Что не является признаком волнового движения
Перейти к содержимому

Что не является признаком волнового движения

Что такое волновое движение? Основные характеристики

волновое движение является распространением волны в среде, которая не содержит сопротивления на траектории и которая подвергается воздействию однородного гравитационного поля.

Волновое движение не переносит вещество с помощью электромагнитных или механических волн. Волны нарушают какие-то свойства среды через плотность, электромагнитное поле, давление и другие..

Этот тип движения также может быть проанализирован как состав двух прямолинейных движений, одной горизонтальной формы и одной вертикальной формы..

Ярким примером этого типа движения является звук. Он распространяется через продольные упругие волны через жидкость, которая создает вибрационное движение.

Характеристики волнового движения

Процесс, столь же фундаментальный, но в то же время сложный, как волновое движение, состоит из множества характеристик, которые определяют его природу и объясняют причину его возникновения. Некоторые из них:

Передача энергии

Волновое движение — это путь, пройденный волной, несущей энергию, а не материю. Этот процесс осуществляется с помощью материальных или нематериальных средств.

Средства распространения

Волновое движение передает волны через различные среды, и мы можем разделить их на: половину материала и половину материала.

Волны, передаваемые материальной средой (механические волны), — это те, в которых нет чистого переноса вещества в проходящей среде. Примером этого является волна, которая проходит через кнут.

Один конец его потрясен, и, даже если он не движется, через него распространяется волна. В этом типе движения мы находим звуковые волны, упругие волны и гравитационные волны.

Волны, передаваемые нематериальной средой (немеханические волны), не нуждаются в среде, они просто распространяются и совершают волновое движение в вакууме. Примером этого может быть движение электромагнитных волн.

Функция распространения

Есть продольные волны и поперечные волны. Продольные — это те, в которых движение волны параллельно направлению распространения волны..

С другой стороны, в поперечном направлении движение перпендикулярно направлению распространения волны.

Стационарные волны

Этот тип волн — это те, где есть интерференция двух волн одинаковой амплитуды, которые распространяются в противоположном направлении через среду..

Дифракция волн

Дифракция волн — это свойство, при котором волны окружают препятствие и превращают его в фокус излучателя этой волны..

Периодичность пульсаций

Волны также могут характеризоваться их периодичностью. Периодические волны — это те, которые распространяются в повторяющихся циклах. С другой стороны, непериодические волны — это волны, которые возникают изолированно и называются импульсами..

свойства

Волны характеризуются наличием различных свойств, которые позволяют прояснить и продемонстрировать, как происходит явление волнового движения..

Некоторые из этих свойств включают в себя отражение (отскок волны, как это происходит с эхом) и преломление (изменение направления при изменении материальной среды), среди других.

Волновое движение в физике — формулы и определение с примерами

Процесс распространения колебаний в упругой среде называют механической волной. Для механических волн нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию, она должна обладать инертными и упругими свойствами.

Различают поперечные и продольные волны. Продольные волны могут распространяться в любых средах: твердых, жидких и газообразных; поперечные – только в твердых средах.

Как в поперечных, так и в продольных волнах переноса вещества в направлении распространения волны не происходит. Волны переносят энергию колебаний.

Изучив страницу, вы сможете:

  • исследовать образование стоячих звуковых волн в воздухе;
  • объяснять механизм образования стоячих волн, определять узлы и пучности, используя графический метод;
  • исследовать интерференцию от двух источников на поверхности воды;
  • объяснять принцип Гюйгенса и условия наблюдения дифракционной картины механических волн.

Уравнение бегущей волны

Колебательное движение тела в упругой среде является источником механической волны.

Волну, переносящую энергию, называют бегущей волной.

В однородной среде скорость распространения волны остается величиной постоянной. Смещение y (x, t) от положения равновесия частиц среды при распространении волны зависит от координаты x на оси 0х, вдоль которой распространяется волна, и от времени t по закону:

Волновое движение в физике - формулы и определение с примерами

где Волновое движение в физике - формулы и определение с примерами

Введем волновое число Волновое движение в физике - формулы и определение с примерамитогда уравнение бегущей волны примет вид Волновое движение в физике - формулы и определение с примерами

Смещение точек упругой среды в волне, бегущей в противоположном направлении выбранной оси 0х, можно определить по формуле: Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

Вспомните! Основные характеристики волн. Волны, созданные источником, совершающим гармонические колебания, характеризуются амплитудой колебания частиц среды A, частотой Волновое движение в физике - формулы и определение с примерамидлиной волны Волновое движение в физике - формулы и определение с примерамии скоростью распространения Волновое движение в физике - формулы и определение с примерами

Длиной волны Волновое движение в физике - формулы и определение с примераминазывают расстояние между двумя соседними точками на оси 0х, колеблющимися в одинаковых фазах. Расстояние, равное длине волны Волновое движение в физике - формулы и определение с примерами, волна пробегает за период Т, следовательно, Волновое движение в физике - формулы и определение с примерамиВ однородных средах скорость распространения волны величина постоянная.

Физический смысл волнового числа

Запишем формулу (2), выразив циклическую частоту через период Волновое движение в физике - формулы и определение с примерамис учетом определения длины волны Волновое движение в физике - формулы и определение с примерамиполучим: Волновое движение в физике - формулы и определение с примерами

Бегущая волна обладает двойной периодичностью – во времени и в пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны Волновое движение в физике - формулы и определение с примерамиВолновое число Волновое движение в физике - формулы и определение с примерамиявляется пространственным аналогом циклической частоты Волновое движение в физике - формулы и определение с примерами

Фронт волны и волновая поверхность

Волна за время, равное периоду колебаний, достигает точек пространства, расположенных от источника на расстоянии длины волны. Совокупность этих точек представляет собой фронт волны, который отделяет колеблющиеся точки среды от точек, не вовлеченных в колебательное движение. Фронт волны от точечного источника представляет собой сферу, от плоской пластины – плоскость, от струны – форму цилиндра (рис. 79–81).

Волновое движение в физике - формулы и определение с примерами

Фронт волны – это геометрическое место точек пространства, до которых дошли колебания в данный момент времени t.

Направление распространения волны указывает луч, который перпендикулярен фронту волны.

В волне можно рассмотреть множество поверхностей, все точки которых совершают колебания синфазно, их называют волновыми поверхностями. При множестве волновых поверхностей, фронт волны только один.

Геометрическое место точек пространства, которые совершают колебания в одинаковой фазе в данный момент времени, называют волновой поверхностью.

Стоячие волны

Уравнение стоячей волны При отражении от более плотной среды волна, изменив свое направление на обратное, меняет фазу на Волновое движение в физике - формулы и определение с примерамито есть на противоположную. В результате сложения падающей и отраженной волн образуется стоячая волна. Она имеет вид, представленный на рисунке 83. В стоячей волне существуют неподвижные точки, которые называются узлами. Посередине между узлами находятся точки, которые колеблются с максимальной амплитудой. Эти точки называются пучностями.

Получим уравнение стоячей волны путем сложения уравнений бегущих волн: Волновое движение в физике - формулы и определение с примерами

Заменив волновое число его значением Волновое движение в физике - формулы и определение с примерамизапишем уравнение стоячей волны в виде: Волновое движение в физике - формулы и определение с примерами

Координаты точек пучностей и узлов определяются из условий наибольшего и наименьшего значений амплитуды. При Волновое движение в физике - формулы и определение с примерамиобразуется пучность с амплитудой равной 2 А (рис. 84). Расстояния от источника стоячей волны до пучностей равны: Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

При Волновое движение в физике - формулы и определение с примерамиобразуются узлы, амплитуда колебаний в этой точке равна 0. Расстояния от источника волны до узлов равны:

Волновое движение в физике - формулы и определение с примерами

Расстояния между двумя соседними пучностями или двумя соседними узлами равны:

Волновое движение в физике - формулы и определение с примерами

В стоячей волне нет потока энергии. Колебательная энергия, заключенная в отрезке струны между двумя соседними узлами, не переносится в другие части струны. В каждом таком отрезке происходит дважды за период превращение кинетической энергии в потенциальную и обратно как в обычной колебательной системе. Отсутствие переноса энергии является отличительной особенностью стоячей волны.

Пример:

Уравнение бегущей волны, изображенной на рисунке (рис. 85): Волновое движение в физике - формулы и определение с примерами. Уравнение отраженной волны: Волновое движение в физике - формулы и определение с примерами

А. Получите уравнение стоячей волны как сумму падающей и отраженной волн.

В. Полученное выражение запишите, заменив волновое число и циклическую частоту через длину волны и период.

С. Определите положение узлов и пучностей.

Волновое движение в физике - формулы и определение с примерами

Дано:

Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

Решение: А. Уравнение стоячей волны определятся сложением уравнений бегущих волн: Волновое движение в физике - формулы и определение с примерамиВолновое движение в физике - формулы и определение с примерами

В. Волновое движение в физике - формулы и определение с примерами

С. При Волновое движение в физике - формулы и определение с примерамиобразуется пучность с амплитудой 2А. Расстояние от источника до пучностей Волновое движение в физике - формулы и определение с примерами

С. Расстояние от узлов определим из условия Волновое движение в физике - формулы и определение с примерамитогдаВолновое движение в физике - формулы и определение с примерами

Ответ: Волновое движение в физике - формулы и определение с примерамиВолновое движение в физике - формулы и определение с примерами

Интерференция волн

Если в некоторой среде несколько источников возбуждают механические волны, то они распространяются независимо друг от друга. Все точки среды принимают участие в колебаниях, вызванных каждой волной в отдельности. Наложение волн, в результате которой появляется устойчивая картина чередующихся максимумов и минимумов колебаний частиц среды, называют интерференцией.

Интерферировать могут только волны, имеющие одинаковую частоту и постоянный сдвиг фаз. Такие волны называют когерентными, их создают источники, колеблющиеся с одинаковой частотой и постоянным значением сдвига фаз.

Интерференция волн – взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Интерференция бывает стационарной и нестационарной. Стационарную интерференционную картину могут давать только когерентные волны: например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников (рис. 87).

Запомните! Волны называют когерентными, если их источники совершают колебания одной частоты с постоянным сдвигом фаз.

Волновое движение в физике - формулы и определение с примерами

Условие максимума и минимума при интерференции двух волн

Амплитуда колебаний при наложении волн определяется в соответствии с принципом суперпозиции (рис. 88). Если в некоторой точке среды накладываются гребни когерентных волн, то происходит усиление колебаний, амплитуда принимает значение, равное сумме амплитуд. Если накладывается гребень одной волны с впадиной другой волны, то при равенстве амплитуд отдельно взятых волн данная точка пространства не совершает колебания. Если амплитуды отличаются, то колебания в этой точке совершаются с амплитудой равной разности амплитуд распространяющихся волн.

Волновое движение в физике - формулы и определение с примерами

Для определения результата интерференции волн, распространяющихся от двух источников А и В, находящихся на расстоянии Волновое движение в физике - формулы и определение с примерамиот точки С, достаточно определить разность хода волн и сравнить с длиной волны. Если разность хода равна целому числу длин волн, то в точке С произойдет наложение гребней или впадин, амплитуда колебаний возрастет (рис. 89). Выполняется условие максимума:

Волновое движение в физике - формулы и определение с примерами

где Волновое движение в физике - формулы и определение с примерами− разность хода волн, Волновое движение в физике - формулы и определение с примерами– натуральное число, равное 0, 1, 2, 3 … Разность хода лучей соответствует разности фаз колебаний:

Волновое движение в физике - формулы и определение с примерами

так как волна за период пробегает расстояние равное длине волны Волновое движение в физике - формулы и определение с примерамипериоду Т соответствует фаза Волновое движение в физике - формулы и определение с примерами

Минимум колебаний в рассматриваемой точке среды наблюдается в том случае, если от двух когерентных источников распространяются волны со сдвигом фаз, равным нечетному числу p, а разность хода лучей кратна нечетному числу полуволн. В этом случае колебания происходят в противофазе (рис. 90).

Возьмите на заметку:

Интерференция волн приводит к перераспределению энергии колебаний между частицами среды. Это не противоречит закону сохранения энергии, так как в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

Волновое движение в физике - формулы и определение с примерами

Распространение волн. Принцип Гюйгенса – Френеля

На основе принципа Х. Гюйгенса: каждая точка среды, до которой дошло возмущение, является источником вторичных волн, невозможно объяснить, почему источники вторичных волн создают фронт только по направлению распространения волны. Для объяснения явлений распространения волны французский физик О. Френель в 1815 г. дополнил принцип Х. Гюйгенса представлениями о когерентности и интерференции вторичных волн. При наложении вторичных когерентных волн происходит интерференция, в результате которой амплитуда колебаний в различных точках пространства становится разной: по направлению распространения волны усиливается, в обратном направлении – уменьшается. Огибающая фронты вторичных волн является фронтом результирующей волны (рис. 92).

Волновое движение в физике - формулы и определение с примерами

Дифракция механических волн

Вторичные волны, созданные точками среды, которые находятся на краю отверстия или препятствия, искривляются и волна огибает препятствие (рис. 93 а–г).

Волновое движение в физике - формулы и определение с примерами

Дифракция – это явление огибания волнами препятствий.

Все волны способны огибать препятствия, если длина волны соизмерима с размерами препятствия. Дифракция становится заметной, если размеры препятствия меньше длины волны.

Физика в нашей жизни:

Струнные музыкальные инструменты

Интересно знать! Адырна (рис. 96 а) – один из древнейших казахских струнных инструментов. В его форме отобразилась воинственность кочевников-казахов: он напоминает изогнутый лук воина. Деревянный корпус инструмента легкий, так как он пустотелый. Струны изготавливают из кусков специально выделанной кожи или сплетенных из верблюжьей шерсти нитей. Музыкант играет, перебирая струны. Их в инструменте 13. Жетыген (рис. 96 б) – семиструнный музыкальный инструмент. Он имеет прямоугольную форму, изготовлен из дерева, струны – из конского волоса. Легенда о жетыгене раскрывает причину использования именно семи струн. Старик, потерявший семерых сыновей, вылил свое горе, исполняя кюи о них. Вспоминая каждого из сыновей, он натягивал новую струну на музыкальном инструменте.

Волновое движение в физике - формулы и определение с примерами

Условие возникновения стоячей волны в струне

Стоячая волна в струне возникает только в том случае, если длина Волновое движение в физике - формулы и определение с примерамиструны равняется целому числу длин полуволн: Волновое движение в физике - формулы и определение с примерами

Набору значений Волновое движение в физике - формулы и определение с примерамидлин волн соответствует набор возможных частот Волновое движение в физике - формулы и определение с примерамиКаждая из частот Волновое движение в физике - формулы и определение с примерамии связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота называется основной частотой, все остальные частоты называются гармониками.

В отличие от груза на пружине или маятника, у которых имеется единственная собственная частота, струна обладает бесконечным числом собственных резонансных частот. На рисунке 96 в изображены несколько типов стоячих волн в струне. Стоячие волны различных типов могут одновременно присутствовать в колебаниях струны.

Визуализация звуковых волн

Существует несколько способов демонстрации стоячей волны, один из них – фигуры Хладни (рис. 97). Немецкий физик Эрнст Хладни получал узор, посыпая пластинку песком и проводя по краю смычком. Движения смычка заставляли пластинку колебаться на некоторой резонансной частоте. Песок скапливался и лежал неподвижно в узлах, а на участках, где отраженная волна усиливала бегущую, песок смещался.

Волновое движение в физике - формулы и определение с примерами

Интересно знать! В Шотландии есть рослинская капелла св. Матвея, на одной из арок которой есть 213 резных каменных кубов, с вырезанным на них геометрическим рисунком. Многие исследователи пытались понять, что зашифровано в рисунках на кубах. Отставной генерал ВВС Томас Митчел со своим сыном, пианистом Стюартом Митчелом предложили оригинальный способ расшифровки послания. Они сопоставили геометрические рисунки с фигурами Хладни и пришли к выводу, что на кубах записаны ноты. Собрав ноты воедино и творчески обработав их, они представили миру произведение «Рослинский Мотет».

Итоги:

Волновое движение в физике - формулы и определение с примерами

Глоссарий

Волновая поверхность – геометрическое место точек, имеющих одинаковую фазу колебаний.

Дифракция – явление огибания волнами препятствий.

Интерференция волн – взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Когерентные волны – волны, имеющие одинаковую частоту и постоянный сдвиг фаз.

Механическая волна – процесс распространения колебаний в упругой среде.

Фронт волны – геометрическое место точек пространства, до которых дошли колебания в данный момент времени t.

Распространение колебаний в упругих средах. Продольные и поперечные волны

Опыт показывает, что колебания, возбужденные в какой-либо точке упругой среды, с течением времени передаются в ее другие точки. В качестве примера достаточно вспомнить, что измерение пульса осуществляется на запястье, хотя сердце расположено внутри грудной клетки. Такие явления связаны с распространением механических волн.

Механической волной называется процесс распространения колебаний в упругой среде, который сопровождается передачей энергии от одной точки среды к другой.

Механические волны не могут распространяться в вакууме.
Источником механических волн является колеблющееся тело. Если источник колеблется синусоидально, то и волна в упругой среде будет иметь форму синусоиды. Колебания, вызванные в каком-либо месте упругой среды, распространяются в ней с определенной скоростью, зависящей от плотности и упругих свойств среды.

Подчеркнем, что при распространении волны отсутствует перенос вещества, т. е. частицы колеблются вблизи положений равновесия. Среднее смещение частиц за большой промежуток времени равно нулю.
Рассмотрим основные характеристики волны.

Волновой фронт — это воображаемая поверхность, до которой дошло волновое возмущение в данный момент времени.

Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом. Луч указывает направление распространения волны.

Волновое движение в физике - формулы и определение с примерами

Основными характеристиками волны являются (рис. 208):

  • амплитуда (A) — модуль максимального смещения точек среды из положений равновесия при колебаниях;
  • период (T) — время полного колебания (период колебаний точек среды равен периоду колебаний источника волны);
  • частотаВолновое движение в физике - формулы и определение с примерами— число полных колебаний в данной точке в единицу времени. Частота волн определяется частотой источника;
  • скоростьВолновое движение в физике - формулы и определение с примерами— скорость перемещения гребня волны (это не скорость частиц!):Волновое движение в физике - формулы и определение с примерами
  • длина волныВолновое движение в физике - формулы и определение с примерами— наименьшее расстояние между двумя точками, колебания в которых происходят в одинаковой фазе, т. е. это расстояние, на которое волна распространяется за промежуток времени, равный периоду колебаний источника Волновое движение в физике - формулы и определение с примерами

Рассмотрим колебания источника волны, происходящие с циклической частотой Волновое движение в физике - формулы и определение с примерамии амплитудой А:
Волновое движение в физике - формулы и определение с примерами
где x(t) — смещение источника от положения равновесия.

В некоторую точку среды колебания придут не мгновенно, а через промежуток времени, определяемый скоростью волны и расстоянием от источника до точки наблюдения. Если скорость волны в данной среде равна v, то зависимость от времени t координаты (смещения) х колеблющейся точки, находящейся на расстоянии r от источника, описывается функцией
Волновое движение в физике - формулы и определение с примерами
где k — волновое число Волновое движение в физике - формулы и определение с примерамифаза волны.

Выражение х(t, r) называется уравнением плоской волны, распространяющейся (бегущей) вдоль направления радиус-вектора Волновое движение в физике - формулы и определение с примерами

Бегущую волну можно наблюдать, проведя следующий опыт: если один конец резинового шнура, лежащего на гладком горизонтальном столе, закрепить и, слегка натянув шнур рукой, привести его второй конец в колебательное движение в направлении, перпендикулярном шнуру, то по нему побежит волна, описываемая уравнением плоской волны.

Рассмотрим классификацию бегущих волн по направлению колебаний частиц среды, в которой они распространяются.

Волна называется продольной, если колебания частиц среды происходят вдоль направления распространения волн. Продольную волну легко получить с помощью длинной пружины, которая лежит на гладкой горизонтальной поверхности и один конец ее закреплен. Легким ударом по свободному концу В пружины мы вызовем появление волны (рис. 209).

Волновое движение в физике - формулы и определение с примерами

При этом каждый виток пружины будет колебаться вдоль направления распространения волны ВС. Примерами продольных волн являются звуковые волны в воздухе и жидкости.

Волна называется поперечной, если частицы среды колеблются в плоскости, перпендикулярной направлению распространения волны. С помощью длинной пружины можно продемонстрировать распространение поперечных волн, если совершать колебания незакрепленного конца перпендикулярно пружине (рис. 210).

Волновое движение в физике - формулы и определение с примерами

Поперечные волны вызывают звучание струн музыкальных инструментов при их возбуждении.

Продольные колебания симметричны относительно линии распространения ВС, и их действие на любой регистрирующий прибор не изменяется, если прибор будет поворачиваться вокруг направления распространения.

Действие поперечных волн на регистрирующий прибор зависит от того, в какой плоскости, проходящей через линию распространения, происходит колебание. Эта особенность поперечных волн носит название поляризации. Если колебания происходят в одной плоскости, то волну называют плоско или линейно поляризованной. Если конец вектора колебаний, например вектора смещения, скорости, напряженности электрического поля, описывает эллипс или окружность, то волну называют эллиптически или циркулярно-поляризованной.

До сих пор мы рассматривали волны, распространяющиеся в какой-либо среде. Волны, которые распространяются на границе раздела двух сред, называются поверхностными волнами. Примером данного типа волн служат волны на поверхности воды.

Звуковые волны. Скорость звука. Ультразвук

Звуком называются колебания среды, воспринимаемые органами слуха.
Раздел физики, в котором изучаются звуковые явления, называется акустикой.

Звуковая волна — упругая продольная волна, представляющая собой зоны сжатия и разрежения упругой среды (например, воздуха), распространяющиеся в пространстве с течением времени. Таким образом, в процессе распространения звуковой волны меняются такие характеристики среды, как давление и плотность.

Звуковые волны классифицируются по частоте следующим образом:

  • инфразвук Волновое движение в физике - формулы и определение с примерами
  • слышимый человеком звук Волновое движение в физике - формулы и определение с примерами
  • ультразвук Волновое движение в физике - формулы и определение с примерами
  • гиперзвук Волновое движение в физике - формулы и определение с примерами

Многие животные могут воспринимать ультразвуковые частоты. Например, собаки могут слышать звуки до 50 000 Гц, а летучие мыши — до 100 000 Гц. Инфразвук, распространяясь в воде на сотни километров, помогает китам и многим другим морским животным ориентироваться в толще воды.
Звуковые волны приносят человеку жизненно важную информацию — с их помощью мы общаемся, наслаждаемся мелодиями, узнаем по голосу знакомых людей. Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и безошибочно можем отличить пение птиц от шума городской улицы.

Одной из важнейших характеристик звуковых волн является спектр. Спектром называется набор различных частот, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.

В сплошном спектре присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.
В

дискретном спектре — конечное число волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.

По типу спектра звуки разделяются на шумы и музыкальные тона.

Шум — совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т.п.) — представляет собой наложение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр).

Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты. На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию па различных музыкальных инструментах.

Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов, из которых можно выделить

основной тон, соответствующий наименьшей частоте. Основной тон называется также первой гармоникой. Все остальные тоны называются обертонами. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр.

Любой звук, помимо частоты, характеризуется интенсивностью.

Интенсивность I — это энергия Волновое движение в физике - формулы и определение с примерамипереносимая волной в единицу времени Волновое движение в физике - формулы и определение с примерами= 1 с через единичную площадку площадью Волновое движение в физике - формулы и определение с примерамирасположенную перпендикулярно к направлению распространения волны:
Волновое движение в физике - формулы и определение с примерами

Другими словами, интенсивность любой волны — мощность, переносимая волной через единичную площадку, расположенную перпендикулярно к направлению распространения волны.

Единицей интенсивности в СИ является ватт на метр в квадрате Волновое движение в физике - формулы и определение с примерами
Чтобы вызвать звуковые ощущения, волна должна обладать некоторой минимальной интенсивностью, называемой порогом слышимости.

С возрастом порог слышимости человека возрастает.

Интенсивность звуковых волн, при которой возникает ощущение боли, называют порогом болевого ощущения или болевым порогом. Интенсивность звука, улавливаемого ухом человека, лежит в широких пределах: от Волновое движение в физике - формулы и определение с примерами(порог слышимости) до Волновое движение в физике - формулы и определение с примерами(порог болевого ощущения). Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль.

Реактивный самолет может создать звук интенсивностью Волновое движение в физике - формулы и определение с примерамимощные усилители на концерте в закрытом помещении — до Волновое движение в физике - формулы и определение с примерамипоезд метро — около Волновое движение в физике - формулы и определение с примерами

Уровни интенсивности звука L определяют обычно, используя шкалу, единицей которой является бел (Б) или, что гораздо чаще, децибел (дБ) (одна десятая бела). 1 Б самый слабый звук, который воспринимает наше ухо. Единица названа в честь изобретателя телефона А. Г. Белла. Измерение уровня интенсивности в децибелах проще, поэтому принято в физике и технике.

Уровень интенсивности L любого звука в децибелах вычисляется через интенсивность звука по формуле

Волновое движение в физике - формулы и определение с примерами
где I — интенсивность данного звука, Волновое движение в физике - формулы и определение с примерами— интенсивность Волновое движение в физике - формулы и определение с примерамисоответствующая минимально возможной интенсивности звука, улавливаемого ухом человека.

Так, поезд метро создает уровень интенсивности звука 100 дБ, мощные усилители — 120 дБ, а реактивный самолет — 150 дБ. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Физическим характеристикам звука соответствуют определенные (субъективные) характеристики, связанные с восприятием его конкретным человеком. Это связано с тем, что восприятие звука — процесс не только

физический, но и физиологический. Действительно, человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей (это объективные, не зависящие от человека характеристики звука) по-разному, в зависимости от «характеристик приемника» (здесь влияют субъективные индивидуальные черты каждого человека).

Основными физиологическими характеристиками звука являются громкость, высота и тембр.

Громкость (степень слышимости звука) определяется как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах, т. е. его способностью улавливать звуки различных частот. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 Гц до

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Волновое движение: характеристики, типы волн, примеры

В Волновое движение Он заключается в распространении возмущения, называемого волной, в материальной среде или даже в вакууме, если это свет или любое другое электромагнитное излучение.

Энергия распространяется в волновом движении, при этом частицы в среде не перемещаются слишком далеко от своих позиций, поскольку возмущение только заставляет их колебаться или непрерывно вибрировать вокруг места равновесия.

И эта вибрация передается от одной частицы к другой в середине, в так называемом механическая волна. Звук распространяется следующим образом: источник попеременно сжимает и расширяет молекулы воздуха, а энергия, которая перемещается таким образом, в свою очередь, вызывает вибрацию барабанной перепонки — ощущение, которое мозг интерпретирует как звук.

В случае света, который не нуждается в материальной среде, передаются колебания электрического и магнитного полей.

Как мы видим, два важнейших явления для жизни: свет и звук — имеют волновое движение, поэтому важно знать больше об их поведении.

Характеристики волнового движения

У волн есть несколько характерных атрибутов, которые мы можем сгруппировать по их природе:

  • Пространственные характеристики, относящиеся к форме.
  • Временные или длительные характеристики.

Давайте посмотрим на схематическое изображение простой волны как периодической последовательности пиков и впадин. Рисунок представляет собой немного больше, чем цикл или что то же самое: полное колебание.

Пространственные характеристики волн

Эти элементы являются общими для всех волн, включая свет и звук.

  • Crest: высшая позиция.
  • Долина: нижайший.
  • Узел: точка, в которой волна пересекает положение равновесия. На рисунке это сегментированная линия или горизонтальная ось.
  • Длина волны: обозначается греческой буквой λ (лямбда) — это расстояние между двумя последовательными выступами или между одной точкой и другой, имеющей ту же высоту, но следующего цикла.
  • Удлинение: расстояние по вертикали между точкой на волне и положением равновесия.
  • Амплитуда: максимальное удлинение.

Временные характеристики волн

  • Период, время, которое длится полный цикл.
  • Частота: количество волн, произведенных за единицу времени. Это обратное или обратное значение периода.
  • Скорость: определяется как отношение длины волны к периоду. Если это обозначено как v, в математической форме это соотношение:

Типы волн

Существуют разные типы волн, так как они классифицируются по нескольким критериям, например, их можно классифицировать по:

  • Направление возмущения.
  • Среда, в которой они распространяются.
  • Направление, в котором колеблются частицы в среде.

Волна может быть одновременно нескольких типов, как мы увидим ниже:

— Волны в соответствии с колебаниями среды

Частицы, составляющие среду, обладают способностью по-разному реагировать на возмущение, таким образом они возникают:

Поперечные волны

Частицы в среде колеблются в направлении, перпендикулярном возмущению. Например, если у нас есть горизонтально натянутая струна, которая возмущается с одного конца, частицы колеблются вверх и вниз, а возмущение распространяется горизонтально.

Электромагнитные волны также распространяются таким же образом, независимо от того, перемещаются они в материальной среде или нет.

Продольные волны

Распространение распространяется в том же направлении, что и частицы в среде. Самый известный пример — звук, когда шумовое возмущение сжимает и расширяет воздух по мере того, как он движется через него, заставляя молекулы двигаться вперед и назад с одной стороны на другую.

— Волны в зависимости от среды, в которой они распространяются

Механические волны

Им всегда требуется материальная среда для распространения, которая может быть твердой, жидкой или газовой. Звук также является примером механической волны, а также волн, которые образуются в натянутых струнах музыкальных инструментов и тех, которые распространяются по всему земному шару: сейсмических волн.

Электромагнитные волны

Электромагнитные волны могут распространяться в вакууме. Здесь нет колеблющихся частиц, но есть электрическое и магнитное поля, которые взаимно перпендикулярны, и в то же время перпендикулярны направлению распространения.

Спектр электромагнитных частот очень широк, но мы почти не воспринимаем нашими чувствами узкую полосу длин волн: видимый спектр.

— Волны по направлению распространения

В зависимости от направления распространения волны могут быть:

  • Одномерный
  • Двумерный
  • Трехмерный

Если у нас есть натянутая струна, возмущение распространяется по всей длине, то есть в одном измерении. Это также происходит, когда пружина или гибкая пружина, например обтягивающий.

Но есть волны, которые движутся по поверхности, например, по поверхности воды, когда камень бросают в пруд, или волны, которые распространяются в земной коре, в этом случае мы говорим о двумерных волнах.

Наконец, есть волны, непрерывно движущиеся во всех направлениях в пространстве, такие как звук и свет.

— Волны в зависимости от их протяженности

Волны могут распространяться на большие площади, например световые, звуковые и сейсмические. Вместо этого другие ограничены меньшим регионом. Вот почему они также классифицируются как:

Бегущие волны

Когда волна распространяется от своего источника и не возвращается к нему, у вас есть бегущая волна. Благодаря им мы слышим звук музыки, который доносится из соседней комнаты, и солнечный свет достигает нас, который должен пройти 150 миллионов километров в космосе, чтобы осветить планету. Он делает это с постоянной скоростью 300 000 км / с.

Стоячие волны

В отличие от бегущих волн, стоячие волны перемещаются в ограниченной области, например, возмущение в струне музыкального инструмента, такого как гитара.

Гармонические волны

Гармонические волны бывают циклическими или периодическими. Это означает, что возмущение повторяется через каждый определенный постоянный интервал времени, называемый период волны.

Гармонические волны можно математически смоделировать с помощью функций синуса и косинуса.

Непериодические волны

Если возмущение не повторяется через определенный интервал времени, волна не является гармонической и ее математическое моделирование намного сложнее, чем моделирование гармонических волн.

Примеры волнового движения

Природа постоянно представляет нам примеры волнового движения, иногда это очевидно, а иногда нет, как в случае со светом: откуда мы знаем, что он движется как волна?

Волновая природа света обсуждалась веками. Таким образом, Ньютон был убежден, что свет представляет собой поток частиц, а Томас Янг в начале девятнадцатого века показал, что он ведет себя как волна.

Наконец, сто лет спустя Эйнштейн, ко всеобщему спокойствию, подтвердил, что свет был двойным: волна и частица одновременно, в зависимости от того, изучается ли его распространение или способ взаимодействия с материей.

Кстати, то же самое происходит с электронами в атоме, они тоже двойственные сущности. Это частицы, но они также испытывают явления, уникальные для волн, такие как, например, дифракция.

Давайте теперь рассмотрим несколько повседневных примеров очевидного волнового движения:

Пирс

Мягкая пружина, пружина или обтягивающий Он состоит из спиральной пружины, с помощью которой можно визуализировать продольные и поперечные волны, в зависимости от того, каким образом она нарушается на одном из ее концов.

Струны музыкальных инструментов

При нажатии на инструмент, такой как гитара или арфа, вы наблюдаете, как стоячие волны движутся вперед и назад между концами струны. Звук струны зависит от ее толщины и напряжения, которому она подвергается.

Чем плотнее струна, тем легче по ней распространяется возмущение, как и при более тонкой струне. Можно показать, что квадрат скорости волны v 2 дан кем-то:

Где T — натяжение струны, а μ — ее линейная плотность, то есть ее масса на единицу длины.

Звук

У нас есть голосовые связки, с помощью которых издаются звуки для общения. Его вибрация ощущается, когда во время разговора кладут пальцы на горло.

Морские волны

Они распространяются в океанических телах на границе между водой и воздухом и вызываются ветрами, которые заставляют небольшие порции жидкости перемещаться вперед и назад.

Эти колебания усиливаются действием различных сил, помимо ветра: трения, поверхностного натяжения жидкости и постоянно присутствующей силы тяжести.

Сейсмические волны

Земля не является статичным телом, поскольку внутри нее происходят возмущения, проходящие через разные слои. Они воспринимаются как толчки, а иногда, когда они несут много энергии, как землетрясения, способные нанести большой ущерб.

Строение атома

Современные атомные теории объясняют структуру атома аналогией со стоячими волнами.

Решенные упражнения

Упражнение 1

Звуковая волна имеет длину волны 2 см и распространяется со скоростью 40 см за 10 с.

Решение для

Используя предоставленные данные, мы можем рассчитать скорость волны, так как она распространяется со скоростью 40 см за 10 с, поэтому:

v = 40 см / 10 с = 4 см / с

Решение б

Ранее связь между скоростью, длиной волны и периодом была установлена ​​как:

T = λ / v = 2 см / 4 см / с = 0,5 с.

Решение c

Поскольку частота обратно пропорциональна периоду:

f = 1 / T = 1 / 0,5 с = 2 с -1

Обратная секунда или s -1 Он называется Герц или герц и сокращенно Гц. Он был дан в честь немецкого физика Генриха Герца (1857–1894), открывшего, как создавать электромагнитные волны.

Упражнение 2.

Струна растягивается под действием силы 125 Н. Если ее линейная плотность μ равна 0,0250 кг / м, какова будет скорость распространения волны?

Решение

Ранее мы видели, что скорость зависит от натяжения и линейной плотности веревки следующим образом:

Волны в физике — что это такое, виды, характеристики, примеры

Каждый день вас окружает множество волн. В этой статье вы узнаете, что это такое и какими свойствами они обладают.

Простое объяснение волн с точки зрения физики

В качестве концепции вы можете представить волну как форму с последовательными восходящими и нисходящими частями. К этой категории относится, например, волна воды.

Однако эти части, поднимающиеся и опускающиеся вверх и вниз, не являются случайными по форме и расположению, а следуют очень определенной схеме. Этот паттерн показывает, как частицы среды, в которой распространяется волна, колеблются вверх и вниз. Частицы “возмущаются” волной определенным образом.

Определение: под волной можно представить возмущение в среде, которое движется с фиксированной формой и постоянной скоростью.

На рисунке 1 показано, например, как такое возмущение в виде холма движется по веревке слева направо. Во время движения частицы веревки поднимаются вверх от переднего конца возмущения и тянутся вниз от заднего конца.

Волна как возмущение в веревке

Рис. 1. Волна как возмущение в веревке

От света, который вам нужен, чтобы видеть, до звука, который вам нужен, чтобы слышать, до интернет-сигнала, который вам нужен для работы в Интернете, – все это волны. Как видите, волны – неотъемлемая часть жизни человека.

Виды волн

В этом подразделе мы рассмотрим различные виды волн и то, к какой области теоретической физики они относятся.

Поперечные и продольные волны

Например, в волне воды, которая движется слева направо, отдельные частицы воды колеблются вверх и вниз. Поэтому движение частиц перпендикулярно движению волны. Эти типы волн называются поперечными и могут быть поляризованными.

Звуковые волны (также называемые для краткости звуком), которые позволяют вам слышать, являются примером продольных волн. В продольных волнах частицы вовлеченной среды колеблются в направлении движения волны. Поэтому движение частиц параллельно движению волн.

Поперечная волна и продольная волна

Рис. 2. Поперечная волна и продольная волна

Волны в физике

Следующий список дает вам представление о том, с какими волнами вам, возможно, придется иметь дело в той или иной области физики:

  • Классическая механика: механические волны и гравитационные волны;
  • Электродинамика: электромагнитные волны;
  • Квантовая физика: волны материи и волны вероятности.

Волна – это тип возмущения, которое распространяется с фиксированной формой. В этом разделе мы рассмотрим его свойства и поведение. Мы рассмотрим следующие моменты немного подробнее:

  • Характеристики волн: амплитуда, частота, длина волны и скорость распространения;
  • Поведение волн: отражение, преломление, дифракция и суперпозиция волн.

Характеристики волн

Чтобы описать характеристики, рассмотрим частный случай синусоидальных волн. В синусоидальных волнах восходящие и нисходящие части повторяют форму синусоидальной кривой.

Из этой схемы (паттерна) (рисунок 3) мы выделили следующий фрагмент: кривая начинается с нуля, идет к самой низкой точке, затем возвращается к нулю, продолжается до самой высокой точки и, наконец, возвращается к нулю.

Синусоидальная волна

Рис. 3. Синусоидальная волна

Амплитуда.

Расстояние по вертикали между высокой или низкой точкой и нулевой точкой называется амплитудой. Амплитуда обеспечивает барьер, внутри которого задерживаются восходящие и нисходящие части волны.

Например, если амплитуда водной волны составляет 2 метра, это означает, что при движении морской волны частицы воды поднимаются на максимальную высоту 2 метра.

Частота и длина волны.

Вы также можете представить себе синусоидальную волну следующим образом: мы копируем выбранный кусок и вставляем его бесконечное количество раз как слева, так и справа от него. Таким образом, этот выбранный фрагмент уже определяет поведение волны. Термин для этого – период.

Мы можем охарактеризовать этот период двумя способами:

  1. Сколько времени требуется волне, чтобы пройти вдоль выбранного участка? Это описывает период времени или его обратную величину – частоту волны.
  2. Какова горизонтальная ширина выбранного фгагмента? Это дает вам пространственный период волнового процесса или длину волны.

Важно знать! Расстояние по горизонтали между двумя последовательными максимумами (самая высокая точка) или минимумом (самая низкая точка) часто называется длиной волны.

Характеристики волн

Рис. 4. Характеристики волн

Скорость распространения волны.

Длина волны и частота волны тесно связаны между собой.

Важно знать! Скорость распространения волны = длина волны * частота волны.

Скорость распространения v волны связана с ее длиной волны λ и частотой f следующим образом: v = λ * f .

Например, если вы раскачиваете веревку вверх и вниз, создавая “веревочную волну”, скорость распространения говорит вам о том, как быстро удаляется от вас высокая точка (или любой другой участок) волны.

Отражение, преломление и дифракция волн.

Если волна попадает в другую среду, могут произойти следующие два явления:

  1. Происходит отражение. Часть входящей волны отражается на границе раздела двух сред. Эта отраженная часть распространяется дальше в исходной среде. Отраженная волна имеет ту же длину волны, что и входящая;
  2. Происходит преломление. Часть входящей волны преломляется на границе раздела. Эта преломленная часть распространяется в новой среде с другой длиной волны. Так называемый коэффициент преломления определяет, будет ли длина волны короче или длиннее.

Например, когда свет от солнца попадает на поверхность воды, среда меняется с воздуха на воду. Это приводит к тому, что часть света отражается, а часть преломляется. Это также является причиной того, что вы можете увидеть солнце, например, в луже воды.

Теперь для того, чтобы что-то произошло, волна не обязательно должна попасть на новый носитель. Если внутри текущей среды поместить препятствие, например, в виде стены с одним прямоугольным проходом, то может возникнуть явление дифракции (см. рисунок 5). Проще говоря, дифракция описывает явление, когда волна после прохождения не движется по прямой линии.

Отражение, преломление и дифракция волн

Рис. 5. Отражение, преломление и дифракция волн

Суперпозиция волн.

До сих пор мы рассматривали только одну волну. Но что происходит, когда две (или более) волны сталкиваются? Возникает явление, которое называется суперпозицией волн. Однако эта суперпозиция не возникает каким-то образом, а следует определенному принципу, который мы знаем под названием “принцип суперпозиции”.

Чтобы объяснить принцип суперпозиции в случае волн, давайте снова рассмотрим синусоидальные волны. Каждая точка на синусоиде дает вам значение, которое является мерой силы отклонения частиц.

Принцип суперпозиции простыми словами: в каждой точке пространства, где встречаются две волны, вы складываете значения двух синусоид. Итог этого сложения дает результирующую волну.

В соответствии с принципом суперпозиции различные явления могут наблюдаться в суперпозиции. К ним относятся, в частности:

  • Интерференция. В точках, где, например, встречаются два “холма” или две “впадины”, суперпозиция приводит к усилению волны – возникает конструктивная интерференция. Теперь холм может встретиться с впадиной (или наоборот). В результате суперпозиция приводит к ослаблению волны – возникает деструктивная интерференция;
  • Стоячие волны. Суперпозиция двух волн может привести к тому, что результирующая волна будет по-прежнему колебаться вверх и вниз, но она больше не будет двигаться слева направо (или наоборот) – в некотором смысле она “стоит” в пространстве. Этот тип волны называется стоячей волной.

Музыкальные инструменты создают стоячие волны посредством суперпозиции. Эти стоячие волны, в свою очередь, вибрируют в окружающем воздухе, создавая звуковые волны, которые доходят до ваших ушей и в конечном итоге позволяют вам услышать музыку.

Механические волны и электромагнитные волны

В этом разделе мы рассмотрим конкретные примеры механических и электромагнитных волн.

Механические волны

Волны, для распространения которых необходима среда, называются механическими волнами. Без среды механические волны не могут распространяться. В идеальном вакууме, например, звуковая волна не может распространяться.

Когда возникает механическая волна, периодическое движение одной частицы среды передается соседним частицам по мере того, как волна движется через среду. Частицы определенным образом “механически” связаны друг с другом.

Самым важным примером механической волны является звук. Звук окружает вас каждый день, будь то разговор с друзьями или прослушивание музыки. Звуковые волны позволяют вам слышать. Они возникают в результате вибрации частиц воздуха.

Электромагнитные волны

Электромагнитные волны не нуждаются в среде для распространения. Если для их распространения не нужна среда, то что тогда колеблется? Электромагнитная волна состоит из электрического и магнитного полей. И именно эти поля колеблются вверх и вниз.

Помните! Периодически изменяющееся электрическое поле приводит к возникновению магнитного поля, которое также периодически изменяется, и наоборот, – таким образом происходит генерация электромагнитной волны.

Например, свет солнца – это электромагнитная волна. Это означает, что электромагнитные волны, помимо всего прочего, отвечают за то, что вы можете что-то видеть. Но вам также нужны электромагнитные волны, чтобы иметь возможность совершать телефонные звонки или пользоваться Интернетом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *