOl.pdf
  10. http://www.ibiblio.org/pioneers/baran.html
  11. Гольдштейн B. C., Пинчук А. В., Cyxoвицкий А.Л. IP -телефония. — M .: Радио и связь, 2001.
  12. Нейман В.И. К дискуссии о коммутации // Электросвязь. — 2004. — № 1.
  13. Гольдштейн Б., Голышко А., Шнепс-Шнеппе М., Яновский Г. Коммутационное Евангелие // Вестник связи. — 2001. — № 12.
  14. Шварцман В.О. Выбор технологии передачи и коммутации в мультисервисных сетях на основе оптических кабелей // Электросвязь. — 2003. — № 8.
  15. Baran P. On Distributed Communication.
  16. http://www.rand.org/publications/RM/baran.list.html
  17. Roberts L. The First Theory of Packet Networks.

Статья опубликована в журнале «Электросвязь»
Перепечатывается с разрешения редакции.

1.9 Пакетная схема

Собирать ракеты в пакет предложил Михаил Клавдиевич Тихонравов. Разочарованный тем, что его проект «ВР-190» («Победа») в НИИ-4 поменяли на «Ракетный зонд», конструктор, обладая полномочиями заместителя начальника института, организовал новый отдел, который должен был заниматься многоступенчатыми ракетами, соединенными не последовательно, а параллельно – в пакет.

Идея пакета появилась не на пустом месте. Дело в том, что привычная схема последовательного расположения ступеней, несмотря на кажущуюся простоту, имела свои недостатки. Прежде всего не была решена задача запуска двигателя второй ступени во время полета. Теоретикам она казалась малосущественной, но практики долго не знали, как к ней подступиться. Второй важный момент – даже оценочный расчет показывал, что размеры ракеты, сделанной по последовательной схеме и при этом способной развить первую космическую скорость, будут поистине титаническими: придется строить огромную монтажную башню, да и сама ракета от увеличения длины не станет прочнее и надежнее.

Пытаясь решить эту проблему, Тихонравов обратился к трудам Константина Эдуардовича Циолковского, которого безмерно уважал, и в работе «Наибольшая скорость ракеты» (1935) нашел описание «эскадры ракет»[88]. Интерпретация идеи, предложенная Тихонравовым, состояла в том, чтобы запускаемые одновременно ракеты, имеющие, по Циолковскому, только гидравлические связи, снабдить дополнительно механическими связями, объединив в один «пакет». В такой схеме запуск двигателей всех ракет осуществляется одномоментно на старте, топливо к ним подается сначала от одной ракеты, которая после опустошения отваливается, затем от другой и так далее.

«Эскадра ракет» Константина Циолковского (рисунок из книги Б. Ляпунова «Открытие мира»)

«Пакет» ракет не имеет ограничений по дальности полета – то есть сначала задаешь дальность, а потом проектируешь под нее «пакет». Однако в то время не существовало теории оптимального выбора основных конструктивно-баллистических параметров таких сложных агрегатов – именно ее и предстояло создать новому отделу, учрежденному Тихонравовым. В 1947 году электронно-вычислительных машин в распоряжении ракетчиков еще не было, и все необходимые расчеты приходилось выполнять вручную, на арифмометрах. Тем не менее к концу года был выпущен предварительный отчет по теории составных ракет, включая анализ пакетных схем.

Тихонравов внимательно следил за работой отдела. Результаты ему так понравились, что он решил доложить их на ученом совете НИИ-4. Оригинальную идею встретили настороженно. Критики тут же уцепились за плохую аэродинамику соединения ракет, за уязвимость механических соединений. Но Тихонравов верил в осуществимость проекта и 14 июля 1948 года в Академии артиллерийских наук прочитал расширенный доклад «Пути осуществления больших дальностей стрельбы ракетами». Выступление вызвало бурю негодования – мало кто из специалистов поверил в практическую возможность достижения дальностей свыше 1000 км с помощью баллистических ракет. Поэтому сообщение Тихонравова о том, что «пакет» способен достичь любых дальностей и даже вывести на орбиту искусственный спутник Земли, взбудоражило зал. По иронии судьбы среди яростных критиков были и те, кто стали впоследствии видными учеными в области ракетной динамики и космонавтики.

Революционный доклад чуть было не стал катастрофой для научной карьеры Михаила Тихонравова. Отдел тут же расформировали как «занимающийся неактуальными проблемами». Самого Тихонравова сняли с должности заместителя директора института, низведя до научного консультанта. Тогда в его судьбу решил вмешаться Сергей Павлович Королёв. В декабре 1949 года он выдал НИИ-4 официальный заказ на выполнение работы по теме «Исследование возможностей и целесообразности создания составных ракет дальнего действия типа «пакет». В записке была прямо сформулирована цель исследования – «сравнение возможностей достижения больших дальностей (порядка 10 000 км) с помощью одиночных и составных (последовательных и по типу «пакет») ракет дальнего действия с целью выбора рационального направления работ в области дальнобойных ракет».

Тихонравову после получения заказа не только вернули тему, но и позволили сформировать большую группу для научно-исследовательской работы. В марте 1950 года он сделал новый доклад – «Ракетные пакеты и перспективы их развития».

Первый вариант составной ракеты нам основе «Р-2» (рисунок А. Шлядинского)

Тогда прозвучало, что по техническому заданию Королёва группой был рассмотрен двухступенчатый пакет из трех больших баллистических ракет и доказано, что такой пакет может не только доставить тяжелую боевую часть на любую дальность, но и вывести на орбиту спутник, масса которого может оказаться достаточной для полета на нем человека. Доклад был выслушан внимательно, но в последовавшей дискуссии по-прежнему преобладали саркастические выступления.

Работы по изучению различных проблем создания составных ракет продолжались в группе до 1953 года. Результаты исследований регулярно высылались в бюро Королёва. Сергею Павловичу особенно нравилась схема простейшего пакета, и он, видя, что группа Тихонравова «зашивается», заказал оптимизацию этой схемы в Отделении прикладной математики имени Стеклова[89].

В начале 1950-х годов группой Тихонравова были подготовлены и представлены в правительство СССР два письма, в которых аргументировано излагались перспективы применения составных межконтинентальных ракет. Эти письма сыграли определенную роль в принятии постановления правительства о создании ракет нового типа.

Иосиф Сталин подписал такое постановление незадолго до своей смерти – 13 февраля 1953 года. Постановлением была задана тема «Т-1» – «Теоретические и экспериментальные исследования по созданию двухступенчатой баллистической ракеты с дальностью полета 7000–8000 км». Цель исследований – разработка эскизного проекта ракеты дальнего действия массой до 170 т с отделяющейся головной частью массой 3 т.

Позднее, в октябре 1953 года, проектное задание было изменено: масса головной части увеличена до 5,5 т при сохранении дальности полета. Последнее решение приняли под влиянием неофициальной информации о техническом облике термоядерных зарядов нового поколения, которую предоставил один из идеологов данного направления – будущий академик Андрей Дмитриевич Сахаров. Позднее выяснилось, что масса такого заряда может быть многократно уменьшена. Однако двигатели для ракеты уже разрабатывались, и «запас» по тяге, который они давали, впоследствии сыграл решающую роль в реализации космических планов.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Новая схема

Новая схема Для империи Крэев отказ Френсис стал настоящей манной небесной. Реджи с прежним энтузиазмом вернулся к работе. Казино к тому моменту перестало приносить былую прибыль. Для открытия новых игорных заведений, ресторанов и клубов требовались деньги. Вместе с

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *