Перспективы развития ядерной энергетики через термоядерный реактор
Перспективы развития ядерной энергетики в мире зависят от сегодняшних реалий в необходимости безопасного и постоянного удаления ядерных отходов высокого уровня и риск непреднамеренных радиоактивных выбросов. Перспективные новые типы ядерных реакторов направлены на устранение или, по крайней мере, снижение одного или нескольких из этих рисков.
К числу проблем, стоящих перед нынешними тепловыми реакторами, относится и нехватка расщепляющегося материала. Перспективы развития ядерной энергетики предусматривают развитие новых термоядерных реакторов.
Термоядерные реакторы
Многие недостатки реакторов деления, будь то тепловые или реакторы-размножители на быстрых нейтронах, хорошо известны из-за их обширного опыта эксплуатации.
Термоядерные реакторы, поскольку пока они существуют только как возможность, не страдают от реальных негативных последствий.
Термоядерная энергия образуется путем слияния двух легких атомов, например дейтерия и трития, двух относительно редких изотопов водорода.
Одно из преимуществ термоядерного синтеза перед реакторами деления состоит в том, что радиоактивное излучение намного меньше.
Существуют основные три проблемы для термоядерной энергетики как:
- нагрев большого объема (возможно, 1000-3000 м 3 ) плазмы до температуры свыше одного миллиона ºC. Сверхгорячая плазма должна храниться в «магнитной бутылке», называемой токамак, чтобы предотвратить ее соприкосновение со стенками реактора и охлаждение
- доказательство того, что материалы, выбранные для стенок реактора, достаточно прочны, чтобы выдержать интенсивный поток нейтронов и высокие температуры
- обеспечение того, чтобы неизбежно сложная система могла работать непрерывно без поломок.
Перспективный экспериментальный термоядерный реактор
Международный экспериментальный реактор токамак (ITER) был разработан, чтобы помочь обеспечить решения этих проблем, и работа по подготовке площадки началась в Кадараше на юге Франции. Но уже сейчас стоимость проекта удвоилась по сравнению с оценкой 2006 года в 7 миллиардов долларов США, а предполагаемая дата проведения первых экспериментов, способных подтвердить термоядерный синтез, была перенесена с 2018 на 2025 год. Эти ожидаемые задержки и инфляция издержек еще раз иллюстрируют утверждение некоторых ученых о чрезмерном оптимизме в отношении перспективы развития ядерной энергетики.
Некоторые исследователи выступили с еще более фундаментальной критикой термоядерной энергии.
Вторя более раннему замечанию Эйнштейна, но, возможно, с большим количеством доказательств в поддержку некоторых точек зрения, что в настоящее время нет интереса со стороны коммунальных компаний к горячему синтезу, и что эта ситуация вряд ли изменится в обозримом будущем. Только деньги налогоплательщиков будут доступны для развития термоядерного синтеза на многие десятилетия вперед. При этом частные инвесторы не заинтересованы в такого типа проектах. Коммерческие реакторы деления последовали за атомными бомбами всего лишь на несколько лет, термоядерная (водородная) бомба начала 1950-х годов после более чем полувека не была заменена коммерческой термоядерной энергией. Физики утверждают, что объяснение имеет больше общего с инженерией, чем с физикой.
Термоядерная электростанция потребует объема активной зоны примерно в 150 раз больше, чем реактор деления со сравнимой мощностью. Это, в свою очередь, требует очень большой площади (и объема) окружающего материала, чтобы поглотить нейтроны высокой энергии, выпущенные реакцией дейтерия и трития. Из-за нейтронной бомбардировки дорогостоящие покровные материалы станут хрупкими и потребуют регулярной замены в течение всего срока службы реактора. В результате облучения, демонтаж, снятие и замена одеяла должны будут производиться дистанционно.
Стоимость термоядерной энергии будет далеко за пределами конкурентного ценового диапазона, в то время как она должна быть намного ниже, учитывая связанные с этим финансовые риски.
Неопределенное ядерное будущее
Перспективы развития ядерной энергетики имеют большую неопределенность, связанную с рядом вопросов, важных для будущего. Мы плохо представляем себе стоимость новых атомных станций, даже для тепловых реакторов, хотя уже работает более 450 реакторов.
Кроме того, если ядерная энергетика должна играть важную роль в будущей энергетике, то нынешние доминирующие тепловые реакторы являются тупиковой технологией. Вместо этого в больших количествах потребуются реакторы-размножители, которые в принципе могут использовать гораздо более высокую долю энергетического потенциала урана.
Таким образом, перспективы развития ядерной энергетики радикально отличаются от существующих. Это снижает ценность опыта эксплуатации и проектирования, накопленного за первые полвека существования атомной энергетики. В некоторых из этих предложенных новых конструкций рабочие температуры были увеличены до 1000 ºC, что ставит новые вопросы о характеристиках материалов и безопасности реактора. Даже инновационные конструкции, предлагаемые для новых тепловых реакторов, могут сильно отличаться от существующих конструкций.
Нет единого мнения о рисках, связанных с уровнем радиации
Количество раковых заболеваний, которые уже были вызваны выбросами радиации в Чернобыле, оспаривается. Окончательные последствия еще более неопределенны, потому что раковые заболевания могут развиваться в течение нескольких десятилетий после облучения, как показал опыт выживших в Хиросиме. Расчет дозы, полученной населением от данного выброса различных радиоизотопов, также не является простым вычислением. Это существенно зависит от того, как радиоактивный материал транспортируется через окружающую среду. Были случаи, когда радиоактивные материалы вывозились из районов, недоступных для людей, через птичий и кроличий помет.
Ряд исследований показал, что решение одной проблемы в реакторной технологии часто приводит к появлению нескольких новых. Увеличение выгорания ядерного топлива способствует развитию экономики и сокращению объемов производства урана и отходов. Недостатком является то, что это может отрицательно сказаться на безопасности реактора, поскольку оно также увеличивает радиоактивность и тепловыделение отходов, затрудняя их обработку и окончательное удаление. Как это часто бывает в промышленности, попытки снизить затраты могут привести к компромиссам в области безопасности. Некоторые из предложенных новых конструкций реакторов могут снизить затраты за счет снижения надежности дорогостоящего здания защитной оболочки. Однако прочная железобетонная оболочка предотвратила гораздо более серьезное высвобождение радиоактивности.
Сравнение с другими источниками энергии
Чтобы понять перспективы развития ядерной энергетики и определиться с энергией будущего поучительно сравнить опыт атомной энергетики с другими источниками энергии.
Это правда, как утверждают сторонники ядерной энергетики, что уголь является очень загрязняющим топливом, даже производя некоторую радиоактивность в дополнение к его большим выбросам CO2.
Но опасности, связанные с выработкой энергии на ископаемом топливе, сегодня хорошо известны и не вызывают сомнений. Отвод топлива от электростанции, работающей на ископаемом топливе, — это простая кража, а не вопрос международной безопасности. Сжигание ископаемого топлива также не оставляет отходов, которые должны быть изолированы от контакта с человеком на период более длительный, чем современные люди ходили по земле.
Хотя крупные гидроэлектростанции, как и атомные электростанции, могут строиться годами, это не относится к таким важным источникам энергии, как ветер или солнечная энергия.
Большинство ветряных электростанций и фотоэлектрических установок могут генерировать энергию и давать доход в течение года с момента начала строительства. Оба эти источника модульны и при массовом непрерывном изготовлении их стоимость невелика.
Таким образом, перспективы развития ядерной энергетики достаточно туманны и сильно зависят от развития технологий и происходящих экономических процессов в мире.
О настоящем и будущем термоядерной энергетики
Стакан дейтерия, тяжелого изотопа водорода, присутствующего в обычной воде, по энергетическому «потенциалу» эквивалентен эшелону вагонов нефти. Этот поразительный факт при наличии необходимых технологий сулит человечеству в далеком будущем неисчерпаемый источник энергии. Проект Международного экспериментального термоядерного реактора (ITER), основанный на реакции слияния ядер двух тяжелых изотопов водорода, дейтерия и трития, в ядро гелия, призван показать миру возможность промышленного производства термоядерной энергии. И если эксперимент пройдет успешно, то это будущее может оказаться не таким уж и далеким.
Об авторе
Александр Владимирович Бурдаков — доктор физико-математических наук, профессор, заместитель директора по научной работе Института ядерной физики им. Г. И. Будкера СО РАН (Новосибирск). Автор и соавтор 350 научных публикаций и 5 патентов.
Первое упоминание о «звездном» термояде относится еще к 1928 г., но систематические работы по управляемому термоядерному синтезу начались лишь в 1950-х гг. сразу в трех странах: Англии, США и Советском Союзе. И, как нетрудно догадаться, поначалу далеко не в мирных целях: первый успех на этом пути прозвучал в СССР летом 1953 г. очень громко — взрывом первой в мире водородной бомбы. Тогда же появилась идея использовать термоядерную энергию в энергетике, но первоначальная эйфория перетекла в долгие годы исканий и напряженной работы.
Следующий шаг к управляемому термоядерному синтезу был сделан советскими физиками А. Д. Сахаровым и И. Е. Таммом, предложившими удерживать плазму с помощью магнитного поля. Нужно было только придумать технологию, с помощью которой вещество можно не только довести до необходимой температуры, но и удержать его. Другими словами, создать ловушку для плазмы.
Наши ученые выдвинули идею замкнутого магнитного термоядерного реактора. Проблема в том, что магнитное поле сжимает и удерживает плазму в поперечном направлении относительно силовых линий, а вот вдоль них плазма течет свободно, как по рельсам. «Запереть» плазму на пути магнитных силовых линий можно разными способами, но самой успешной оказалась отечественная идея токамака — тороидальной камеры с магнитными катушками, где силовые линии магнитного поля как бы навиваются на «бублик».
Именно советский токамак Т-3, на котором была получена поразительная для того времени температура плазмы, стал прародителем магнитных ловушек закрытого типа, начавших создаваться во Франции (TFR), США (Alcator A), Японии (JFT) и чуть позже в Китае. Работа над созданием токамаков стала важнейшим шагом на пути к термоядерной энергетике.
Плазма — это полностью или частично ионизованный газ, в котором суммарные отрицательные и положительные заряды равны. В целом она представляет собой электрически нейтральную среду. Эта четвертая форма состояния вещества (после твердого, жидкого и газообразного) существует при температурах 10 4 °C и выше.
Плотная высокотемпературная плазма находится только в звездах, на Земле ее можно получить лишь в лабораторных условиях. Эта необычная для нас «лучистая материя» поражает воображение большим числом степеней свободы и одновременно способностью к самоорганизации и отклику на внешнее воздействие, такое как электрические и магнитные поля.
Плазму можно удерживать в магнитном поле, заставляя принимать различные формы, но она стремится занять наиболее энергетически выгодное для нее положение: подобно живому организму, она будет вырываться на свободу из жесткой «клетки» магнитной ловушки, если конфигурация последней ее не устраивает (Шошин, Аникеев, 2007).
Мирный термояд — почти реальность
Одна из главных проблем, которую надо решить при создании термоядерной станции, — повышение ее КПД, т. е. отношение мощностей, полученной и затраченной в ходе термоядерной реакции. Этот параметр (фактор Q), естественно, должен быть больше единицы. Для промышленной же электростанции значение Q должно быть не меньше пяти: только в этом случае заряженные альфа-частицы, которые вместе с нейтронами рождаются при термоядерной реакции, но, в отличие от последних, не покидают магнитную ловушку, будут способствовать поддержанию высокой температуры. Таким образом, при Q, равном пяти, достаточно один раз «зажечь» плазму, а потом никаких дополнительных манипуляций с реактором проводить уже не нужно. В идеале значение Q должно достигать десяти.
Но создание подобной установки не под силу ни одной стране мира в одиночку. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора — с проектом ИТЭР. Тогдашний глава СССР М. C. Горбачев, президенты Р. Рейган (США) и Ф. Миттеран (Франция) поддержали эту идею. Но прошло еще два десятилетия, прежде чем мир сделал очередной шаг к термоядерному будущему: было определено место для строительства экспериментального реактора.
Строительная площадка ITER, 2008–2017 гг. Credit © ITER Organization
Выбор пал на область Прованс на юго-востоке Франции. Это место соответствовало всем требованиям, включая комфортный климат и хорошую транспортную доступность, в том числе по морю. Последнее было важно, так как планировалась транспортировка громоздких деталей, вес которых мог достигать 100 т и более. Наконец, уже в середине первого десятилетия нового века, началось строительство токамака ИТЭР.
ИТЭР — это токамак, т. е. магнитная ловушка закрытого типа, однако ИЯФ является признанным мировым лидером в создании альтернативного варианта — открытых магнитных ловушек. Сейчас в институте работают две подобные установки: ГДЛ (газодинамическая ловушка) и ГОЛ-3 (гофрированная ловушка), а недавно была запущена новая экспериментальная установка СМОЛА. На этих установках наши специалисты занимаются не только собственными исследованиями физики плазмы, но и решают нетривиальные физические задачи для проекта ИТЭР.
Винтовая секция СМОЛЫ, новой экспериментальной открытой магнитной ловушки для плазмы
Как работает такой научный обмен? Возьмем физику неустойчивостей, в которой мы работаем. Явления подобной природы проявляются одинаково как в закрытых, так и в открытых системах, где есть магнитное удержание плазмы. Например, на токамаках ученые научились бороться с желобковой неустойчивостью, и эти знания мы можем использовать в открытых ловушках.
Но есть вопросы, связанные, к примеру, со взаимодействием плазмы и материала, которые нельзя решить на существующих сегодня токамаках. В частности, на них нельзя достичь параметров плазменных потоков, которые будут контактировать со стенками термоядерного реактора. А вот на открытых ловушках в силу их геометрической конфигурации такие потоки получить можно. Поэтому подобные эксперименты проводятся в ИЯФ, а полученная информация используется в проекте ИТЭР.
Зоны ответственности России в проекте международного экспериментального термоядерного реактора. ИЯФ СО РАН участвует в инженерии диагностик портов
Институт ядерной физики им. Г. И. Будкера СО РАН выполняет несколько работ по проекту ИТЭР. Одна из них — разработка и производство 4-х порт-плагов, устройств из стали с максимальным весом 46 т, которые выполняют роль первой стенки, примыкающей к плазме, нагретой до 100 млн °C. Порт-плаг одновременно служит и «окном» в горячую область, так как является носителем многочисленных диагностических устройств, и «пробкой» на пути потока нейтронов, генерируемых в плазме.
Токамак ИТЭР будет состоять более чем из миллиона деталей и весить 23 тыс. тонн при высоте 30 м. Credit © ITER Organization
В защитных модулях порт-плагов разместят диагностические системы, поставляющие информацию о состоянии вещества на центральный пульт. Подобные системы делают в России, Европе, Корее, Индии, США, Китае. На этом этапе ИЯФ исполняет еще одну роль — интеграционную. В 2019 г. в институте появится особая площадка, где будут собраны эти диагностические устройства и начнется их монтаж в порт-плаги. По окончании этой сложной инженерной работы узлы будут отправлены во Францию, на площадку ИТЭР.
44 порта вакуумной камеры будущего термоядерного реактора обеспечат доступ для удаленных погрузочно-разгрузочных операций и диагностики, а также для систем нагрева и вакуумных систем. Полномасштабный прототип вакуумной камеры (справа) был создан специалистами из Японии, России и США. Credit © ITER Organization
Научный сотрудник ИЯФ СО РАН Д. Е. Гавриленко:
«Порт-плаги, которые примыкают непосредственно к плазме, не только несут диагностические комплексы, позволяющие судить о ходе термоядерной реакции, но и защищают от потока нейтронов. Поэтому сделаны они из стали, разработанной специально для проекта ITER, — марки 316L(N)-IG. Одна из особенностей этого материала — тщательно контролируемый химический состав, обеспечивающий нужный уровень примесей и легирующих элементов.
В ИЯФ создается и самый сложный порт — экваториальный. Пока сделан полномасштабный опытный образец элемента диагностического защитного модуля, другими словами, верхняя крышка.
Работа ведется, можно сказать, по методу последовательного приближения: сначала создается макет, а затем по результатам испытаний происходит корректировка проекта вплоть до стадии прототипирования и постановки на производство. Такой регламент очень важен, так как любой инженерный просчет ставит под угрозу весь проект».
Интеграционная площадка для сборки порт-плагов уже готовится. Это будет «чистое» помещение, где содержание пыли, микроорганизмов, аэрозольных частиц и химических паров будет постоянно контролироваться и поддерживаться на определенном уровне.
Один из порт-плагов, которые создаются в ИЯФ, — экваториальный, непосредственно контактирующий с плазмой, — должен быть готов к запуску токамака, запланированному на 2025 г. Поэтому все работы должны быть закончены уже к 2023 г. И сейчас у института горячее время, а через год станет еще горячее.
А. В. Красильников, д. ф.-м. н., директор «Проектного центра ИТЭР» (Москва):
«Еще в 1960-х гг. академик Л. А. Арцимович, внесший огромный вклад в реализацию советской программы по управляемому термоядерному синтезу, говорил, что термоядерная энергия будет освоена тогда, когда она действительно понадобится человечеству. Решение семерки технологически развитых стран (Евросоюза, России, Китая, Индии, Японии, Южной Кореи и США) о создании Международного экспериментального термоядерного реактора (ИТЭР) свидетельствует о том, что это время пришло. Состоятельной и обоснованной критики проекта ИТЭР и термоядерной энергетики в целом на сегодня нет.
Вся интеллектуальная собственность, создаваемая в рамках этого проекта, в полной мере принадлежит всем партнерам, включая РФ, вклад которой эквивалентен 9,09% стоимости проекта. В сборнике, недавно изданном нашим центром, представлено свыше трех десятков подобных новых технологий, которые уже активно внедряют в своих лабораториях и на производствах российские организации, участвующие в реализации проекта.
Но хотя проект ИТЭР сегодня является технологической платформой термоядерной энергетики, для создания самого термоядерного реактора необходимо развить еще ряд технологий, выходящих за рамки проекта. Например, нужно решить проблемы с генерацией стационарного неиндуктивного тока, созданием электромагнитной системы из высокотемпературного сверхпроводника и т. п. Эксперименты, которые в дальнейшем будут проводиться на ИТЭР, дополнят этот перечень.
В программах термоядерных исследований всех технологически развитых стран в качестве горючего сегодня рассматривается дейтерий-тритиевая смесь. Изучение других вариантов термоядерного горючего (дейтерий-дейтерий, дейтерий-гелий-3, протон-бор-11) носит пока академический характер, так как по ряду существенных физико-технических факторов эти реагенты существенно уступают Д-Т-топливу.
Планируется, что полномасштабная реализация процессов горения термоядерной плазмы в ИТЭР будет достигнута во второй половине 2030-х гг. Должна быть получена термоядерная мощность в 500 МВт, что в десятикратном размере превысит мощность, „истраченную“ на поддержание плазмы. Но потребуется еще около 15 лет, чтобы построить термоядерный реактор (ДЕМО), где будет генерироваться электрическая и тепловая энергия».
Каждая деталь — шаг в неизведанное
Создание каждой детали для ИТЭР не простое производство, но сложная исследовательская работа. К примеру, итоговый вариант экваториального порт-плага, за производство которого взялся ИЯФ, разительно отличался от первоначального.
Уже в процессе работы стало очевидно, что придется искать новые материалы и технологии. Так, для работы над проектом в институте освоили технологию глубокого сверления. В классическом варианте вращается деталь, а сверло неподвижно. А для того, чтобы убрать стружку, которая забивает полость сверления, в сквозное отверстие самого сверла пускают охлаждающую жидкость под большим давлением. Но если деталь большая и неподвижная, как в нашем случае, то вращаться должно сверло, и направить жидкость в полость сверления гораздо сложнее. Подобной технологии в ИЯФ не было, поэтому институт купил и модернизировал под свои нужды соответствующее оборудование. Теперь мы можем сверлить на два метра с двух сторон с хорошей точностью.
Станок для механической обработки крупногабаритных деталей с функцией глубокого сверления в экспериментальном производстве ИЯФ СО РАН укомплектован оборудованием, произведенном чешским машиностроительным заводом TOS Varnsdorf. При сверлении здесь вращается не заготовка, а само сверло, что позволяет обрабатывать сложные по форме изделия
В работе по проекту ИТЭР новые технологии требуются буквально на каждом этапе. Одна технология рождает другую — это непрерывный и многоцелевой процесс. Как следствие, в институте появляется комплексное высокотехнологичное оборудование, которое ИЯФ будет использовать и для своих собственных проектов.
То же самое относится и к новым материалам. Например, когда в институте началась работа над нейтронной защитой первой стенки, было решено использовать карбид бора — материал, хорошо выдерживающий экстремальные температурные нагрузки, но дорогой. Сейчас мы совместно с Новосибирским электровакуумным заводом начинаем исследовательскую работу по разработке более дешевой технологии производства этого нужного материала.
От самых первых токамаков ИТЭР отличается наличием дивертора — устройства для приема мощного потока плазмы из реактора. Credit © ITER Organization
Есть и физические задачи, которые также требуют решения. Основная из них — проблема взаимодействия плазмы с поверхностью. Когда токамак работает в режиме хорошего удержания, плазма сходит с поверхности «бублика» в специальное устройство (дивертор) порциями, а не сплошным потоком. И каждая такая порция несет разрушительную энергию: тепловая нагрузка на него оказывается больше, чем на внутренние стенки жидкостных ракетных двигателей. Поэтому, если не предпринимать никаких мер, материал конструкции быстро истончится.
Еще время от времени и по неизвестным причинам происходит так называемый срыв плазмы, когда она переходит в неустойчивое состояние и полностью изливается в дивертор. Задача распадается на несколько составляющих: какие предельные нагрузки выдерживает дивертор, как уменьшить поток плазмы и есть ли способ ее переизлучить, как ликвидировать или управлять таким срывом?
Можно смело утверждать, что термоядерная энергетика начнет реально удовлетворять энергетические потребности человечества уже в последней трети текущего века — именно тогда, когда ожидается энергетический дефицит, если учитывать прогнозы по выравниванию энергопотребления среди стран. Время термоядерной энергетики действительно пришло: промышленный термоядерный реактор очень скоро будет необходим всем развитым странам мира.
Директор ИЯФ СО РАН академик РАН П. В. Логачев и руководитель ФАНО России М. М. Котюков на экспериментальном производстве института
Что касается ИТЭР, то этот мировой научно-исследовательский проект явился настоящим шагом в неизведанное. К тому же помимо достижения основной цели — освоения «звездной энергии» и перехода на новую термоядерную энергетику — все страны-участницы в процессе реализации проекта получают «бонусом» самые последние научные открытия и новейшие технологии, которые можно использовать здесь и сейчас.
Директор ИЯФ СО РАН, академик П. В. Логачев:
«Новое высокотехнологичное оборудование, которое мы приобрели и оптимизировали для работы над этим проектом, будет использоваться по максимуму: не только для ИТЭР, но и для другого проекта — безнейтронного термоядерного реактора в Калифорнии, в работе над которым ИЯФ также принимает участие. Важно и то, что оборудование и технологии, которые мы используем в работе для ИТЭР, помогут нам создавать установки для самостоятельных фундаментальных исследований, которые проводятся в институте. Таким образом, работая над проектом ИТЭР, ИЯФ СО РАН поддерживает и развивает свои научные школы и компетенции. Благодаря первоклассной команде инженеров, технологов и ученых, которая десятилетиями формировалась в нашем институте, и творческому подходу к решению задач мы получаем отличные результаты».
Литература
1. Кругляков Э. П. Звездные реакторы // Наука из первых рук. 2005. Т. 5. № 2. С. 54–61.
2. Шошин А. А., Аникеев А. В. Ловушка для термояда // Наука из первых рук. 2007. Т. 17. № 5. С. 6–19.
3. Burdakov A. V., Avrorov A. P., Arzhannikov A. V. et al. Recent experiments in GOL-3 Multiple Mirror Trap // The 10 th International Conference on Open Magnetic Systems for Plasma Confinement, August 26–29, 2014, Daejeon, Korea, Abstract Book of OS2014, p. 23 (invited talk OS1-04).
4. Burdakov A. V., Ivanov A. A., Kruglyakov E. P. et al. Axially symmetric magnetic mirrors: history of development and future prospects // Abstracts of 9 th Intern. Conf. on Open Magnetic Systems for Plasma Confinement, Tsukuba, Japan, 27–31 August 2012.
5. Kruglyakov Eh. P., Burdakov A. V., Ivanov A. A. Fusion Prospects of Axisymmetric Magnetic Mirror Systems // Proceedings of 24 rd IAEA Fusion Energy Conference, San Diego, USA, 8–13 October 2012, OV/P-07.
Когда путь важнее цели. Сколько нам еще остается до полноценной термоядерной энергетики?
Так выглядел строящийся комплекс ITER в феврале 2020 года. ITER может стать первой установкой, которая позволит получить «горящую» или самоподдерживаемую термоядерную плазму. В этом строящемся сооружении будут расположены термоядерный токамак и системы его обеспечения. Фото из архива ITER
На Хабре не обошли вниманием новость о том, что Китай запустил новый токамак, HL-2M Tokamak. Эта новость особенно интересна тем, что освежает в памяти историю о печальном долгострое нашего века — будущем термоядерном реакторе ITER, который возводится силами всей Европы на юге Франции и должен стать первым подобным устройством, которое могло бы производить больше энергии, чем потребляет само. Тем не менее, с сожалением отметим, что и HL-2M, и даже ITER удручающе далеки от полноценной термоядерной электростанции.
Не будем вдаваться в детали устройства токамаков и самого ITER – эти темы в изобилии рассмотрены во всевозможных источниках, например, в вышеупомянутой хаброновости. Под катом речь пойдет о том, какой путь открывает перед нами ITER (в переводе с латыни «iter» означает «путь»), и почему этот путь оказался извилист как восьмерка стелларатора.
Начало
Можно сказать, что все началось еще в 1920-е, когда Артур Эддингтон предположил, что Солнце и звезды могут гореть благодаря преобразованию водорода в гелий. Эту идею быстро подхватили журналисты и фантасты, полагавшие, что обуздать энергию Солнца не составит труда, и сырьем для топлива подобного реактора может стать самая обычная вода.
Как известно, термоядерная реакция с физической точки зрения противоположна ядерной. Если при ядерной реакции тяжелое ядро расщепляется на более легкие, то при термоядерной легкие ядра сливаются в несколько более тяжелые. Самая известная ядерная реакция – это деление ядра урана:
Это типичная последовательность, выстраивающаяся в ядерном реакторе на АЭС.
Термоядерные реакции, напротив, протекают преимущественно с участием гелия и водорода, и приводят к образованию более тяжелых изотопов из более легких. В звездах главной последовательности наиболее типична следующая термоядерная реакция:
Подробно о термоядерном синтезе и вариантах конструкции термоядерного реактора рассказано в замечательной статье, опубликованной на Хабре Михаилом Сваричевским в 2013 году. Там же можно почитать скептический авторский вердикт, в соответствии с которым полноценная термоядерная энергетика – дело далекого будущего. Статья действительно огненная:
Пока отметим, что технические сложности, вставшие на пути создания термоядерной электростанции, оказались столь серьезными, что периодизация ее развития несопоставима с темпами развития атомной энергетики. Хронология:
Деление ядра
1939 – открытие (Л. Мейтнер и О. Фриш)
1942 – ядерный реактор Энрико Ферми («Чикагская поленница») – управляемая ядерная реакция
1945 – первое ядерное испытание (Тринити) и бомбардировка Хиросимы и Нагасаки – неуправляемая ядерная реакция
1956 – первая атомная электростанция (Обнинск)
1986 – авария на Чернобыльской АЭС
Ядерный синтез
1926 – гипотеза (А. Эддингтон) высказана в статье «Внутреннее строение звезд»
1934 – Э. Резерфорд синтезировал гелий из трития
1952 – в СССР осуществлен первый термоядерный взрыв (водородная бомба, неуправляемая реакция)
1954 – в СССР построен первый токамак
……
2025 – ожидается, что будет запущен ITER.
Тем не менее, в бюллетене IAEA за 2019 год идея создания термоядерной электростанции обсуждается совершенно серьезно и даже буднично. Приведено три условия, которые должны выполняться на полноценной термоядерной электростанции:
- Очень высокие температуры (свыше 100 миллионов градусов Цельсия)
- Достаточная плотность частиц в плазме (где и протекает реакция) – что повышает вероятность соударений между частицами
- Достаточно прочный конфайнмент, предотвращающий возможные утечки плазмы и обеспечивающий стабильно идущую термоядерную реакцию.
Если вы еще не успели ознакомиться с приведенными выше ссылками и освежить в памяти, как выглядит и работает токамак – коротко остановимся на этом вопросе.
Токамак – это сложносокращенное слово, означающее «тороидальная камера с магнитными катушками». Первый токамак был сконструирован в 1954 году в СССР, а термин предложен только в 1957 году. На Западе интерес к строительству токамаков возник значительно позже, в 1968 году, после того, как с подобным устройством в институте Курчатова познакомилась группа английских ученых, убедившихся в его работоспособности. Итак, токамак – это исходно вакуумная камера тороидальной формы, наполняемая смесью дейтерия и трития, тяжелых изотопов водорода. Стенки токамака, естественно, не в состоянии удерживать внутри горячую плазму, в которой идут термоядерные реакции, поэтому плазма удерживается в тороидальной камере при помощи сильнейших магнитных полей и, будучи там, напоминает по форме шнур.
Важнейшим физическим показателем, позволяющим судить, будет ли термоядерная реакция давать больше энергии, чем потребляет реактор, является критерий Лоусона, сводящийся к следующей формулировке:
В настоящее время наиболее энергетически выгодной термоядерной реакцией считается термоядерный синтез с участием двух изотопов водорода: дейтерия и трития. При слиянии ядра дейтерия и ядра трития образуется ядро гелия плюс очень высокоэнергетический нейтрон. При соблюдении нужных условий выделяющаяся при этом энергия является достаточной для дальнейших термоядерных реакций. Кроме того, дейтериево-тритиевая реакция является наиболее целесообразной с практической точки зрения, так как в ходе нее проще всего преодолевается кулоновский барьер, и эту реакцию наиболее удобно поддерживать в искусственно созданных условиях.
Следует отметить, что наряду с парой дейтерий-тритий рассматриваются еще три варианта термоядерных реакций, которые потенциально могут быть применимы в промышленности. Вот они все:
- Дейтерий + дейтерий (тритий и протон 4,0 МэВ),
- Дейтерий + дейтерий (гелий-3 и нейтрон, 3,3 МэВ),
- Дейтерий + тритий (гелий-4 и нейтрон, 17,6 МэВ),
- Дейтерий + гелий-3 (гелий-4 и протон, 18,2 МэВ).
Немаловажным фактором, ограничивающим ресурсную базу для термоядерной энергетики, является необходимость добычи дейтерия и производства трития. Остановимся на ней подробнее.
Размножение трития
Дейтерий относительно широко распространен в природе, и его можно в достаточном количестве извлекать из морской воды. Тритий же, хотя и присутствует в природе, слишком редок, чтобы добывать его в полезных объемах. Поэтому его придется промышленно синтезировать. В настоящее время тритий добывают из охладителя реакторов, работающих на тяжелой воде, либо получают путем бомбардировки литиевых мишеней в реакторах на легкой воде.
Предполагается, что для работы одной 500-мегаваттной термоядерной электростанции потребуется около 50 килограммов тритиевого топлива в год. Эта величина не только намного превышает возможности современной промышленности, позволяющей получать около 2-3 кг трития в год, но и не учитывает стоимость производства, которая будет достигать миллиардов долларов. Соответственно, термоядерная энергетика требует разработки метода, который позволил бы размножать тритий прямо на станции. К счастью, таким методом потенциально может стать сама термоядерная реакция.
Окружив токамак литиевым бланкетом, можно (с выделением тепла) получать тритий, когда ядра лития будут захватывать образующиеся при синтезе нейтроны и спонтанно превращаться в тритий. В настоящий момент находятся в разработке технологические решения, необходимые для сбора трития, образующегося таким образом.
Далее уместен вопрос: так ли экологически чиста и энергетически выгодна термоядерная энергетика? Здесь следует процитировать некоторые возражения, приведенные в вышеупомянутой статье Михаила Сваричевского:
- Термоядерная энергия — вовсе не такая кристально чистая. На единственной реалистичной на данный момент реакции D+T поток нейтронов, который сделает радиоактивными любые элементы конструкции — в
А вот что отмечает по поводу экологичности термоядерных электростанций IAEA:
Простейший процесс термоядерного синтеза протекает с участием двух изотопов водорода: дейтерия и трития. Тритий радиоактивен, но период его полураспада невелик (12,32 года). Он используется лишь в незначительных количествах и, следовательно, не представляет такой опасности, как долгоживущие радиоактивные ядра. В результате такой реакции дейтерия с тритием образуется атом гелия (инертного газа) и нейтрон. Энергию этих продуктов (атома и нейтрона) можно собирать для запитывания реактора и выработки электричества соответственно. Следовательно, от термоядерных реакций не остается долгоживущих радиоактивных отходов. Но в процессе синтеза образуются активированные нейтронами материалы, окружавшие плазму. Иными словами, когда нейтроны (продукт реакции синтеза) попадают в стенки реактора, сам реактор и его компоненты становятся радиоактивными. Поэтому при строительстве термоядерных электростанций в перспективе придется оптимизировать их конструкцию таким образом, чтобы свести к минимуму такую нейтронную радиоактивность и объем радиоактивных отходов, образующихся в результате.
Таким образом, ITER можно считать не столько супертокамаком, сколько тестовым прототипом термоядерной электростанции, который позволит оценить стоящие перед индустрией технологические и экологические вызовы. Среди них: размножение трития, контроль плазмы, продвинутая диагностика, борьба с износом конструкций. Кроме того, предстоит выяснить, как долго корпус реактора способен выдерживать воздействие горячей плазмы.
Как и любая перспективная технология, термоядерная энергетика уже порождает свои «стартапы». Вот важнейшие из них:
- TAE Technologies. Компания TAE (Ирвайн, штат Калифорния) более 20 лет занимается разработкой подхода под названием «обращенная магнитная конфигурация». Технология TAE основана не на дейтериево-тритиевом синтезе (DT), а на потенциально перспективном синтезе водорода и бора. Хотя, запустить такую реакцию гораздо сложнее – нужны температуры на порядок выше, чем при DT – реакция не дает побочного продукта в виде высокоэнергетических нейтронов, осложняющих дейтериево-тритиевый синтез. Технология FRC предполагает магнитный метод удержания тороидальной плазмы (см. ниже).
- Сложность добычи трития.
- Сложность стабильного удержания намагниченной плазмы в пределах реактора.
- Сложность утилизации радиоактивных отходов – из-за воздействия нейтронов радиоактивным становится сам реактор.
Реголитовая Голконда
И здесь самое время перейти к заключительной части нашего экскурса: обратить внимание на гелий-3, участвующий в четвертой из важнейших термоядерных реакций, упомянутых выше:
Дейтерий + гелий-3 (гелий-4 и протон, 18,2 МэВ)
Выход энергии заметно превышает 17,6 МэВ, вырабатываемые при тритиевой реакции, а вместо нейтрона имеем в качестве побочного продукта протон, что во многом решает проблему радиоактивного загрязнения.
Основная проблема заключается в том, что гелий-3 (ядро которого состоит из двух протонов и одного нейтрона) чрезвычайно редок по сравнению с основным изотопом гелий-4 (два протона и два нейтрона): доля гелия-3 на Земле составляет 0,000137% (1,37 частей на миллион); основным источником этого изотопа на нашей планете является солнечный ветер.
Но еще в 1986 году специалисты из Института технологий термоядерного синтеза при университете Висконсина определили, что в лунном грунте, реголите, может содержаться миллион тонн гелия-3. Добыча гелия-3 на Луне может быть коммерчески выгодным предприятием, так как извлекаемая из него энергия в 250 раз превысит энергию, требуемую на его добычу и доставку на Землю. Лунных запасов гелия-3 может хватить для обеспечения термоядерной энергетики на целые столетия.
Нейтроны, образующиеся при дейтериево-тритиевом синтезе, ускользают из реактора, поскольку не обладают электрическим зарядом и, следовательно, их нельзя удерживать электромагнитным полем. Напротив, протоны – побочный продукт термоядерной реакции с гелием-3 – имеют положительный заряд, и улавливать их не составляет труда. Более того, можно использовать и энергию самих протонов, которая непосредственно пойдет на выработку электричества. В таком случае отпадает необходимость получать водяной пар для вращения турбины – именно по такому принципу вырабатывается энергия на современных атомных электростанциях.
Таким образом, освоение Луны приобретает неиллюзорную практическую ценность. Отработка технологий термоядерного синтеза, возможно, первоначально на основе дейтериево-тритиевого синтеза, могла бы стать этапом на пути к энергетическому самообеспечению лунной реголитодобывающей промышленности, цель которой – обеспечить термоядерным топливом Землю.
Здесь мы настолько углубились в научную фантастику, что в этом посте пора осторожно поставить точку и поблагодарить всех, кто его дочитал и готов обсудить.
Хотя, в качестве эпилога предлагаю взглянуть еще на эту старенькую статью из журнала «Кот Шрёдингера». Мало того, что в ней классные картинки, так еще и переброшен мостик от темы, которую мы рассмотрели здесь, к теме терраформирования. В этой индустрии будущего, по-видимому, без термояда тоже никак не обойтись.
Пока же и ITER, и весь описанный путь далеки от завершения. Но хочется надеяться, что дорогу осилит идущий.
Эксперты: термоядерные реакторы «экономически жизнеспособны»
Экономически жизнеспособные термоядерные реакторы могут начать вырабатывать электричество через несколько десятилетий, и политикам стоит начинать планировать их строительство в качестве замены традиционных атомных электростанций, утверждают эксперты.
Ученые Университета Дарема и Калэмского центра энергии синтеза в Оксфордшире повторно изучили экономику синтеза, приняв во внимание последние достижения в сфере технологий сверхпроводников. Их анализ строительства, эксплуатации и вывода из эксплуатации электростанций ядерного синтеза показывает финансовую осуществимость термоядерной энергии по сравнению с традиционной ядерной энергетикой, основанной на делении.
Исследование, опубликованное в журнале Fusion Engineering and Design, опирается на ранее полученные данные о том, что завод синтеза может вырабатывать электричество по сходной цене завода деления, и выявляет новые преимущества в использовании новых сверхпроводниковых технологий.
Профессор Дамиан Гэмпшир из Центра физики материалов Даремского университета, руководящий исследованием, заявил следующее: «Очевидно, мы можем только предполагать, но из наших прогнозов следует, что синтез не будет значительно дороже деления».
Эти выводы поддерживают возможность того, что через поколение или два реакторы синтеза смогут предложить почти неограниченный запас энергии, который не будет сопряжен с усугублением проблемы глобального потепления или производством вредных продуктов в значительных масштабах.
Термоядерные реакторы вырабатывают электроэнергию, нагревая плазму до 100 миллионов градусов по Цельсию, так что атомы водорода сливаются вместе, высвобождая энергию. Этот процесс отличается от ядерного деления в реакторах, которое работает путем расщепления атомов при температурах пониже.
Преимущество термоядерных реакторов по сравнению с нынешними реакторами деления в том, что они почти не создают радиоактивных отходов. Реакторы синтеза безопаснее, поскольку нет крайне радиоактивного материала, который может просочиться в окружающую среду, а вместе с этим невозможны и бедствия вроде аварий на Фукусиме или в Чернобыле, поскольку плазма просто иссякает в случае утечки.
Энергия синтеза также политически безопаснее, поскольку термоядерный реактор не будет производить изделия оружейного уровня, поощряя создание ядерного оружия. Реактор синтеза подпитывается дейтерием, или тяжелой водой, которая добывается из морской воды, и тритием, который создается внутри реактора, так что проблем с безопасностью поставок также не будет.
Экспериментальный реактор синтеза ИТЭР начнет работать через 10 лет на юге Франции. Его задача — доказать научную и технологическую возможность добычи энергии синтеза.
Профессор Гэмпшир выразил надежду, что этот анализ поможет в разработке политической доктрины вокруг термоядерных реакторов и привлечет инвестиции частного сектора.
«Синтез, деление или сжигание ископаемого топлива — это единственные практические возможности крупномасштабной добычи энергии. Подсчитать стоимость термоядерного реактора довольно сложно, учитывая вариации в стоимости сырья и обменные курсы. Но это шаг в правильном направлении. Мы знали о возможностях термоядерных реакторов в течение многих лет, но многие просто не верят, что они когда-нибудь будут построены из-за технологических проблем, которые должны быть преодолены, и неопределенных затрат».
Хотя остаются некоторые технологические проблемы, которые нужно преодолеть, у экспертов уже имеются мощные аргументы, основанные на лучших имеющихся данных, в пользу того, что станции синтеза могут быть экономически жизнеспособны.
Доклад ученых, подготовленный в рамках энергетической программы Исследовательского совета Великобритании, фокусируется на последних достижениях в области высокотемпературных сверхпроводников. Эти материалы могут быть использованы для построения мощных магнитов, удерживающих горячую плазму внутри сосуда, известного как токамак, в самом сердце термоядерного реактора. Развитие технологий предполагает, что сверхпроводящие магниты можно строить по частям, а не одним куском. Вследствие этого, обслуживание, которое очень дорогое в радиоактивной сфере, будет дешевле, поскольку отдельные участки магнита можно будет извлечь для ремонта или замены, не разбирая целое устройство.
В то время как анализ рассматривает стоимость строительства, эксплуатации и вывода из эксплуатации термоядерной электростанции, он не принимает во внимание расходы на утилизацию радиоактивных отходов, связанных с ядерным реактором. В случае с термоядерным реактором, единственным радиоактивным отходом будет токамак после списания, при этом степень его радиоактивности во время срока эксплуатации будет также невысока.