Что измеряют акселерометры и магнетометры
Перейти к содержимому

Что измеряют акселерометры и магнетометры

Магнитометры: принцип действия, компенсация ошибок

Рассматриваются базовые принципы теории магнетизма, приводится общее описание датчика магнитного поля HMC5883L, описывается методика устранения помех, искажающих производимые датчиком результаты измерений

Вебинар «Решения MORNSUN для промышленных применений: от микросхем до ИП на DIN-рейку» (02.11.2022)

Изобретенное более тысячи лет назад такое простое, но в тоже время гениальное устройство, как компас и сегодня является незаменимой вещью в инвентаре любого капитана корабля или туриста. В наше время благодаря развитию электроники и технологии микроэлектронных механических систем появились МЭМС-магнитометры, предоставляющие функцию компаса в микросхемном исполнении. Сегодня их повсеместно можно встретить в потребительских электронных устройствах (смартфонах, планшетах), автомобилях, робототехнике и т.п. Зачастую они входят в состав сложных навигационных систем, а в сочетании с акселерометром и/или гироскопом представляют собой инерциальную систему, способную точно определять местоположение в трехмерном пространстве.

Магнитометр представляет собой устройство для измерения интенсивности одной или нескольких составляющих магнитного поля. Сегодня рынок предоставляет широкий выбор двух- и трехосевых электронных компасов в интегральном исполнении. Для более полного понимания принципа действия такого компаса рассмотрим основные положения теории магнетизма и принципы определения направления вектора магнитного поля Земли.

Магнитное поле Земли в каждой точке пространства характеризуется вектором напряженности Т, направление которого определяется тремя составляющими по осям X, Y и Z в прямоугольной системе координат (Рисунок 1). Также магнитное поле Земли можно описать горизонтальной составляющей напряженности Н, магнитным склонением D (углом между Н и плоскостью географического меридиана) и магнитным наклонением I (углом между Т и плоскостью горизонта).

Рисунок 1. Составляющие магнитного поля Земли.

Основной характеристикой магнитного поля является магнитная индукция B, представляющая собой векторную величину. Направление вектора магнитной индукции совпадает с направлением силы, действующей на северный полюс магнита, помещенного в данную точку магнитного поля. Величина B выражается единицей измерения тесла (Тл или (Н/А·м)). Тесла является довольно крупной величиной магнитной индукции, поэтому для измерения слабых магнитных полей применяют мелкую дольную единицу – микротесла (мкТл). Стоит заметить, что полный вектор магнитного поля Земли составляет всего около 50 мкТл. Но в документации на МЭМС-магнитометры обычно приводится другая единица измерения, характеризующая магнитное поле – гаусс (Гс). Гаусс представляет собой единицу измерения магнитной индукции в системе СГС. При этом справедливы следующие равенства:

Магнитная индукция связана с напряженностью магнитного поля соотношением:

Здесь
μ – магнитная проницаемость среды,
μ0 – магнитная постоянная.

Исходя из (1), можно утверждать, что B

H. В итоге, на практике для определения направления вектора магнитного поля Земли измеряют две его составляющие по оси X и оси Y (Рисунок 2), а затем вычисляют угол φ на основании следующих формул:

Для более детального понимания принципа действия магнитометра рассмотрим работу датчика HMC5883L компании Honeywell. Этот датчик (см. Рисунок 3) представляет собой устройство для измерения магнитного поля по осям X, Y и Z. Он является типовым представителем семейства магнитометров общего назначения, применяемых в мобильных телефонах, планшетах, автомобильных навигационных системах, персональных навигационных устройствах и прочей потребительской электронике. Такие датчики по принципу своего действия, методу связи с управляющим устройством и даже по структуре регистров не сильно отличаются друг от друга. Так, например, HMC5883L по перечисленным характеристикам очень похож на магнитометр в составе инерциальной системы LSM303 компании STmicroelectronics.

Магнитометры: принцип действия, компенсация ошибок
Рисунок 3. Магнитометр HMC5883L на печатной плате.

HMC5883L может измерять магнитное поле в диапазоне от –8 до +8 гаусса. Благодаря изменяемому коэффициенту усиления (GN) чувствительность датчика может варьироваться от 0.73 мГс/LSB (милигаусс на младший значащий разряд) до 4.35 мГс/LSB при изменении GN от 0 до 7, соответственно. Настройка и считывание данных происходит по шине I 2 C. Всего имеется 12 восьмиразрядных регистров. Два регистра настройки (Register A и Register B) позволяют изменять частоту выдачи данных, режим измерения, количество выборок за время одного замера и коэффициент усиления. С помощью регистра режима (Mode Register) можно выбрать режим функционирования датчика: либо он будет измерять непрерывно (Continuous-Measurement Mode), либо проведет измерение один раз и перейдет в режим ожидания (Single-Measurement Mode). В шесть регистров, расположенных по адресам с 0x03 по 0x08, помещаются результаты измерений. На одну ось выделяется по два регистра (Output Register A и Output Register B), причем регистр A является старшим по отношению к регистру B. Полученное значение представляется 12-разрядным числом. Регистр статуса (Status Register) имеет всего два бита – бит готовности (RDY) и бит «защелки» (LOCK). Бит готовности устанавливается после того, как данные будут записаны во все шесть выходных регистров. Для осуществления не программного, а аппаратного опроса, его функция дублируется выводом DRDY. Бит «защелки» устанавливается, когда данные из одного или нескольких (но не из всех) выходных регистров были считаны, либо когда был считан регистр режима. Оставшиеся три регистра представляют собой идентификационные регистры (Identification Registers), позволяющие управляющему устройству при необходимости определить этот датчик.

Доступ к магнитометру осуществляется по шине I 2 C. Запись производится по адресу 0x3C, а чтение – 0x3D. Для удобства считывания данных имеется функция автоматического инкремента адреса выходных регистров с последующим переходом на адрес 0x03 (старший регистр оси X) по завершении считывания данных из всех выходных регистров. Необходимо также отметить, что выходные регистры расположены в «неправильном» порядке, то есть при последовательном считывании сначала будут взяты данные оси X, затем оси Z, и в последнюю очередь оси Y. Это необходимо учитывать в программе.

В простейшем случае для определения направления относительно магнитного поля Земли при условии горизонтального расположения платформы необходимо считать данные с выходных регистров осей X и Y, а затем вычислить арктангенс угла в соответствии с формулой (3). Но в реальности, особенно в случае применения магнитометров в составе сложных устройств, где присутствуют дополнительные магнитные поля, например, внутри автомобилей, судов и т.п., на датчик действуют помехи, искажающие его показания.

Существуют два типа искажений, действующих на компас. Первое называется искажением твердого железа (Hard Iron Distortion). Оно по своей природе является аддитивным, то есть к изначально измеряемому полю добавляется дополнительное, создаваемое постоянным магнитом (например, динамиками звуковых колонок). При неизменной ориентации такого магнита относительно датчика, смещение, вносимое им, будет также неизменно. Ко второму типу относится искажение мягкого железа (Soft Iron Distortion). Оно создается посторонними предметами, искажающими уже имеющееся магнитное поле. Например, предметы, выполненные из пермаллоя, никеля и т.п., не создают своего магнитного поля, но изменяют форму поля, измеряемого датчиком. Компенсация мягкого железа очень актуальна на кораблях, где намагниченные полем Земли части судна при изменении его ориентации относительно магнитного полюса перемагничиваются и вновь вносят искажения в процесс измерения. Таким образом, компенсация мягкого железа представляет собой более сложную задачу.

Вначале рассмотрим процесс компенсации влияния твердого железа. Следует учесть, что здесь и далее предлагается компенсация в двумерном пространстве. Компенсация в трех измерениях, которая обязательна для воздушных судов, требует использования комплексного математического аппарата, и в данном случае не рассматривается. Ознакомиться с таким методом ликвидации магнитных помех можно в [9]. В начале процедуры устранения искажений датчик располагается горизонтально, и вокруг вертикальной оси совершается, как минимум, один полный оборот. Далее выделяются точки, имеющие максимальное и минимальное значение по осям X и Y. Найденные значения максимумов и минимумов используются для устранения смещения нуля:

Через найденные коэффициенты и изначально полученные данные (XН, YН) можно выразить скорректированные по методу компенсации твердого железа величины по осям X и Y:

На Рисунке 4 отображены результаты эксперимента по проведению компенсации такого вида. В ходе эксперимента вблизи датчика был расположен магнит. Нижний левый график отчетливо показывает факт смещения центра фигуры из точки (0,0) из-за вносимой постоянной составляющей. После вычислений по формулам (4) и (5) центр был смещен в точку начала, как видно на нижнем правом графике.

Рисунок 4. Компенсация искажения твердого железа.

В ходе эксперимента также было воспроизведено небольшое влияние искажения мягкого железа. По полученному изображению видно, что фигура представляет собой не четко сформированную окружность, а эллипс с некоторым наклоном относительно координатных осей. Изменение магнитного поля такого вида как раз характерно для искажения мягкого железа, которое, как говорилось выше, не вносит дополнительного магнитного поля, а влияет на форму уже имеющегося.

Для компенсации такого искажения необходимо сначала нормировать эллипс относительно осей координат, то есть произвести его поворот на определенный угол. В ходе этой операции нужно найти большую (a) и малую (b) полуоси эллипса (схематично представлено на Рисунке 5). Применяя формулу вычисления радиуса (6) для каждой точки эллипса, находят максимально удаленную точку от начала координат, расстояние до которой будет равно длине большой полуоси, и минимально удаленную точку, являющейся концом малой полуоси.

Затем определяется угол наклона φ относительно определенной оси координат либо малой полуоси, либо большой. После нахождения этого угла становится возможным осуществить поворот эллипса таким образом, чтобы его полуоси совпадали с осями координат. Формула (7) определяет матрицу поворота, которая потребуется для проведения данной операции. Эта матрица умножается на вектор-столбец ν, являющийся набором всех значений XТЖ и YТЖ.

Повернутый эллипс далее необходимо преобразовать в окружность с целью устранения искажения мягкого железа. Для этого используется масштабный коэффициент, определяемый формулой (9), который необходим для «сжатия» эллипса вдоль большой полуоси.

Каждое значение по оси, с которой совпадает большая полуось, должно быть умножено на этот масштабный коэффициент для получения желаемой окружности. Результат такой трансформации представленного на Рисунке 4 эллипса можно видеть на Рисунке 6.

Рисунок 6. Окружность, полученная после компенсации влияния искажения мягкого железа.

Далее для того, чтобы вернуть значения составляющих напряженности магнитного поля в исходное положение, нужно вновь произвести поворот полученной фигуры на тот же угол, но уже в противоположном направлении. При этом снова используются формулы (7) и (8) с единственным отличием – угол φ берется с противоположным знаком.

На этом процесс устранения искажений завершается. Но следует помнить, что к компенсации искажения мягкого железа можно приступать лишь после успешно проведенной операции по устранению искажения твердого железа и при условии, что платформа остается в горизонтальном положении, либо наклон контролируется с помощью данных по оси Z или акселерометра. В итоге становится возможным получить более точное значение азимута. Поскольку при вращении электронного компаса возникают ситуации деления на ноль, целесообразно пользоваться нижеприведенной Таблицей 1.

X Международная студенческая научная конференция Студенческий научный форум — 2018

Цель работы – построить на основе МЭМС-акселерометров и магнитометра на основе магниторезисторов систему ориентации забойного инклинометра с параметрами, соответствующими современным требованиям

В процессе исследования проводились расчет и вывод уравнений для определения местоположения скважинного прибора на основе выбранных чувствительных элементов

В результате исследования разработан модуль инклинометрический забойного инклинометра на базе МЭМС — акселерометров фирмы Colybris, TS1002T и магнитометорв Honeywell HMC1043, со следующими характеристиками: зенитный угол от 0-180 о , азимутальный угол 0-360 о , угол установки отклонителя 0-360 о , погрешностью зенитного угла, не более ±0,15; диаметр охранного кожуха 54 мм; рабочий диапазон температур: от +5 до + 105 С;

Степень внедрения: стадия разработки технического предложения

Область применения: направленное бурение газовых и нефтяных скважин

Экономическая эффективность значимость работы повышение надежности и снижение стоимости модуля инклинометрического

Введение

Направленное бурение (рис. 1.) постепенно становится основным видом бурения, как на суше, так и на море при проходке скважин со стационарных морских платформ. Однако существуют требования к точности бурения забоя скважин в заданную точку и к соблюдению проектного профиля скважины.

Рис. 1. Бурение наклонно – направленной скважины

Увеличение производительности труда в бурении и сроков строительства скважины, ставит перед создателями инклинометрических приборов и систем задачу повышения не только точности к измерительной аппаратуре, но и оперативности получения инклинометрической информации, а также сокращения затрат времени при проведении инклинометрических работ. Это привело к разработке новых приборов и информационно-измерительных систем с использованием последних научно-технических достижений.

Цель направленного бурения состоит в том, чтобы, во-первых, забой скважины достиг проектной точки, во-вторых, был подготовлен ствол скважины такого профиля и такого качества, которые обеспечили бы нормальную дальнейшую эксплуатацию скважины. Соответственно, существуют и требования как к допустимому отклонению забоя от проектной точки, так и к профилю ствола скважины. Для соблюдения этих требований необходимо использовать приборы, дающие информацию о пространственном положении ствола скважины – инклинометры.

Для измерения угла наклона достаточно использовать трёхосный акселерометр, который измеряет проекции ускорения свободного падения g на три взаимно перпендикулярные пространственные оси. Для измерения азимута обычно используется трёхосный магнитометр, который, по аналогии с акселерометром, измеряет проекции напряженности магнитного поля земли на три взаимно перпендикулярные пространственные оси. На основании этих данных, после соответствующих вычислений, получают значение азимута и угла наклона в любой точке ствола скважины и его пространственную траекторию.

1. Глоссарий

Азимутальный угол (азимут плоскости наклонения касательной к оси скважины) – угол в горизонтальной плоскости, отсчитываемый от опорного направления (на магнитный Север, истинный Север или Север координатной сетки) до горизонтальной проекции касательной к оси скважины в данной точке, по часовой стрелке, если смотреть сверху. Азимут плоскости наклонения может принимать значения от 0 до 360°.

Акселерометр –прибор, измеряющий кажущееся ускорение (разность между абсолютным линейным ускорением движения корпуса акселерометра вдоль его оси чувствительности и проекции на эту ось гравитационного ускорения).

Апсидальный угол (угол поворота, угол установки отклонителя) третий (кроме азимута плоскости наклонения и зенитного угла) угол, характеризующий угловое пространственное положение скважинного прибора. Это угол в поперечной плоскости скважинного прибора, характеризующий положение скважинного прибора относительно апсидальной плоскости. Отсчитывается от прямой, перпендикулярной продольной оси скважинного прибора и при этом лежащей в вертикальной плоскости наклонения прибора (апсидальной плоскости), к выбранной определенным образом в приборе и привязанной к нему поперечной прямой. Апсидальный угол может принимать значения в диапазоне от 0 до 360°. При значении угла, равного нулю или 180° (скважинный прибор занимает строго вертикальное положение) понятие «апсидальный угол» теряет смысл, поскольку исчезает понятие «плоскость наклонения» или «апсидальная плоскость».

Апсидальная плоскость – вертикальная плоскость, содержащая в себе продольную ось скважинного прибора; другими словами, это плоскость наклонения скважинного прибора. При значении угла, равном 0 или 180° (скважинный прибор занимает строго вертикальное положение) понятия «апсидальная плоскость», «плоскость наклонения» теряют свой смысл.

Вектор магнитной индукции – вектор, являющийся силовой характеристикой магнитного поля (его действия на движущиеся заряженные частицы) в данной точке пространства.

Забойный инклинометр – скважинный инклинометр, предназначенный для определения ориентации забойных устройств с целью осуществления управления наклонно-направленным, в том числе горизонтальным бурением, а также определения траектории скважины.

Забой скважины – самая нижняя часть ствола скважины, находящейся в бурении или эксплуатации.

Зенитный угол – угол в вертикальной плоскости между вертикалью места и касательной к оси скважины (продольной оси скважинного прибора). Сторонами угла являются: отрезок вертикали, направленной вниз, и отрезок касательной к оси скважины от конца, обращенного к устью скважины к концу, обращенному в сторону забоя. При зенитном угле, равном 0° скважина на данном отрезке вертикальна, при угле, равном 90° – горизонтальна. Зенитный угол может принимать значения от 0 до 180°.

Инклинометрические работы – работы, которые позволяют определить и уточнить пространственное положение ствола скважин как в необсаженном стволе, так и в колонне.

Инклинометр – прибор, предназначенный для измерения угла наклона различных объектов относительно вертикали места. В горном деле инклинометры определяют, кроме величины отклонения от вертикали (зенитного угла) ещё и направление этого отклонения (азимут плоскости отклонения). В некоторых случаях инклинометры определяют и третий угол (апсидальный), характеризующий положение скважинного прибора по отношению к апсидальной плоскости.

Магнитное наклонение – угол между вектором магнитной индукции в данной точке околоземного пространства и плоскостью горизонта. Магнитное наклонение может принимать значения в диапазоне от — 90° до +90°. На южном и северном магнитных полюсах Земли углы магнитного наклонения равны соответственно — 90° и +90°.

Магнитометр – прибор для измерения напряжённости магнитного поля (в основном постоянных или медленно меняющихся).

Магнитное склонение – угол в горизонтальной плоскости между направлением плоскости истинного меридиана и горизонтальной проекцией вектора напряженности магнитного поля Земли в данной точке. Отсчитывается от направления на истинный (географический) Север к направлению на магнитный Север по часовой стрелке, если смотреть сверху. Поэтому магнитное склонение считается положительным, если направление на магнитный Север отклонено на Восток (восточное склонение), и отрицательным, если на Запад (западное склонение).

2. Принцип построения системы инклинометрической буровой системы

2.1. Инклинометрия скважин

Инклинометрия может быть определена как метод, используемый для определения положения скважины [1]. Инклинометрия позволяет определить текущее положение забоя скважины, графически отобразить траекторию скважины до текущего момента (рис. 2), планировать направление скважины, обеспечивать ориентационную информацию для спуска других скважинных инструментов.

Рис. 2. Траектории скважин

Инклинометрия скважин преследует следующие цели:

Определите точного местоположения забоя скважины. Осуществление контроля за траекторией скважины в процессе бурения, чтобы быть уверенным в достижении конечной цели.

Правильная ориентация инструментов (таких как компоновки направленного бурения), обеспечивающих изменение траектории бурения скважины в нужном направлении при выполнении коррекции.

Недопущение пересечения пробуриваемой скважины с уже существующими скважинами.

Расчёт глубины по вертикали залегания различных формаций для точного построения геологических карт.

Предупреждение бурильщика, ведущего направленное бурения о потенциальных проблемах при бурении скважины (резкое искривление ствола скважины).

Выполнение предписания контролирующих органов.

При выбросах и возгораниях рабочих скважин инклинометрия скважины может способствовать определению возможности бурения отводной скважины до пересечения с забоем скважины, из которой произошел выброс, с целью закачивания воды или раствора в скважину, и управления ею.

С появлением направленного бурения инклинометрия стала играть более важную роль, чем это было при бурении традиционно вертикальных скважин. Путем измерения зенитного угла и азимута ствола скважины на разных глубинах исследование позволяет добиться направления бурения скважины в нужную точку. Исследование может выполняться как в процессе бурения, так и после его завершения.

2.2. Инклинометрия во время бурения

Одноточечные (разовые) замеры могут производиться в процессе бурения для определения зенитного угла и азимутального направления ствола скважины. При направленном бурении с помощью разовых замеров можно ориентировать инструмент, используемый для изменения направления бурения. Это производится путем временного прекращения бурения, спуском исследовательских приборов до забоя скважины и проведением исследования. Исследование может также быть проведено во время наращивания бурового инструмента (добавления свечи) с помощью системы измерений в процессе бурения (MWD), включённой в состав забойной компоновки. В зависимости от типа используемого прибора, информация о зенитном угле и азимуте ствола скважины может регистрироваться и храниться на пленке или в памяти компьютера в условиях скважины или передаваться на поверхность. На поверхности полученная информация обрабатывается и используется для подготовки фактической диаграммы данных замеров. Исследование в процессе бурения позволяет бурильщику определить текущее положение ствола скважины и изменить зенитный угол и азимут, если это необходимо.

Принцип действия системы инклинометрической буровой основан на измерении в скважине в трех направлениях значений проекции вектора силы тяжести на ось чувствительности акселерометров Gx, Gy, Gz, ортогонально установленных на шасси ПC и измерении в трех направлениях проекции вектора напряженности естественного магнитного поля Земли на ось чувствительности магнитометров Мх, Му, Мz, ортогонально установленных на шасси ПC (рис.3) 2]. В результате математической обработки шести измеренных промежуточных параметров вычисляются следующие параметры: зенитный угол, азимут, положение отклонителя.

Рис. 3. Схема расположения магнитометров Мх, Му, Мz, и акселерометров Gx, Gy, Gz по осям OXYZ связанной системы координат скважинного прибора

2.3. Магнитное поле Земли

Магнитное поле Земли – это область вокруг нашей планеты, где действуют магнитные силы. Вопрос о происхождении магнитного поля до сих пор окончательно не решен. Однако большинство исследователей сходятся в том, что наличием магнитного поля Земля хотя бы отчасти обязана своему ядру. Земное ядро состоит из твердой внутренней и жидкой наружной частей. Вращение Земли создает в жидком ядре постоянные течения. Как можно помнить из уроков физики, движение электрических зарядов приводит к появлению вокруг них магнитного поля.

Рис. 4. Схема магнитного поля Земли

Одна из самых распространенных теорий, объясняющих природу поля, — теория динамо-эффекта — предполагает, что конвективные или турбулентные движения проводящей жидкости в ядре способствуют самовозбуждению и поддержанию поля в стационарном состоянии.

Землю можно рассматривать как магнитный диполь. Южный полюс магнитного диполя находится на географическом Северном полюсе (рис.4), а северный, соответственно, на Южном.

На самом деле, географический и магнитный полюса Земли не совпадают не только по «направлению». Ось магнитного поля наклонена по отношению к оси вращения Земли на 11,6 градуса 1]. Из-за того, что разница не очень существенная, мы можем пользоваться компасом. Его стрелка точно указывает на южный магнитный полюс Земли и почти точно на Северный географический.

2.4. Магнитное наклонение

Обычные силовые линии магнитного поля будут исходить из такого магнитного стержня, образуя структуру с северным и южным магнитным полюсами, при этом силовые линии (линии потока) будут располагаться вертикально или под углом 90° к поверхности Земли, а на магнитном экваторе силовые линии будут горизонтальными или расположенными под углом 0° к поверхности Земли (рис.5). В любой точке Земли можно обнаружить магнитное поле. Наблюдаемое магнитное поле характеризуется величиной и направлением (является вектором). Величина его называется индукцией и измеряется в единицах Тесла.

Рис. 5. Зависимость магнитного наклонения от широты

2.5. Магнитное склонение

Магнитное склонение — угол между географическим и магнитным меридианами в точке земной поверхности (рис.6). Поскольку местоположение магнитного севера изменяется во времени, склонение является переменной величиной, зависящей от времени и пространства. Магнитное склонение можно представить как угловую разницу между географическим или истинным севером и горизонтальной составляющей магнитного поля Земли 1].

Рис. 6. Магнитное склонение:

а – магнитное склоенение; б – восточное и западное склонение

2.6. Существующие сложности

При пользовании магнитометрическими датчиками необходимо помнить, магнитное склонение зависит от места измерения и медленно меняется во времени. Например, для Москвы магнитное склонение в 2004 году было близко к + 9,3º, то есть истинный полюс находится западнее направления, указываемого компасом, на 9,3º. В начале 1980-х годов магнитное склонение в Москве составляло 8º, а в 2009-м достигло 10º1. Магнитное склонение для любой другой точки Земли можно определить несколькими способами. На сайте Канадского геологического центра исследования геомагнетизма есть калькулятор для определения магнитного склонения по географическим координатам. Другой калькулятор поддерживается Британским геологическим центром при Совете по исследованию природной среды. Приближенно оценить магнитное склонение в различных точках планеты можно по картам, формируемым на сайте Национального центра геофизических данных (США) 2. Пример такой карты на 2010 год показан на рис. 7.

Рис. 7. Карта с магнитными силовыми линиями

В условиях высоких широт существует ряд проблем измерений. Угол магнитного наклонения, на большей части территории России превышает 70 градусов, а в наиболее богатых по углеводородному сырью регионах превышает 78 и даже 80 градусов. Это означает, что горизонтальная составляющая магнитного поля Земли в этих регионах минимальна. Поэтому любые естественные изменения магнитного поля Земли (магнитные бури и аномалии) и создаваемые искусственно сооружениями (наземными и подземными коммуникациями, бурильной и обсадной колоннами, изменениями состояния разреза) оказывают существенное влияние на показания датчика угла магнитного наклонения и создают дополнительную погрешность в показаниях телесистемы, снижение которой является актуальной задачей.

Задача решается за счет параллельного контроля геомагнитной ситуации в зоне ведения буровых работ специальным автономным наземным феррозондовым блоком датчиков и применения специальной методики совместной обработки данных измерений скважинного и наземного измерительных приборов.

3. Проектирование модуля инклинометрического забойной телесистемы

3.1 Структурная схема

На рис. 8 изображена схема скважинного прибора для общего случая компоновки прибора, в различных приборах схема может несколько отличаться от рассмотренной в данном разделе.

Рис. 8. Структурная схема

3.2 Обзор чувствительных элементов для МИ

Для определения углов ориентации скважинного прибора в системах инклинометрических буровых часто используется комплекс из трех акселерометров и трех магнитометров, оси, чувствительности которых совмещены с осями, связанной с прибором системы координат OXYZ.

3.2.1 Акселерометры

Для определения угла наклона с использованием вектора силы тяжести может быть использован MEMS – акселерометр.

MEMS – акселерометр представляют собой трехосевой акселерометр, который состоит из чувствительного элемента и интерфейсного элемента, передающего по последовательным интерфейсам I²C/SPI измеренное ускорение.

Для создания поверхностного микромеханического акселерометра используется запатентованный тех. процесс. Технология позволяет выполнять подвешенные кремниевые структуры, которые соединены с подложкой всего в нескольких точках, называемых якорями. Эти структуры способны свободно перемещаться в направлении распознаваемого ускорения. Для того чтобы обеспечить совместимость с традиционными техниками корпусирования микросхем, специальная крышка, предотвращающая блокирование подвижных частей после фазы отливки пластикового корпуса, помещена над чувствительным элементом.

Когда прикладывается ускорение к сенсору, контрольная масса сдвигается со своей начальной позиции и приводит к разбалансировке емкостного полумоста. Эта разбалансировка измеряется интегрированием заряда, вызванного импульсом напряжения, поданным на чувствительный конденсатор [4].

Так как сила гравитации является постоянной величиной, дополнительные силы, действующие на нее, искажают выходной сигнал и приводят к некорректному вычислению. При обработке выходного сигнала акселерометра, можно снизить ошибки на выходе, но это приведет к задержке при определении актуального значения угла.

3.2.2 Магнитометры

Для измерения угла азимута используются датчики магнитного поля: магнитостатические, индукционные, гальваномагнитные.

Магнитостатические магнитометры

Принцип действия магнитостатических магнитометров основан на измерении механического момента J, действующего на индикаторный магнит прибора в измеряемом поле. Момент J в магнитометрах различной конструкции сравнивается:

1) с моментом кручения кварцевой нити (действующие по этому принципу кварцевые магнитометры и универсальные магнитные вариометры на кварцевой растяжке обладают чувствительностью G

2) с моментом силы тяжести (магнитные весы с G

3) с моментом, действующим на вспомогательный эталонный магнит, установленный в определённом положении (оси индикаторного и вспомогательного магнитов в положении равновесия перпендикулярны). В последнем случае, определяя дополнительно период колебания вспомогательного магнита в поле Hi, можно измерить абсолютную величину Hi (абсолютный метод Гаусса).

Основное назначение магнитостатических магнитометров — измерение компонент и абсолютной величины напряжённости геомагнитного поля, градиента поля, а также магнитных свойств веществ.

Индукционные магнитометры

Принцип действия основан на явлении электромагнитной индукции — возникновении ЭДС в измерительной катушке при изменении проходящего сквозь её контур магнитного потока. Изменение потока в катушке может быть связан:

1) с изменением величины или направления измеряемого поля во времени (примеры — индукционные вариометры, флюксметры). Простейший флюксметр (веберметр) представляет собой баллистический гальванометр, действующий в сильно переуспокоенном режиме (G

10−4 Вб/деление); широко применяются магнитоэлектрические веберметры с G

10− 6 Вб/деление, фотоэлектрические веберметры с G

10 − 8 Вб/деление и другие.

2) с периодическим изменением положения (вращением, колебанием) измерительной катушки в измеряемом поле; простейшие тесламетры с катушкой на валу синхронного двигателя обладают G

10 − 8 Тл. У наиболее чувствительных вибрационных магнитометров G

3) с изменением магнитного сопротивления измерительной катушки, что достигается периодическим изменением магнитной проницаемости пермаллоевого сердечника (он периодически намагничивается до насыщения вспомогательным переменным полем возбуждения); действующие по этому принципу феррозондовые магнитометры имеют G

Индукционные магнитометры применяются для измерения земного и космических магнитных полей, технических полей, в магнитобиологии и т.д.

Квантовые магнитометры

Приборы, основанные на свободной прецессии магнитных моментов ядер или электронов во внешнем магнитном поле и других квантовых эффектах (ядерном магнитном резонансе, электронном парамагнитном резонансе). В зависимости от способа создания макроскопического магнитного момента и метода детектирования сигнала различают 6: протонные магнитометры (свободной прецессии, с динамической поляризацией и с синхронной поляризацией), резонансные магнетометры (электронные и ядерные), магнитометры с оптической накачкой. Квантовые магнитометры применяются для измерения напряжённости слабых магнитных полей (в том числе геомагнитного и магнитного поля в космическом пространстве), в геологоразведке и в магнетохимии. Значительно меньшую чувствительность имеют квантовые магнитометры для измерения сильных магнитных полей. Существуют магнитометры следующих типов: протонный магнитометр, гелиевый магнитометр, атомный магнитометр на щелочных металлах с оптической накачкой, атомный магнитометр, свободный от спин-обменного уширения (SERF-магнитометр)

Гальваномагнитные магнитометры

Принцип действия гальваномагнитных магнитометров основан на воздействии магнитного поля на движущийся электрический заряд. На эффекте Холла основано действие различного рода тесламетров для измерения постоянных, переменных и импульсных магнитных полей, градиентометров и приборов для исследования магнитных свойств материалов. Чувствительность тесламетров, работающих на основе эффекта Гаусса, достигает 10 мкВ/Тл; чувствительность электронно-вакуумных М.

Как смартфоны чувствуют мир. Часть 1: акселерометры, гироскопы и другие сенсоры

Что же такое МЭМС (MEMS)? Под этой аббревиатурой скрывается название «микроэлектромеханические системы» (Microelectromechanical systems). Они представляют собой миниатюрные устройства, содержащие микроэлектронные и микромеханические компоненты. Само название МЭМС, скажем прямо, совсем не на слуху у пользователей. Однако каждый день мы пользуемся множеством девайсов, основанных на базе этих решений. Самым простым примером микроэлектромеханической системы может служить акселерометр, который используется во всех современных смартфонах, игровых консолях и жестких дисках. Однако существует множество других систем, применение которых отнюдь не ограничивается потребительской электроникой. Решения на основе МЭМС находят применение в автомобильной промышленности, военной отрасли, а также медицине.

История и архитектура

Для начала немного истории. По большому счету, началом развития МЭМС можно считать 1954 год. Именно тогда был открыт пьезорезистивный эффект кремния и германия, который лег в основу первых датчиков давления и ускорения. Через 20 лет — в 1974 году — компанией National Semiconductor впервые было налажено массовое производство датчиков давления. А в 1990-х годах рынок микроэлектромеханических систем значительно вырос благодаря началу использования различных миниатюрных сенсоров в автомобильной электронике.

MEMS-системы получили приставку «микро-» из-за своих размеров. Составные части таких устройств имеют размеры от 1 до 100 мкм, а размеры готовых систем варьируются от 20 мкм до 1 мм.

В плане архитектуры МЭМС-устройство состоит из нескольких взаимодействующих механических компонентов и микропроцессора, который обрабатывает данные, получаемые от этих компонентов. Какого-то стандарта для механических элементов нет: по своему типу они могут сильно различаться в зависимости от назначения конкретного устройства.

В качестве материалов для производства МЭМС могут использоваться как и традиционный кремний, так и другие материалы: например, полимеры, металлы и керамика. Чаще всего механические системы изготавливаются из кремния. Его основные преимущества заключаются в физических свойствах. Так, кремний очень надежен — он может работать в течение триллионов циклов операций и при этом не разрушаться. Что касается полимеров, то этот материал хорош тем, что его можно производить в больших количествах и, что самое важное, с множеством различных характеристик под конкретные задачи. Ну а металлы (золото, медь, алюминий), в свою очередь, обеспечивают высокие показатели надежности, хоть и уступают по качеству своих физических свойств кремнию.

Стоит отдельно упомянуть и о таких материалах, как нитриды кремния, алюминия и титана. Благодаря своим свойствам они широко используются в микроэлектромеханических системах с пьезоэлектрической архитектурой.

Что касается технологий производства МЭМС, то здесь используется несколько основных подходов. Это объемная микрообработка, поверхностная микрообработка, технология LIGA (Litographie, Galvanoformung и Abformung — литография, гальваностегия, формовка) и глубокое реактивное ионное травление. Объемная обработка считается самым бюджетным способом производства МЭМС. Ее суть заключается в том, что из кремниевой пластины путем химического травления удаляются ненужные участки материала, в результате чего на пластине остаются только необходимые механизмы.

Результат, полученный с помощью объемной обработки

Глубокое реактивное ионное травление почти полностью повторяет процесс объемной микрообработки, за исключением того, что для создания механизмов используется плазменное травление вместо химического. Полной противоположностью этим двум процессам является процесс поверхностной микрообработки, при котором необходимые механизмы «выращиваются» на кремниевой пластине путем последовательного нанесения тонких пленок. И, наконец, технология LIGA использует методы рентгенолитографии и позволяет создавать механизмы, высота которых значительно превышает ширину.

В целом, все МЭМС можно разделить на две большие категории: сенсоры и актуаторы. Различаются они принципом своей работы. Если задача сенсора состоит в преобразовании физических воздействий в электрические сигналы, то актуатор выполняет прямо противоположную работу, переводя сигнал в какие-либо действия. Тот же акселерометр является сенсором, а в качестве примера устройства, использующего актуаторы, можно привести DLP-проектор (Digital Light Processing).

DLP-проектор BenQ использует актуаторы

Ну а теперь мы поговорим о каждом устройстве в отдельности.

Акселерометры

Самым распространенным МЭМС-устройством является акселерометр. Как уже говорилось выше, сфера его использования чрезвычайно обширна. Она охватывает мобильные телефоны, ноутбуки, игровые приставки, а также более серьезные устройства, такие как автомобили. Само предназначение акселерометра заключается в измерении кажущегося ускорения. В случае с мобильными телефонами он используется для многих целей. Например, для смены ориентации экрана. Или же выполнения каких-либо функций при «встряхивании» устройства. Кроме этого, не стоит забывать и об играх — они, пожалуй, составляют основную сферу применения акселерометров. Нынче уже сложно представить «продвинутую» игрушку, в которой не было бы реализовано управление посредством наклона телефона. Одним словом, акселерометр стал неотъемлемой частью смартфонов. Кстати, впервые он был установлен в мобильный телефон Nokia 5500. Благодаря акселерометру телефон можно было использовать как шагомер. Любители утренних пробежек были в восторге! Но, конечно, только после выхода Apple iPhone акселерометры достигли пика популярности. Да и в целом интерес к MEMS начал расти вместе с развитием платформ iOS и Android.

Nokia 5500 — первый телефон с акселерометром

Акселерометры также имеются в различных контроллерах игровых консолей, будь то обыкновенный геймпад или несколько иное устройство, например, контроллер движения PlayStation Move. Кстати, акселерометр используется и в анонсированном на днях шлеме виртуальной реальности Sony Project Morpheus.

Особое значение имеет акселерометр, применяемый в ноутбуках, а точнее, в их жестких дисках. Всем известно, что винчестеры — устройства довольно хрупкие, и в случае с лэптопами вероятность их повреждения возрастает в разы. Так, при падении ноутбука акселерометр фиксирует резкое изменение ускорения и отдает команду на парковку головки жесткого диска, предотвращая и повреждение устройства, и потерю данных.

Акселерометр InvenSense MPU-6500

По схожему принципу акселерометр влияет на работу автомобильного видеорегистратора. При резком ускорении, торможении и перестроении транспортного средства видеозапись помечается специальным маркером, который защищает ее от стирания и перезаписи, что значительно облегчает дальнейшие разборы дорожно-транспортных происшествий.

В целом самым большим и перспективным рынком для акселерометров и других МЭМС является автомобильная промышленность. Дело в том, что в отличие от рынка мобильных и игровых устройств, где акселерометры используются в развлекательных целях, в автомобилях на работе акселерометра основываются буквально все системы безопасности. С их помощью работают система развертывания подушек безопасности, антиблокировочная система тормозов, система стабилизации, адаптивный круиз-контроль, адаптивная подвеска, система Traction Control — и это далеко не полный список! Учитывая, что производители автомобилей уделяют особое внимание безопасности, количество применяемых акселерометров и других МЭМС будет лишь расти.

Краш-тест автомобиля Opel Vectra. В 90-е годы подушки безопасности зачастую были только опцией

Но несмотря на то, что рамки использования акселерометра довольно четко определены, разработчики продолжают думать над тем, в каких еще целях можно применять это устройство. Например, ученые из Национального института геофизики и вулканологии Италии Антонио Д’Аллесандро (Antonino D'Alessandro) и Джузеппе Д’Анна (Giuseppe D'Anna) предложили использовать акселерометр мобильного телефона как датчик землетрясений. Очень интересно! Исследования проводились с акселерометром iPhone, и результаты сравнивались с показаниями полноценного датчика землетрясений компании Kinemetrics. Как оказалось, мобильный гаджет способен улавливать сильные землетрясения силой более 5 баллов по шкале Рихтера, но только если он находится вблизи эпицентра подземных толчков. Результаты не настолько впечатляют, однако ученые уверены: чувствительность акселерометров будет только расти, и в будущем они смогут определять и менее сильные землетрясения. Остается лишь вопрос: зачем акселерометру телефона измерять силу подземных толчков, когда есть датчики землетрясения? Все дело в том, что ученые ставят своей целью создание в будущем целой сети из смартфонов в сейсмически активных районах. В теории, при землетрясениях данные со смартфонов будут поступать в аналитический центр, что позволит определять наиболее пострадавшие от стихии районы и правильно координировать спасательные операции. Идея более чем интересная и, главное, действительно востребованная в некоторых уголках мира, однако сейчас сложно представить, как она будет реализована на практике.

Теперь поговорим о самой конструкции акселерометра. Существует несколько видов устройств в зависимости от их архитектуры. Работа акселерометра может основываться на конденсаторном принципе. Подвижная часть такой системы представляет собой обыкновенный грузик, который смещается в зависимости от наклона устройства. По мере его смещения изменяется емкость конденсатора, а именно меняется напряжение. Исходя из этих данных, можно получить смещение грузика, а вместе с тем и искомое ускорение.

Назначение и принцип работы магнитометра

Кроме полезных ископаемых, земля хранит в своих недрах множество исторических сокровищ.

Магнитометр общий вид

Статья посвящена магнитометру — прибору, который используется для поиска спрятанных под землей артефактов и залежей полезных ископаемых.

Принцип работы

Магнитометр — это устройство, предназначенное для измерений параметров магнитного поля и магнитных свойств отдельных типов материалов. Также с помощью прибора проводится поиск залежей полезных ископаемых, археологический ценностей, а также проводится различная научная работа.

Принцип работы

Магнитометр работает по принципу металлоискателя. Разница состоит в том, что устройство способно реагировать на магнитное поле Земли. Если под землей находится материал, который способен намагничиваться, то он изменяет величину магнитного поля в большую или меньшую сторону. На подобные изменения реагирует чувствительный датчик прибора. При работе используется величина магнитного поля, исчисляемая в нанотеслах или нТл.

С помощью магнитометра можно не только найти металлический предмет, но и определить его размеры. Магнитометры, в зависимости от своего типа, способны найти любой металлический предмет на глубине от нескольких сантиметров до нескольких десятков метров, и даже километров.

В качестве металлоискателя для поиска кладов магнитометр не используется. Если человек хочет найти именно золото, серебро, платину, медь, то описываемый прибор не поможет в этом, по причине того, что эти металлы не являются железосодержащими и прибор просто их не заметит. Но он поможет определить аномальную разницы или остаток магнитного поля, который явно укажет на наличие инородных объектов в земле.

Поиск при помощи магнитометра проводится следующим образом:

  1. Земельный участок делится на квадраты, с определенной площадью.
  2. При помощи прибора проводится разведка на каждом участке.
  3. Полученные данные сортируются.
  4. Из них выявляются участки с наиболее явными аномалиями магнитного поля.
  5. На этих участках проводится дополнительная разведка.

Магнитометр имеет очень широкую сферу использования. Каждая будет подробно описана далее.

Сферы использования

Магнитометры используются в сферах, где необходимо получить информацию о том, что скрыто в пластах земли.

Геология

В этой сфере, описываемый прибор особенно не заменим. С его помощью, геологи получают информацию о залегании жил металлических руд и водоносных пластов.

Использование в геологии

Магнитометры помогают не только определить место залегания и глубину, но и объем пласта. Это важно для определения финансовой целесообразности будущей добычи.

Археология

Здесь с помощью прибора находят залегающие археологические ценности. Устройство не только помогает определить места залегания металлических предметов, но и показывает площади древних сооружений. Используя данные об остаточном магнетизме, прибор способен выявлять предметы быта, даже сохранившиеся в виде осколков.

Использование в археологии

Особенно ценна работа магнитометра в поисковых экспедициях, на местах военных событий. С помощью прибора находят захоронения, склады с боеприпасами, военную технику.

Навигация

Магнитометры получили большое применение в определении маршрутов.

Использование в навигации

Используя магнитное поле Земли, прибор показывает направление движения морского, воздушного и космического транспорта.

Сейсмология

В этой сфере, устройство получило наиболее важное применение. Реагируя на магнитные аномалии, прибор способен определять движение магмы, пластов, образование трещин.

Использование для изучения сейсмической активности

Также магнитометр используется удаленно, для предсказания возникновения сейсмической активности.

Геохронология

В этой сфере, устройство используется в качестве индикатора времени образования и формирования горной породы. Величина остаточной намагниченности является точным индикатором, который можно сравнить с эталонной величиной магнитных полей на территории разведки.

Также прибор используется военными. Он помогает определять места минирований, подземные бункеры, подводную и подземную технику.

Различные сферы применения требуют определенного порога точности. В связи с этим, разработано несколько типов магнитометров, которые будут описаны далее.

Разновидности

Существует 3 основных типа описываемого прибора. Каждая разновидность использует отдельный и узконаправленный принцип работы.

Магнитостатический прибор

Данный тип устройства представляет собой магнит, который висит на подвеске. Магнит имеет свое собственное магнитное поле определенной величины.

При включении прибора, магнитное поле Земли и устройства реагируют друг на друга. При этом магнит устройства притягивается или отторгается полем Земли. Реакция заставляет магнит вращаться на своей подвеске. При помощи встроенного датчика, регистрируется сила поля Земли, ее направление.

Магнитностатический магнитометр

Дополнительные данные получают также от подвески, она имеет определенную упругость, которая также вносит дополнения в расчет.

Индукционный прибор

Основан на катушке из проволоки, на которую подается электрическое напряжение от аккумуляторной батареи.

Индукционный магнитометр

Напряжение создает магнитное поле определенной величины. Таким образом, прибор вступает во взаимодействие с полем Земли. Разница, колебания, завихрения, аномалии учитываются встроенным датчиком. Прибор способен определить глубину залегания предмета, его площадь, примерный химический состав.

Квантовый магнитометр

В работе использует принцип замера скорости движения электронов в магнитных полях.

Квантовый магнитометр

Способен выявлять аномалии даже в самых слабых магнитных зонах. Основное применение получил в космической и геологической сферах.

Магнитометр можно использовать в качестве металлоискателя для поиска кладов. Далее будет дано описание самых лучших устройств для частного применения.

Магнитометр своими руками

Для того чтобы собрать магнитометр, необходимо четко следовать инструкции, и обладать знаниями в области электроники. Для проекта понадобится:

  1. Датчик «Холла» линейного типа SS49E.
  2. «Arduino Uno».
  3. OLED-дисплей монохромного типа.
  4. Микропереключатель.
  5. Провода.
  6. Термоусадочная изоляция.
  7. Небольшая коробочка из пластика.
  8. Батарейка Крона.
  9. Корпус от шариковой ручки.
  10. Макетная плата.

Необходимые детали

Далее соединяем и собираем все компоненты.

  1. Arduino Uno соединить с датчиком Холла: А1, GND, +5V.
  2. Экран соединяется с Arduino по схеме: GND, А4, А5, +5V.
  3. 3 длинных провода соединить по схеме: 1 — «+» батареи, 2 — минус батареи, 3 — сигнальный.
  4. Концы всех проводов необходимо заизолировать, и засунуть внутрь корпуса ручки.
  5. Батарейка подключается к контакту +5 и GND.

Подключение

Проверка чувствительности

Потом необходимо собрать катушку индуктивности. Для нее понадобится:

  1. Пластиковая трубка, диаметр которой 23 мм.
  2. 42 метра тонкого медного провода.

Катушка индуктивности

Нужно намотать провод на трубку. При этом заранее отметить расстояние в 20.2 сантиметра. На этой площади должно поместиться 566 витков. Один конец провода с катушки нужно соединить с клеммой +5, это можно сделать через кнопку. Второй конец провода катушки соединяется с «минусом» батареи напрямую.

На заключительном этапе, нужно собрать все компоненты в пластиковый корпус, а к корпусу приклеить зонд с катушкой, и проверить работоспособность устройства. При напряжении батареи 9 вольт, рабочее напряжение на выводах катушки будет равно 3.5 вольт, что составит примерную чувствительность прибора около 3.5 мТл.

Далее будет дано описание самых лучших устройств для частного применения.

Модели

На рынке множество моделей и разновидностей магнитометров. Для частного использования подойдут не многие варианты. Далее будут представлены модели, которые подойдут для частного и промышленного использования.

FERROTEC FT 10

Прибор электронного типа, который работает по принципу магнитного сенсора. Может использоваться для поиска металлических предметов на глубине от 1 до 15 метров (глубина залегания напрямую зависит от массы объекта. Чем больше размер объекта, тем большей глубине залегания, на которой его можно определить). Использование магнитного сенсора позволяет определять места залегания высоковольтных кабелей. Сенсор реагирует на магнитные поля, создаваемые высоким напряжением.

FERROTEC FT 10

Прибор работает от аккумулятора, имеет встроенный процессор, большой объем памяти. Относится к магнитометрам с 6 классом чувствительности.

  1. Продолжительность работы 10 часов.
  2. Чувствительность 3 нТл.
  3. Простота настройки и использования.

Высокая чувствительность позволяет осуществлять поиски артефактов с остаточным магнетизмом.

Магнум М

Магнетометр от американских производителей. Ручной электронный прибор позволяет отыскивать предметы, содержащие железо, на глубинах до 20 метров.

Магнитометр Магнум-М

Работает по принципу зондирования местности в поисках аномального проявления магнитных полей. Кроме железа, прибор отлично реагирует на камни, плитку, предметы гончарного искусства.

  1. Чувствительность 4 нТл.
  2. Продолжительность работы от батареи до 12 часов.
  3. Высокая скорость расчета.

Прибор можно использовать для поиска металлических коммуникаций и электрических кабелей.

MG-200

Компактный и высокочувствительный прибор для поиска железосодержащих предметов и руд. Способен определять предметы на глубине до 20 метров.

Магнитометр MG-200

Высокочувствителен, оснащен 3 процессорами, способными обрабатывать одновременно до 10 000 замеров. Работает от батареи, заряда которой хватает до 50 часов.

  1. Компактность
  2. Работоспособность до 50 часов.
  3. Быстрота вычислений.

Этот прибор не способен отыскать драгоценные металлы по принципу металлоискателя, но способен определить разницы магнитных полей на глубине залегания клада.

Заключение

Магнитометры помогают человеку не только в научной деятельности. Их все чаще применяют для поиска старых коммуникаций, неисправных кабелей и так далее. Правильное применение магнитометра может стать началом знаменательных открытий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *