Чем заменить jw1758b dip 7
Перейти к содержимому

Чем заменить jw1758b dip 7

LED driver JW1782B требуется объяснение по даташиту

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Последние посетители 0 пользователей онлайн

  • Ни одного зарегистрированного пользователя не просматривает данную страницу

Объявления

Сообщения

vg155

,50/60 Гц (12 А) Потребляемая мощность при 2 Ом:350 Вт!! 300 Ватт там Максимум!

Что такое драйвер для led-светильников, как подобрать и проверить это устройство?

Светодиоды экономичны и долговечны. Но люстра или фонарь часто перестают гореть, хотя все элементы целы. Чтобы восстановить работоспособность различных устройств, необходим ремонт драйвера светодиодного светильника. В большинстве случаев он и является основной причиной неисправности.

Ремонт драйвера (LED) лампы

Иногда источник света отказывается работать в самый неподходящий момент. Это может произойти из-за его неправильной эксплуатации или по вине производителя (так часто бывает с китайской низкокачественной продукцией).

Самый простой драйвер для светодиодной лампы 220 В часто выполняют на обычных элементах (диодах, резисторах и т. д.). В этой схеме один или несколько светодиодов сразу выходят из строя при пробое конденсатора или одного из диодов моста. Поэтому сначала проверяют эти радиодетали.

Вместо светодиодов временно подключают обычную лампочку на 15-20 ватт (например, от холодильника). Если все детали кроме светодиода целы, она слабо горит.

Второй вариант представляет собой выпрямитель с делителем напряжения, импульсным стабилизатором на микросхеме и разделительным трансформатором. При неисправности люстры проверяют последовательно все элементы. Схема может отличаться от приведенной, но алгоритм поиска такой же.

  1. Сначала проверяют, поступает ли на светодиодные матрицы напряжение. Если оно есть, ищут неисправные LED детали и меняют их. Если с напряжением все в порядке, проверяют диоды моста и входные конденсаторы.
  2. Если они тоже целы, измеряют напряжение питания микросхемы (4-я ножка). При его отличии от 15-17 В этот элемент скорее всего неисправен, его следует заменить.
  3. Если микросхема целая и на ее 5 и 6-й ножках есть импульсы (проверяют осциллографом), то «виноваты» трансформатор и его цепи – конденсатор или диоды, подключенные к нему.

Замена электролитических конденсаторов в драйвере для светодиодных светильников.

Многие люди приобретают длинные цепочки светодиодов, укрепленных на гибких подложках. Это LED ленты.

Есть два варианта таких источников:

  • только LED приборы без дополнительных деталей;
  • изделия с подпаянными к каждому элементу или цепочкам из 4-6 светодиодов резисторами, которые рассчитаны так, чтобы при напряжении 12-36 В и номинальном токе осветительные элементы не сгорали.

В обоих случаях часто применяют драйвера, которые уже были рассмотрены выше. Но иногда питание второго варианта LED лент осуществляется с помощью модуля, представляющего собой трансформаторный блок питания.

При ремонте драйвера светодиодного светильника 36 ватт, если ни один светодиод или цепочка не горят, сначала проверяют трансформатор на обрыв. Затем диоды и конденсатор выпрямителя. Детали R1 и C1 в такой схеме портятся очень редко.

Ремонт драйвера светодиодного светильника LED

Вышла из строя LED-лампа? Легче всего купить новую. Но если поломается вторая?

Каждый раз покупать светодиодную лампу – это недешевое удовольствие.

Ремонтом вы можете заняться самостоятельно или же обратиться за помощью к профессионалам. предлагает услуги по восстановлению работоспособности светодиодного оборудования, в том числе мы выполним ремонт драйверов LED светильников.

LED driver ремонт: конструкция светодиодных источников освещения

Изделие состоит из герметичного сверхпрочного корпуса, платы с диодами, драйвера, радиатора охлаждения и цоколя. Корпус может быть выполнен в любом виде: современный рынок предлагает широкое разнообразие вариаций исполнения светодиодных ламп. Что касается светодиодов, то они могут быть размещены как одной плате, так и на нескольких. Радиатор охлаждения в некоторых моделях отсутствует, если конструкция открыта. Если же конструкция закрытого типа и радиатор охлаждения отсутствует, то такие изделия лучше не приобретать. Поскольку лампа может просто перегреться и выйти из строя.

Ремонт драйверов светодиодов: как выглядит процедура?

В первую очередь, следует проверить конденсаторы. Об их неисправности указывает мигание ламп или полное затухание. Самое слабое место схемы – ограничитель сопротивления, у которых уничтожается графитовый слой.

Отдельного внимания заслуживают драйверы с резисторным делителем. У таких механизмов сначала нужно проверить номинал сопротивления. Также может оборваться провод в рампе или поломаться диодный мост.

Если говорить про ремонт LED драйвера импульсного типа, то он выглядит сложнее. Если из строя вышел один светодиод, его можно закоротить. Но это не всегда поможет, поскольку в наших электросетях скачки напряжения не редкость. Надежность просто уменьшится, и ее уже может не хватить.

Ремонт драйвера светодиодного светильника – это трудоемкий процесс, который требует специальной подготовки и наличия инструментов. С подобной задачей справятся только опытные и квалифицированные электрики. В штате работают именно такие специалисты, которым по силам выполнить ремонт драйверов LED светильников любого типа и сложности.

sxemy-podnial.net

Предлагаю вашему вниманию схемы драйверов светодиодных светильников, которые мне пришлось недавно ремонтировать. Начну с простой (фото 1, справа) и схема на рисунке 1.


Светодиодные светильники. Фото 1.


Драйвер светодиодного светильника на CL1502. Рис. 1.

В схеме этого драйвера установлена микросхема CL1502. Микросхем с подобными функциями выпущено уже много, и не только в корпусе с 8 ножками. На эту микросхему в интернете есть много технических данных, к примеру в [1]. Собран драйвер по «классической» схеме. Неисправность была в выгорании пары светодиодов. Первый раз просто закоротил их, так как находился вдали от «цивилизации». Тоже сделал и во второй раз. И когда сгорела третья пара, я понял, что жить этому светильнику осталось мало. Простым закорачиванием пар светодиодов, так просто не обойдёшься. Требовалось что-то по-кардинальные. Ранее я изучал схемотехнику и работу подобных микросхем, с целью укоротить светодиодную лампу, в корпусе трубчатой стеклянной люминисцентной 36 Ватт, с длины 120 сантиметров в 90, так как был в наличии такой светильник, установленный над рабочим столом. И всё удалось и работает. А здесь. Насколько я понял работу подобных светильников, с применением таких драйверов, то ничего плохого не должно происходить после закорачивания хотя бы всех светодиодов, кроме последней пары. Ведь всё в них решает датчик тока, в данной схеме это резисторы R3 и R4. Напряжение выделенное этими резисторами, попадая через выводы 7 и 8 микросхемы CL1502 к компаратору выключения силового ключа работают отлично. Но что-то всё же жжёт светодиоды. Но что? Моё предположение — их жжёт сам драйвер! Светодиоды применённые в этом светильнике, похожи на 2835SMDLED (0,5 Вт одного светодиода). И если это действительно они, то заявленная мощность светильника вполне оправдана. Но у меня, сильные подозрения, что в светильнике стоят 3528SMDLED, которые имеют параметры, чуть ли не на порядок ниже. Но понять мне это очень трудно, так как на SMD светодиодах нет обозначений. Что сделал я? Я убрал с платы резистор R4. При этом уменьшился ток через светодиоды и… светодиоды перестали сгорать. Что интересно, в строительном вагончике, в котором стояли три светильника одного типа, последовательно пришлось ремонтировать все три. И везде пришлось снять по одному резистору. И да, везде упал световой поток, хотя глазом это и трудно определить, но если сравнивать, то заметно.

В другом вагончике, было два светильника с внешними размерами 595х595 мм.. И они тоже «горели». В этих светильниках ячейки состояли из четырёх светодиодов в параллели и было таких 28 ячеек. Так как и там была подобная схема (поднять не удалось), то просто выпаял по одному резистору.

В итоге, можно сделать вывод, что ремонт можно выполнять, по подобной методике, то есть уменьшать ток через светодиоды, так как лучше, пусть светят темнее, чем совсем погаснут. Хотя конечно, правильнее поменять все светодиоды на 2835SMDLED, но это при их наличии.


Драйвер светодиодного светильника на B77CI. Рис. 2.

Схема второго драйвера, изображённого на рисунке 2, я «поднял» со светильника, который нашёл в металлоломе, с механическими поломками корпуса. На рисунке 3 схема четырёх плат светодиодов по 9 Вт каждая. Хотел снять светодиоды для запчастей. И даже, не сразу заметил невзрачную коробочку с драйвером. Схема оказалась почти «монстром».


Фонарь светодиодного светильника. Рис. 3.


Внешний вид платы драйвера на B77CI. Фото 2.

Наличие двух микросхем, двух мощных полевых транзисторов, двух дросселей и двух электролитических конденсаторов 220 мк х 100 В включенных параллельно, указывало на то, что разработчики поработали на славу. Так же присутствует довольно хорошая схема фильтров (смотрите фото 2). Микросхема DX3360T — это, по всей видимости, стабилизатор напряжения, и возможно, с корректором мощности. Я в интернете нашёл только невзрачную картинку, без описания. А на микросхему B77CI не нашёл ни чего, и названия выводов на схеме ставил, по интуиции. В работе этот драйвер не видел. Но предполагаю хорошую работу. Но если, придётся уменьшать ток через светодиоды, то нужно или убрать с платы один-два резистора Rs4..Rs6, или менять на другие, расчётные.

И ещё. Совсем не понятно, как в подобных светильниках организован отвод тепла от светодиодов. Ведь они запаиваются на платки из фольгированного стеклотекстолита, шириной в 5 мм. и толщиной примерно в 1 мм.? Думаю, что почти ни как. Всё ширпотреб.

Jw1782b в светодиодной лампе

Пишу о окончании ремонта, вернее завершении эпопей и лампой в этом моем посте http://pikabu.ru/story/remont_lampyi_onlayt_a65_proshu_sovet.

Вот фото лампочки ее потрошков вздувшийся кондер на 2,2 мкф на 400 в второй на 1,0 мкф JW1782B SP624CF его даташит тут http://www.alldatasheet.com/view.jsp?Searchword=JW1782B не проверялся диодный мост не снимался

Сразу добавлю я считаю в данное время тратить время на ремонт лампы неселесообразным и критику не принимаю у каждого свое мнение

Дубликаты не найдены

Если вы не принимаете критику, и считаете "ремонт лампы неселесообразным", то на кой тут этот пост?
Смысловой нагрузки- ноль, ремонта нет.
Да и в принципе ремонтировать китайскую лампу с али за 100р бесполезно, только если сами светодиоды как запасные в коробку к донорам кинуть.

Светодиоды сила.Нужно больше светодиодов=)

О сообществе

Сообщество-спутник сообщества ремонтёров.

Вопросы по ремонту, поиску редких запчастей и прочим нюансам профессии задаются здесь.

Посты с процессом ремонта создаются в родительском сообществе: pikabu.ru/community/remont

Посты с процессом ремонта создаются в родительском сообществе: pikabu.ru/community/remont

В этом сообществе, можно выкладывать посты с просьбами о помощи в ремонте электро-техники. Цифровой, бытовой и т.п., а про ремонт картин, квартир, ванн и унитазов, писать в других сообществах ��

Требования к оформлению постов:

1. Максимально полное наименование устройства.

2. Какие условия привели к поломке, если таковые известны.

3. Что уже делали с устройством.

4. Какое имеется оборудование.

5. Ну и соответственно, уровень знаний.

В сообществе строго запрещено и карается баном всего две вещи:

В остальном действуют основные базовые Пикабу.

В мои руки попало несколько вышедших из строя, уже широко распространённых светодиодных ламп на напряжение 230 В, в изобилии предлагаемых в наших магазинах. Захотелось выяснить причину их быстрого выхода из строя и внутреннее устройство. Все лампы проработали не более одного года, хотя на упаковках утверждается, что их время непрерывной работы 30000 ч, получается 1250 суток, что составляет более трёх лет. И ведь наверняка сгоревшие лампы не эксплуатировались круглые сутки.

Итак, берём первую лампу под товарным знаком iEK. Кроме товарного знака, на корпусе указаны данные и параметры лампы LED-A60, 230 В, 50/60 Гц, 11 Вт, 4000 К. Как известно, большинство сетевых светодиодных ламп имеют примерно одинаковую конструкцию. К несущему корпусу, в котором расположены драйвер и светодиоды, крепится матовая колба светорассеивателя и металлический резьбовой цоколь лампы. Пробуем сначала снять колбу. Для этого я изготовил тонкий узкий нож из обломка полотна от ножовки по металлу, сделав тонкое остриё на наждачном станке. Осторожно вставляем нож между колбой и корпусом, сначала на небольшую глубину, и проходим по ругу. Далее всё повторяем на большей глубине. При этом можно пробовать покачивать колбу лампы, и когда колба будет покачиваться, отделяем её. Оказалось, что колба крепилась с помощью белого силиконового герметика. При этом следует отметить, что у некоторых ламп колба отделялась сравнительнолегко, а у некоторых — трудно. У одной лампы в герметике осталась часть нижнего пояска колбы. Но главное — соблюдать осторожность, тогда всё должно получиться.

На алюминиевой печатной плате, служащей ещё и теплоотводом, припаяны 12 светодиодов поверхностного монтажа белого свечения типоразмера 3528. Один из светодиодов был с чёрной точкой, как оказалось — сгоревший. Алюминиевая подложка плотно вставлена в корпус, оказавшийся внутри также алюминиевым, поверх покрытым пластиком. Корпус тоже должен выполнять функцию теплоотвода, но площадь соприкосновения тонкой алюминиевой платы корпусом невелика, атеп-лопроводящая паста отсутствует. Плата со светодиодами подпаяна к драйверу двумя проводами. Внешний вид разобранной лампы изображён на рис. 1. Удалив герметик, поддевают ножом и извлекают плату со светодиодами, но вынуть её из корпуса не дают провода, соединяющие драйвер с цоколем лампы. Поддев ножом, извлекают центральный контакт цоколя и разгибают идущий к нему провод. Места кернения резьбовой части цоколя к корпусу высверливаем сверлом диаметром 1,5 мм. Сняв цоколь, можно достать плату драйвера. На ней оказался разрушен оксидный конденсатор с обозначением на плате Е2. Часть элементов на плате для поверхностного монтажа установлена со стороны печатных проводников, а на противоположной стороне установлены дроссель, два оксидных конденсатора и микросхема. Схема драйвера с обозначениями элементов, как на плате, показана на рис. 2. Резистор, условно обозначенный как R1, находится не на плате, а соединяет центральный контакт цоколя лампы с ней. Схема драйвера построена на микросхеме OCP8191 в корпусе ТО-92. Микросхема представляет собой неизолированный квазирезонансный понижающий преобразователь для питания светодиодов со стабилизацией тока. В её состав входят MOSFET транзистор с максимальным напряжением сток-исток 550 В и узел управления. В микросхеме есть различные виды защиты: от перегрева, от короткого замыкания в нагрузке, от превышения максимального тока. Ток через светодиоды задают резисторами RS1 и RS2.

Рис. 1. Внешний вид разобранной лампы

Рис. 2. Схема драйвера

После замены конденсатора Е2 на исправный ёмкостью 2,2 мкФ на напряжение 400 В и замыкании контактов сгоревшего светодиода лампа заработала. Был замерен ток через светодиоды, он оказался равен 120 мА, что мне кажется несколько завышенным. Ёмкость конденсатора С3 и индуктивность дросселя были замерены на плате. Применённые светодиоды начинают слабо светить при напряжении 7 В, а при напряжении 8 В и токе 2 мА светят уже ярко. Судя по этому, в одном корпусе расположены два или три последовательно включённых кристалла. Тип светодиодов остался неизвестен.

Следующей "подопытной" стала лампа под торговой маркой General. На ней нанесены следующие обозначения: GLDEN-WA60; 11 Bт; 2700 K, 198-264 B; 50/60 Гц; 73 мА. Матовый светорассеиватель снимают, как и у предыдущей лампы. После этого увидим алюминиевую плату с расположенными на ней семью SMD-светодиодами типоразмера 3528. В отличие от предыдущей лампы, плата припаяна к драйверу и закреплена двумя винтами (рис. 3). Сняв её, увидим, что она была закреплена с помощью винтов на алюминиевом штампованном диске, плотно вставленном в корпус лампы (рис. 4). Заметно, что лампа сделана более качественно, и отвод тепла от светодиодов должен быть лучше.

Рис. 3. Лампа под торговой маркой General

Рис. 4. Диск лампы

Далее аналогично снимаем цоколь. А вот диск приходится потихоньку выбивать со стороны цоколя, просунув тонкий металлический стержень и уперев его ближе к краю, в ребро диска. Иначе диск будет выгибаться. Только после этого вынимаем плату драйвера. Он построен на аналогичной микросхеме BP9916C в корпусе SOP-8 и представляет собой также неизолированный понижающий преобразователь, позволяющий поддерживать постоянным ток через светодиоды. Схема отличается от предыдущей незначительно, в основном номиналами элементов и их обозначениями на плате, и ещё тем, что после резистора R1, параллельно диодному мосту, установлен керамический конденсатор ёмкостью 0,1 мкФ на напряжение 400 В. Поэтому приводить схему не имеет смысла. Микросхема установлена со стороны печатных проводников. Замкнув контакты неисправного светодиода, удалось восстановить работоспособность лампы. При сопротивлении регулировочных резисторов RS1 и RS2, равных 5,6 и 3,9 Ом, ток через светодиоды равен 130 мА.

Потом была вскрыта светодиодная лампа с товарным знаком ASD и с обозначениями на корпусе: LED-A60, 11 Вт, 220 В, 4000 К, 990 лм. Разборка лампы такая же, как и в предыдущих случаях. Вид лампы без матового светорассеивателя показан на рис. 5. На алюминиевой плате, которая просто вставлена в корпус, установлены 18 SMD-светодиодов типоразмера 3528. Площадь теплового контакта с корпусом, как и в первой лампе, очень мала. Плата со светодиодами припаяна непосредственно к плате драйвера. Эти светодиоды, как и в предыдущих лампах, начинают светить при напряжении 7 В, а при 8 В светятся достаточно ярко при токе 2 мА. Следовательно, их параметры должны быть схожими. Драйвер этой лампы построен на микросхеме BP9918C в миниатюрном корпусе для поверхностного монтажа SOT23-3. Эта микросхема аналогична микросхемам в предыдущих лампах и обладает схожими параметрами. Схема драйвера отличается отсутствием резистора R1, вместо которого на плате сделан тонкий змеевидный печатный проводник, а также номиналами некоторых элементов и обозначениями на плате. При сопротивлении резисторов RS1 и RS2, равных соответственно 13 и 10 Ом, ток через светодиоды — 55 мА, что примерно вдвое меньше, чем у предыдущих ламп.

Рис. 5. Вид лампы без матового светорассеивателя

Исходя из всего изложенного, напрашивается вывод, что причиной быстрого выхода из строя этих ламп является завышенный ток светодиодов и недостаточное их охлаждение и, следовательно, перегрев.

Было решено восстановить эти лампы, при этом постараться продлить срок их службы. Для начала были уменьшены токи светодиодов. В первой лампе — путём замены резисторов RS1 и RS2 (4,7 и 3,9 Ом) на два резистора сопротивлением по 10 Ом каждый. Ток через светодиоды со 120 мА уменьшился до 50 мА. Во второй лампе резистор сопротивлением 3,9 Ом был заменён резистором сопротивлением 10 Ом. Ток через светодиоды уменьшился с 130 до 85 мА. В третьей лампе взамен резистора сопротивлением 13 Ом установлен резистор сопротивлением 30 Ом. Ток через светодиоды при этом уменьшился с 50 до 40 мА. Светоотдача при этом упала незначительно, хотя всё по местам может расставить только дальнейшая опытная эксплуатация.

Кроме того, у первой и третьей ламп под светодиодами, на свободной стороне платы, были подложены толстые металлические шайбы, улучшающие тепловой контакт с корпусом. Везде была нанесена теплопроводная паста КПТ-8. Металлические цоколи ламп были приклеены к корпусу эпоксидным клеем, нанесённым в места высверленных отверстий. В корпусе, рядом с цоколем лампы, были просверлены вентиляционные отверстия, улучшающие охлаждение. Правда, при этом применять лампы во влажных помещениях будет нельзя. Если лампы планируется применять в закрытых светильниках, светорассеивающие колбы можно не устанавливать, соблюдая осторожность при установке самих ламп. В противном случае колбы приклеивают белым силиконовым герметиком, как было до этого. Посмотрим, как эти доработки повлияют на долговечность ламп.

И в заключение рассмотрим совершенно другую светодиодную лампу, ещё не бывшую в эксплуатации. Это лампа торговой марки ASD, предназначенная для подключения к переменно-му или постоянному напряжению 12 В. На корпус нанесены следующие обозначения: LED-JC, 5 ВТ, AC/DC, 12 В, цоколь G4, 3000 К. Эта небольшая лампа разбирается несложно. Снимают прозрачный пластиковый колпак, закрывающий светодиоды. Он крепится к корпусу на защёлках, которые очень хрупкие. Поэтому отгибать надо не сами защёлки, а часть корпуса колпака, к которому эти защёлки прикреплены. Для этого в корпусе колпака сделаны прорези, сразу не бросающиеся в глаза, но позволяющие поддеть отвёрткой и раздвинуть защёлки. Сняв колпачок, видно, что светодиоды и другие элементы установлены на гибкой печатной плате, которая с внутренней стороны покрыта слоем липкой ленты, поэтому просто снимают её.

Далее вынимают гибкую плату и отпаивают провода, соединяющие её с цоколем. После этого можно подробно рассмотреть конструкцию лампы. Её внешний вид показан на рис. 6. Материал её корпуса похож на керамику, видимо, чтобы не оплавился при нагреве светодиодов и, возможно, хоть как-то отводил тепло от них. Материал — довольно хрупкий, легко скалывается.

Рис. 6. Конструкция лампы

Схема драйвера этой лампы представлена на рис. 7. Он собран на микросхеме U1 в корпусе SOP 8. К сожалению, однозначно идентифицировать микросхему не удалось. На разных лампах неизменной была надпись на корпусе 1086. Светодиоды в лампе типоразмера 3528, с номинальным напряжением 3,4 В. Все остальные элементы — для поверхностного монтажа. При подключении к источнику напряжением 12 В выяснилось, что лампа потребляет ток 280 мА. При увеличении напряжения до 14 В ток через лампу возрос до 290 мА, а при снижении напряжения питания до 10,2 В он уменьшился до 270 мА.

Рис. 7. Схема драйвера

При питании лампы номинальным напряжением 12 В уже после семи минут работы, при касании корпуса или светодиодов пальцем, трудно удержать его на них — обжигает. Причина — в слишком плотном расположении светодиодов и в небольшом корпусе. Ручаться после этого в продолжительной работе этой лампы я бы не стал, если только не переделать лампу, снабдив светодиоды и драйвер дополнительными теплоотводами.

Автор: П. Юдин, г. Уфа

Мнения читателей
  • Юрий / 29.09.2019 — 19:46
    Небольшая, но информативная статья. Кропотливая работа исследователя поможет многим людям. Автор молодец!
  • Валерий / 02.03.2019 — 16:52
    Большое спасибо! Познавательно! Как раз сгорела лампа, как показана в 1-ом варианте, стал разбираться, наткнулся на данную статью. Теперь все ясно, не нужно хоть самому разбираться со схемой. Спасибо автору.
  • Паньшин Андрей / 03.02.2019 — 20:59
    Интересная статья. Какой тип драйвера U1 на оис. 7.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

  • Цена: 1,54$ (93 руб.)
  • Перейти в магазин

У меня дома уже почти 5 лет трудятся светодиодные лампочки Оптоган, в том числе модели Оптолюкс 12 Вт. Однако уже 2 лампа стала неисправной – замигала как стробоскоп. Так как Оптоган прекратил их производство, было решено восстанавливать лампу с помощью китайского светодиодного драйвера. Для тех, кого это заинтересовало – прошу под кат.

Доказательство покупки:

Для кого это покупалось:

Разбираем нашу лампу, и видим, что светодиодная сборка питается напряжением 26-32 Вольт, силой тока 0,4 А.

Сама сборка состоит из 12 1-ваттных светодиодов производства самой Оптоган (судя по всему, модели OLP-5065F6A-09A). Кому интересно – вот даташит на светодиод.

К слову, о них даже была статья в одном журнале.

Исходя из этих данных и заказываем драйвер, с максимально похожими параметрами.

Размеры драйвера – 42*18*17 мм., входное напряжение – 85 – 265 Вольт, выходное напряжение – 24 – 42 Вольт, сила тока – 300 мА. Рассчитан на мощность сборки 8 – 12 Ватт.

Картинка со страницы товара:

И пара моих фото:

Я не удержался, и до того, как сделал фото, протестировал драйвер и отпаял 2 силиконовых провода на входе. Сама плата собрана аккуратно, флюс отмыт (там где есть следы флюса – паял я).

Производитель драйвера – Dark energy :), версия – 1.5. построен он на микросхеме BP3125 производства китайской Bright Power Semiconductor (даташит).



Там же приведена типовая схема включения, по которой и собран драйвер. На входе стоит диодный мост и конденсатор на 400 В. 10 мКф, на выходе – кондер на 50 В. и 47 мКф.

К сожалению, я вспомнил о том, что нужно бы померить выходной ток, когда уже все собрал.

Приступим к финишной разборке лампы. Отверткой выковыриваем весь герметик, и вынимаем неисправный драйвер. К сожалению, тут аккуратность не спасает – все равно я снес 2 дросселя. Драйвер оптогана построен на микросхеме LNK403 производства Power Integrators (даташит).


Плату со светодиодами крепим к радиатору на термоклей, берем термоусадку диаметром 18 (лучше возьмите побольше) и обдуваем термофеном. В пластиковом цоколе удаляем остатки клея с помощью дремеля и насадок-наждачек. Клеим супер клеем.


Проверяем – все работает.



Приклеиваем плафон из поликарбоната с помощью клея B-7000, и вкручиваем в люстру.

Недостаток у этого драйвера по сравнению с родным – он включается чуть медленнее, буквально на долю секунды.

К сожалению, люксметра нет, так что проверить яркость не представляется возможным. Невооруженным глазом сильных отличий не замечено. То же касается пульсаций, которые на глаз незаметны.

После ремонта лампа работает уже 2 месяца, за это время проблем с ней не возникло.

В качестве бонуса – начинка лампы Оптоган оптолюкс на 5 Ватт, которая построена на микросхеме lnk457 (даташит).

Схемы драйверов светодиодных прожекторов

Публикую сегодня третью статью Конкурса статей. Статья посвящена ремонту драйверов светодиодных прожекторов. Напоминаю, что недавно у меня уже была статья по ремонту светодиодных прожекторов и светильников, рекомендую ознакомиться.

А в этой статье автор решил поделиться схемами светодиодных драйверов и опытом по их ремонту.

Автора зовут Сергей, он живет в п. Лазаревское, города Сочи.

Статья по схемам светодиодных драйверов и их ремонту

Очень хороший у Вас сайт. Хочу поделиться схемами некоторых электронных устройств, срисованных мною с самих девайсов.

В частности, по теме освещения — схемы двух модулей от автомобильных LED прожекторов с напряжением на 12В. Заодно, хочу задать Вам и читателям несколько вопросов по комплектующим этих модулей.

Я не силён писать статьи, об опыте ремонта каких-то электронных устройств (это, в основном, – силовая электроника) пишу только на форумах, отвечая на вопросы участников форума. Там же делюсь схемами, срисованными мною с устройств, которые мне приходилось ремонтировать. Надеюсь, схемы светодиодных драйверов, нарисованные мною, помогут читателям в ремонте.

На схемы этих двух LED драйверов, обратил внимание потому, что они просты, как самокат, и их очень легко повторить своими руками. Если с драйвером модуля YF-053CREE-40W, вопросов не возникло, то по топологии схемы второго модуля LED прожектора TH-T0440C, их несколько.

Схема LED драйвера светодиодного модуля YF-053CREE-40W

СамЭлектрик.ру в социальных сетях:

Подписывайтесь! Там тоже интересно!

Внешний вид этого прожектора приведен вначале статьи, а вот так этот светильник выглядит сзади, виден радиатор:

YF-053 CREE Вид сзади

YF-053 CREE Вид сзади

Светодиодные модули этого прожектора выглядят так:

YF-053 CREE LED Модуль YF-053CREE-40W

YF-053 CREE LED Модуль YF-053CREE-40W

Опыт по срисовыванию схем с реальных сложных устройств у меня имеется большой, поэтому схему этого драйвера срисовал легко, вот она:

YF-053 CREE Драйвер LED прожектора, схема электрическая

Принципиальная схема LED драйвера TH-T0440C

Как выглядит этот модуль (это автомобильная светодиодная фара):

Модуль LED прожектора TH-T0440C

Модуль LED прожектора TH-T0440C

Схема светодиодного модуля (драйвера) TH-T0440C

В этой схеме больше непонятного, чем в первой.

Во-первых, из-за необычной схемы включения ШИМ-контроллера, мне не удалось эту микросхему идентифицировать. По некоторым подключениям она похожа на AL9110, но тогда непонятно, как она работает без подключения к схеме её выводов Vin (1), Vcc (Vdd) (6) и LD (7) ?

Также возникает вопрос по подключению MOSFET-а Q2 и всей его обвязки. Он ведь он имеет N-канал, а подключён в обратной полярности. При таком подключении работает только его антипараллельный диод, а сам транзистор и вся его “свита”, совершенно бесполезны. Достаточно было вместо него поставить мощный диод Шоттки, или “баян” из более мелких.

Светодиоды для LED драйверов

YF-053 CREE Светодиод

YF-053 CREE Светодиод

Похожих по виду на мои, не встретил ни разу.

Собственно, у обоих модулей одна неисправность – частичная, или полная деградация кристаллов светодиодов. Думаю, причина – максимальный ток с драйверов, установленный производителями (китаёзы) в целях маркетинга. Мол, смотрите, какие яркие наши люстры. А то, что они светят от силы часов 10, их не волнует.

Если возникнут претензии от покупателей, они всегда могут ответить, что прожекторы вышли из строя от тряски, ведь такие “люстры” в основном покупают владельцы джипов, а они ездят не только по шоссе.

Если удастся найти светодиоды, буду уменьшать ток драйвера до тех пор, пока не станет заметно уменьшаться яркость светодиодов.

Светодиоды лучше искать на АлиЭкспресс, там большой выбор. Но это рулетка, как повезёт.

Даташиты (техническая информация) на некоторые мощные светодиоды будут в конце статьи.

Думаю, главное для долговечной работы светодиодов – не гнаться за яркостью, а устанавливать оптимальный ток работы.

До связи, Сергей.

P.S. электроникой “болею” с 1970 г., когда на уроке физики собрал свой первый детекторный приёмник.

Ещё схемы драйверов

Ниже размещу немного информации по схемам и по ремонту от меня (автора блога СамЭлектрик.ру)

Светодиодный прожектор Навигатор, рассмотренный в статье Про ремонт светодиодных прожекторов (ссылку уже давал в начале статьи).

Схема стандартная, выходной ток меняется за счет номиналов элементов обвязки и мощности трансформатора:

LED Driver MT7930 Typical. Схема электрическая принципиальная драйвера для питания светодиодной сборки или матрицы

LED Driver MT7930 Typical. Схема электрическая принципиальная типовая для светодиодного прожектора

Схема взята из даташита на эту микросхему, вот он:

• LED Driver MT 7930. Typical application / Описание, типовая схема включения и параметры микросхемы для драйверов светодиодных модулей и матриц., pdf, 661.17 kB, скачан: 3906 раз./

В даташите подробно расписано, что и как надо поменять, чтобы получить нужный выходной ток драйвера.

Вот более развернутая схема драйвера, приближенная к реальности:

LED Driver MT7930. Схема электрическая принципиальная

LED Driver MT7930. Схема электрическая принципиальная

Видите слева от схемы формулу? Она показывает, от чего зависит выходной ток. Прежде всего, от резистора Rs, который стоит в истоке транзистора и состоит из трех параллельных резисторов. Эти резисторы, а заодно и транзистор выгорают.

Имея схему, можно приниматься за ремонт драйвера.

Но и без схемы можно сразу сказать, что в первую очередь надо обратить внимание на:

  • входные цепи,
  • диодный мост,
  • электролиты,
  • силовой транзистор,
  • пайку.

Далее надо проверить поступление питания на микросхему, которое подается в два захода – сначала от диодного моста, потом (после нормального запуска) – с обмотки обратной связи выходного трансформатора.

Сам я именно подобные драйвера ремонтировал несколько раз. Иногда помогала только полная замена микросхемы, транзистора и почти всей обвязки. Это очень трудозатратно и экономически неоправданно. Как правило – это гораздо проще и дешевле – покупал и устанавливал новый Led Driver, либо отказывался от ремонта вообще.

Ещё схема драйвера светодиодного прожектора

Читатель Валерий Ягодаров прислал фото и схему драйвера прожектора. Он затрудняется с определением типа микросхемы. Кто знает – подскажите!

Добрый день! В рамках ” – кто пришлёт схемы реальных светодиодных драйверов, для коллекции ” высылаю одну из очередных разрисовываемых схем.

Фото драйвера

Фото платы драйвера, со стороны элементов

Драйвер прожектора

Драйвер прожектора скан со стороны пайки

Встал вопрос с определением типа микросхем: на одной U2 – прочитывается 0H-N0F, другая U1 – не определяется – с выгоревшей частью корпуса и оплавившимися резисторами рядышком. Возможно Вам удастся по схемотехническому решению подобрать оригинал или аналог этих микросхем.

LED драйвер

LED драйвер на транзисторах 6N40A, 4N65

Радиоэлементы пока не выпаивал. Номиналы обычных и SMD элементов определял по буквенно-цифровому и цветовому коду. Номиналы SMD конденсаторов в схеме – “на глаз”.

В случае определения типа микросхем попытаюсь восстановить работу драйвера, если нет – пойдёт на запчасти. Далее естественно с полной выпайкой элементов можно будет полностью разрисовать принципиальную схему драйвера. На принципиальной схеме тип микросхем указан ориентировочно.
Высылаю мои наработки…

Схема драйвера светодиодного светильника LED_TSV-Lighting 20_12W_220V:

TSV-Lighting20_12W_220V плата

Скачать и купить

Вот даташиты (техническая информация) на некоторые мощные светодиоды:

• led datasheet 4,8W- / Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 689.35 kB, скачан: 4380 раз./

• led datasheet 10W / Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 1.82 MB, скачан: 4954 раз./

На этом всё, голосуйте на Сергея из Сочи, задавайте вопросы в комментариях, делитесь опытом!

Особая благодарность тем, кто пришлёт схемы реальных светодиодных драйверов, для коллекции. Я опубликую их в этой статье.

Рекомендую похожие статьи:

Пример установки розетки на плитку

Какой стабилизатор напряжения лучше?

В схеме светодиодного модуля (драйвера) TH-T0440C роль ключа Q2- защита от переполюсовки, точно так же как в схеме YF-053-D1,D2,D5, только тут падение на открытом mosfet Q2 в десятки раз меньше чем на диодах, так что полевик эффективнее. Открывается Q2 подачей положительного напряжения через резистор R1. Элементы D1 от превышения напряжения на затворе, С1, С2 от помех, R2 разряжает затвор- закрывающий резистор.
Микросхемы в обоих схемах действительно похожи. На AL9110 гугл datasheet не находит, V1 и VCC где то потерялись, должны быть, может плата многослойная, нужно прозванивать… может отсутствие питания микросхемы из за обрыва и есть причина выхода из строя…

Весьма актуальная статья. Много подобных изделий из-за нашего менталитета отходят в мир иной через ” крематорий” (вторцветмет).

Да, труд составления схемы по “девайсу” заслуживает уважения.

Просто хочу отметить излишнее увлечение в русской среде словечками “девайс”, “гаджет” и пр. иностранщиной. Есть прекрасные и понятные “устройства”, “аппараты”, “приборы” и т.д. Круче от иностранщины не станешь!

Уточню.
Я застал времена, когда наличие принципиальной схемы устройства в сопроводительной документации купленного устройства было само собой разумеющимся явлением. На те времена самая крутая схема – телевизор. Сколько я их отремонтировал по молодости именно благодаря этим схемам!?
А сейчас? Всё скрывается якобы под “ноу-хау”. Вот, и приходится с “девайса” срисовывать!

Вы, Сергей, молодец! Проделана работа, заслуживающая внимания.

На фото неизвестный светодиод оч похож на Cree XPG. Именно первый. Потому что XPG 2 там ламелей не видно. А у первых XPE 3 ламели.

Здравствуйте. Принесли прожектор 150Вт. 2 БП. оба сгорели. Модель СПРСМД-50 30-42в. 950 мА. Транзистор WWF8N65L + микросхема 6 ног, код 0H=503. Что за микросхема? Встречали? Чем заменить? Спасибо.

Самая простая схема драйвера 220В больше всего похожа на 2-х транзисторную зарядку для сотовых, но без “вторички” – только стабилизатор тока.

Алексей, интересно взглянуть на схему

Кто подскажет схему OL1003-30W, 30-40V.

Вася,,
Если в Гугле нет схемы по поиску OL1003-30W, поищите по маркировке микросхемы на самой плате драйвера, даташит точно должен быть, а может и схема конкретно этого прожектора найдётся

У меня в прожекторе драйвер SY5800.

Привет всем . Во первых . По моему с 2017 года вся бытовая техника и электроника выпускаемая хоть в ” сарае ” хоть фирмой SONY является не подлежащая ремонту . Только русские ” левши ” на коленке 100 ваттным паяльником без оборудования могут поменять СМД компоненты .

Насчёт китаёзских прожекторов . У меня они летят максимум через полгода ( уличное освещение ) . На моём участке хлама скопилось уже около 50 штук . 2 года назад поменяли уличные светильники . Летят и драйвера и матрицы . То от холода , то от грозы , то от бросков сетевого напряжения . Вот бляха муха экономия ! Кормить Китай нужно . Их много , 1.5 миллиарда и кушать хотят .

P. S. В организации во дворе на моём участке висит старая добрая ” кобра ” на 300 ватт с фотореле и светит уже 10 лет без замены ! ! ! Вот это я понимаю . А покупать каждые полгода китаёзские фонари за 500-800 рублей . Экономика хрен её за ногу .

Уважение Автору за ЕГО Работу! Мне принесли СДО-2-30 как оказалось проблема в драйвере! От блока питания 22В (через 12В лампу накаливания токоограничитель) светодиодная матрица была мертва! Тогда ЛАТР 5 А диодный мост (контроль V-метром напряжения) через А-метр, токоограничитель ПОБЕДА зажглась!Планирую использовать ЕМКОСТЬ (не ЭЛЕКТРОЛИТИЧЕСКУЮ ток ПЕРЕМЕННЫЙ!)на напряжение не ниже 400В 10 мкФ (при напряжении 220 В обеспечит ток 0,6 А. Последовательно диодный мостик выход которого нагрузить светодиодной матрицей.Поскольку напряжение в сети промышленных районов стабильно, использовать дополнительный стабилизатор тока на МОП-транзисторе может излишне?!

Доброго времени суток!
В цехе менял освещение на прожектора RSV-SFL-3-100W. От эл.щита до цеха идет кабель ввг 5X2.5, который в самом цеху раскидывается на 4 линии кабелем 3X1.5. В каждой линии по разное количество прожекторов (от 9 до 11), сеть 3L N PE, заземление собрано но не подключёно (не вбит контур)… В течении 5-7 часов работы в работе осталось 4. прожектора (потухли или моргают). К подстанции подключен цех (оборудования нет) и пило рама (в указанный диапазон времени не функционировала). Вывод; либо дефект прожекторов, либо “плохой ноль”. Продавец с широкими глазами показывает, что такие прожектора самые ходовые и я пожаловался первый… Перекос фаз если и будет то мизерный, вполне уложиться в диапазон допустимого напряжения прожектора. Перед началом работ промер показал 228В на фазу.
Может я что то упускаю?

Посмотрел в гугле прожектор по маркировке которую Вы указали
https://rsv-led.ru/katalog/prozhektory/svetodiodnyi-prozhektor-rsv-sfl-3
В описании указано PF 0,9 – очень хороший показатель, догадываюсь, что в этом прожекторе схема питания это линейный стабилизатор, китайцы ещё их называют “smart” driver. Так что в этом прожекторе совсем другое питание, то есть это не импульсный драйвер. Светодиоды обычно используют 2835 на 18 вольт, соединяют в последовательную цепочку, таких цепочек несколько, каждая питается своей микросхемой – драйвером. Для 100 ватт прожектора, может быть 10 микросхем драйверов и 10 цепочек светодиодов, всё распаяно на одной алюминиевой плате.

Мне этот прожектор рекомендовали, да и видел его не раз… Это ещё больше обескураживает… Решил, что поменяю их по гарантии и посажу все линии на 220. И если внешне не будет видно поломки (светодиоды), то один выкуплю и разберу.

Чтобы понять что произошло на самом деле, нужно понять что сгорело в прожекторе, светодиодная матрица или блок питания, если блок питания, то какая именно часть, возможно входная? Поскольку прожекторы на гарантии, Вам разобрать хотя бы один скорее всего не дадут. Не исключено что горит входная часть, тогда возможно это из за перекоса фаз. Нужно не забывать про PF, какой он указан у этой модели прожектора?

Склоняюсь к версии некачественного прожектора, скорее всего перегорает светодиодная матрица, но это только предположение, уж больно быстро перегорает – это странно. Лучше поменять те прожектора что перегорели на новые по гарантии, перед установкой погонять их несколько дней от одной фазы и посмотреть на их поведение.
Разбираться с этим случаем самостоятельно, можно при условии, что уже понимаем как устроен прожектор и как должен работать импульсный блок питания с выходной характеристикой “источник тока”
https://ru.wikipedia.org/wiki/%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA_%D1%82%D0%BE%D0%BA%D0%B0

У такого прожектора со схемой линейного драйвера (smart), есть один существенный недостаток – это сильные пульсации света, заметные глазу, с частотой 100 гц. Это можно проверить на камеру мобильного телефона ,будут видны полосы. То есть такое освещение годится там, где человек не находится долго, то есть для улицы или для склада можно его применить.
Выкупать прожектор, чтобы посмотреть потроха, думаю не стоит, а ремонтировать их сложно и не выгодно.
.

Доброго дня. Столкнулся с проблемой в бесдроссельным прожектором 100вт. После замены диодов, начинают выгорать соседние, и так почтм бесконечно. Один за другим.
Драйвера все целые, вроде олк 3537, сейчас точно не помню. Поменял десятка два светодиодов, вроде стал работать, но насколько его хватит х.з. На втором таком же погорели все диоды, поменял на другие, какие были с ламп трубок на 18вт, после включения ток на диодах был где-то 25мА. Светились неярко, но через 10 минут работы начали гаснуть.
При прозвонке почти два десятка дегоадировали, хотя нагрева не было совсем. Поменял диоды, микрухи сдул и поставил драйвер от лампы трубки.
Стал работать и диоды не дохнут, светит не так ярко как 100, но оно и понятно. В матрице 108диодов было. Четыре группы по 27, ещё и с отводами, схема хитрая какая- то. Не встречал раньше таких. Отдельно коробочка в эпоксидке, я так понял это мост диодный, мож. В нем ещё, что. И драйверов 8 шт. По два частично в параллель. Видимо другие диоды не годятся для него. А какие там непонятно. Скорее всего на 1 ватт

На какие диоды производили замену? Вы уверены, что они обладают идентичными параметрами с оригинальными?
Есть способ, чтобы избежать этих проблем – диоды нужно менять все сразу.

В ПРОЖЕКТОРЕ СТОЯТ В ОСНОВНОМ 1 ВАТ 9 ВОЛЬТТ. В ЛАМПЕ 18 ВАТНОЙ СТОЯТ 3 ВОЛЬТА 0.2 ВАТТА . ВОТ ОНИ И ГОРЕЛИ

Добрый вечер!
Эпопея с прожекторами получила продолжение!
На 13 прожекторах выгоревшие диоды матрицы… А вот на оставшихся 3х, матрица целая, НО! Видны следы температурного воздействия (изогнута пластина отражателя)!
А теперь десерт.
Как я писал выше, в цеху 4ре линии по 9-11 прожекторов. Заменив первую линию и оставив её включенной приступил к замене второй. Практически сразу заметил, что в заменяемой мной линии наблюдается слабое свечение матрицы. Подключив земляную жилу (а она и сейчас без контура) к весьма посредственной “земле”, отметил существенное понижение свечения. Выходит, что “фаза” хоть и ослабленная, перетекает “в землю”… Отсюда ряд вопросов… 1.) Как в таком случае поведет себя УЗО? 2.) Какая “каша” была на земляной жиле при 3P подключении? 3.) Если “фазы” свободно переходили между линиями, не могло ли это стать причиной масового выхода их из строя?

Сергей, это не совсем “перетекание”, это скорее всего наводка. Хотя конечно утечка тоже есть, учитывая длину линии и небесконечность сопротивления изоляции.
3) Переходили – не совсем верный термин. Скорее, была проблема с подключением нейтрального провода. Если он имел плохой контакт, то был сильный перекос фаз, и на светилники могло приходить вместо 220 до 380 В.
Ну заземление в этом случае нужно по любому, чтобы исключить много неприятностей.

Перед заменой прожекторов, перевел все линии на 220… Когда заметил свечение и по про бывал (землю), я разъединил общую скрутку “земли” всех 4х линий. И свечение пропало…

А общая скрутка “земли” была надежно подключена к заземляющей шине?

Я писал выше (в самом начале), что заземление только планировалось… Его и сейчас нет…

Тогда понятно – был перекос фаз в трехфазной системе.
Ну а землю по любому нужно будет.

Александр, из каких соображений Вам понятно? Мне не понятно, причём тут земля вообще? Земляной проводник идёт только на корпус, электрической цепи там не должно быть, тусклое свечение может быть из-за ёмкости между платой со светодиодами и корпусом, как только корпус отсоединили от земли, цепь в которой эта паразитная ёмкость разорвалась, свечение прекратилось. Мне по прежнему не понятно почему массово горели прожекторы? Что там оплавилось у прожектора, если в микросхеме драйвера должна быть функция отключения при перегреве? Есть ли на плате драйвера варистор? Если он сработал, то было превышение напряжения в результат перекоса фаз, а так пока ничего не понятно и доказательств превышения напряжения нет

Хотя да, возможно это перекос и превышение напряжения, варистора на плате драйвера наверно нет, а вот это я просто не правильно понял:
“Практически сразу заметил, что в заменяемой мной линии наблюдается слабое свечение матрицы. Подключив земляную жилу (а она и сейчас без контура) к весьма посредственной “земле”, отметил существенное понижение свечения. Выходит, что “фаза” хоть и ослабленная, перетекает “в землю”
Тут наверно нужно было измерить напряжение, что бы не гадать, тогда точно было бы понятно, а так фразу “существенное понижение свечения.” не понятно как трактовать, я понял что это свечение когда прожектор выключен, такое бывает из-за тока через паразитную ёмкость платы со светодиодами и корпусом

Алексей здравствуйте!
Я выше писал, что на 10кВт подстанции “сидит” данный цех и пило рама которая в во время выхода прожекторов не работала. Откуда мог взяться перекос фаз? Что его могло вызвать? 20 светодиодных прожекторов на это явно не способны…
По поводу “свечения”, то оно было едва заметным, при чем цех без окон (заделаны) и плохо освещен (пользовался переносным прожектором). Заземлил на трос подвеса, свечение стало еще тусклее. После разъединения всех земляных жил, свечение полностью пропало.

Сергей, а Вы можете проверить состояние “0”? Как проверить (измерить) написать? Если ноль оборван, то перекос может быть при любой нагрузке, даже если включен один прожектор на одну фазу, а на другую два, то будет перекос, там где один прожектор, напряжение будет выше. Как раз пилораме ноль не нужен, если там сам мотор трёхфазный и всё исправно! Наоборот, симметричная нагрузка (трёхфазный мотор) будет работать как виртуальный ноль!
История со слабым свечением светодиодов в выключенном состоянии к перекосу фаз отношения не имеет совсем

Сейчас все линии прожекторов работают от 220, как и ручной электроинструмент.

Помогите пожалуйства!
Не включается акумуляторный фонарь!
Нужна схема драйвера до акумуляторного фонарика “Varta” модель: 18682
Один светодиод, и зарядка на 8 вольт.
Может ктото поможет!
Спасибо!

Иван, начните с простого – проверка контактов, наличие напряжения на ключевых точках схемы.

Думаю что фонарик продвинутый, раз просят схему, там скорее всего микроконтроллер и управление режимами кнопкой без фиксации. Схема в данном случае поможет только проверить цепь кнопки, подачу питания и цепь самого стабилизатора тока светодиода (драйвера). Обычно микроконтроллер формирует сигнал ШИМ, который подаётся например на драйвер Amc7135 (может быть несколько драйверов в параллель)

Посмотрел в интернете описание к этому фонарю, там всего один режим яркости, возможно кнопка с фиксацией, тогда всё проще. Нужно прозвонить все цепи и проверить напряжения на драйвере, выдаёт ли он питание на светодиод

Вариант схемы с параллельным включением драйверов AMC7135

Спасибо Алексей за ответ.
На диоде SS24A большое падение напряжения!
Что проверять не знаю! Данные транзистора NC3a в интернете найти не могу!

Интересная плата! Похоже на ней собраны и импульсный драйвер светодиода и схема зарядки батареи. Еще вероятно, что управление всё-же кнопкой без фиксации и микроконтроллером, тогда скорее всего Вам не удастся это починить, в случае если слетела прошивка микроконтроллера (такое бывает), то прошить его будет сложно. Я бы в таком случае не тратил напрасно время и купил готовый драйвер китайского фонаря, с подходящими характеристиками и ещё подходящую платку для зарядки батареи, в зависимости от напряжения батареи (один элемент и или два последовательно)
пример драйвера700 мА, для светодиода 3 ватт с одним кристаллом 3 в

Вот нашёл хорошую универсальную платку для зарядки с возможностью задать количество элементов в батарее, один 4.2в или два 8.4в, схема импульсная, значит будет хороший КПД и минимальный нагрев

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *