Что значит прямые солнечные лучи
Перейти к содержимому

Что значит прямые солнечные лучи

Большая Энциклопедия Нефти и Газа

Прямые солнечные лучи , проникая в производственное помещение в больших дозах и в течение всего или большей части дня, оказываются неблагоприятными, так как вызывают слепимость, повышают, иногда значительно, температуру воздуха, нагревают оборудование.  [2]

Прямые солнечные лучи , проходя сквозь объектив, образуют в его фокусе изображение солнца, которое способно прожечь отверстие в шторке затвора; в данном случае объектив действует как зажигательное стекло.  [3]

Прямые солнечные лучи ( проходящие через открытое окно или балконную дверь) вызывают необратимые изменения в лаковом покрытии, в результате чего оно тускнеет, покрывается пятнами и трещинами. Поэтому не следует устанавливать мебель близко от балконной двери или часто открываемого окна.  [4]

Кроме того, прямые солнечные лучи могут концентрироваться колбами ( особенно круглыми) или любыми стеклянными изделиями, содержащими пузырьки, играющие роль собирательных линз. Создаваемый при этом местный нагрев до высоких температур оказывается в условиях лаборатории очень опасным.  [5]

Естественное освещение помещений — прямые солнечные лучи и рассеянный свет, яркость которых меняется в зависимости от географической широты местности, времени года и суток. Искусственное освещение помещений создается электрическими источниками света. Естественное освещение наиболее благоприятно как для органов зрения, так и для организма человека в целом. Поэтому искусственное и совмещенное освещение производственных помещений применяется только при недостаточности естественного освещения в дневное время и ночью.  [6]

На бочки не должны попадать прямые солнечные лучи . В помещении, где хранятся диазоли, запрещается работа с огнем и курение.  [7]

Вредное влияние на микрофильмы оказывает свет, особенно прямые солнечные лучи . Под действием света процесс естественного старения подложки и желатинового слоя значительно ускоряется. Поэтому коробки с микрофильмами и ящики с микропленками должны быть защищены от света.  [8]

Почему в комнате светло и тогда, когда прямые солнечные лучи в ее окна не попадают.  [9]

Чтобы вещество флюоресцировало, на него должны падать прямые солнечные лучи .  [10]

Запрещается ставить машину вблизи нагревательных приборов и так, чтобы на нее попадали прямые солнечные лучи .  [11]

Запрещается ставить машину вблизи нагревательных приборов и так, чтобы на нее попадали прямые солнечные лучи .  [12]

Разрушающее влияние на бумагу оказывают также вредные примеси, содержащиеся в воздухе, и прямые солнечные лучи .  [13]

Если часть солнечной орбиты закрыта застройкой, с этого участка неба на точку наблюдения не могут падать прямые солнечные лучи . Поэтому для оценки условий инсоляции и определения мероприятий по солнцезащите необходимо получить изображение застройки и тем самым затенение вследствие закрытия ею области солнечной орбиты в диаграмме положения Солнца.  [15]

Виды солнечного излучения

золь

La солнечная радиация Это довольно важная переменная, которая служит для определения количества тепла, которое мы получаем от Солнца на поверхности земли. В зависимости от некоторых факторов, таких как ветер, облачность и время года, мы получаем большее или меньшее количество солнечной радиации. Он обладает способностью нагревать поверхность земли и предметы, не нагревая при этом воздух. Есть разные типы солнечного излучения в зависимости от происхождения и характеристик.

Знайте все о солнечном излучении, о его типах и о том, какое влияние оно оказывает на планету и жизнь.

Что такое солнечная радиация

солнечная радиация

Это поток энергии, который получает солнце в виде электромагнитных волн разной частоты. Среди частот, которые мы находим в электромагнитном спектре, наиболее известны видимый, инфракрасный и ультрафиолетовый свет. Мы знаем, что почти половина солнечной радиации, которую получает наша планета, имеет частота находилась в диапазоне от 0.4 мкм до 0.7 мкм. Этот тип излучения может быть обнаружен человеческим глазом, и это то, что составляет полосу, известную нам как видимый свет.

Другая половина находится в основном в инфракрасной части спектра и небольшая часть в ультрафиолете. Чтобы иметь возможность измерить, сколько излучения мы получаем от солнца Используется инструмент, известный как пиранометр.

Виды солнечного излучения

как работает солнечное излучение

В зависимости от происхождения и характеристик солнечного излучения бывают разные виды. Мы собираемся сосредоточиться на определении различных типов и их основных характеристик:

Прямое солнечное излучение

Это о том, что он исходит прямо от солнца и мало меняет направление. Это можно увидеть под влиянием ветра, но не в значительной степени. В ветреные дни можно почувствовать снижение жары. На поверхностях жара не так сильно действует при сильном ветровом режиме. Этот тип излучения имеет главную характеристику, а именно то, что он может отбрасывать определенную тень от любого непрозрачного объекта, который его перехватывает.

Рассеянное солнечное излучение

Это часть излучения, которое доходит до нас от солнца и которое отражается или поглощается облаками. Он известен под названием диффузный, поскольку распространяется во всех направлениях. Этот процесс происходит из-за отражений и поглощений не только от облаков, но и от некоторых частиц, плавающих в атмосфере. Эти частицы называются атмосферной пылью и способны рассеивать солнечное излучение. Его также называют диффузным, поскольку он отражается некоторыми объектами, такими как горы, деревья, здания и сама земля, в зависимости от ее состава.

Основная характеристика этого излучения состоит в том, что он не отбрасывает тень на вставленные непрозрачные объекты. Горизонтальные поверхности — это те места, где присутствует большее количество рассеянного излучения. С вертикальными поверхностями происходит обратное, так как контакт практически отсутствует.

Отраженное солнечное излучение

Это тот, который отражает поверхность земли. Не все излучение, которое доходит до нас от солнца, поглощается поверхностью, но часть его отклоняется. Это количество излучения, которое отклоняется от поверхности, известно как альбедо. Альбедо Земли сильно увеличивается из-за изменения климата и таяния полярных ледяных шапок.

Горизонтальные поверхности не получают отраженного излучения любого типа, так как они не видят земную поверхность. Противоположное дело обстоит с рассеянным солнечным излучением. В таком случае, именно вертикальные поверхности получают наибольшее количество отраженного излучения.

Глобальная солнечная радиация

Можно сказать, что это общая радиация, существующая на планете. Это сумма трех излучений. названный выше. Возьмем для примера полностью солнечный день. Здесь будет прямое излучение, которое превосходит диффузное излучение. Однако в пасмурный день не будет прямой радиации, но все попадание будет рассеянным.

Как это влияет на жизнь и планету

солнечные панели

При таком количестве солнечного излучения, которое получает наша планета, жизнь не могла бы возникнуть так, как она возникла. Энергетический баланс Земли равен 0. Это означает, что количество солнечной радиации, которую получает планета, и то, что она излучает обратно в космос, одинаково. Однако необходимо добавить некоторые нюансы. В этом случае температура на планете будет -88 градусов. Итак, вам нужно что-то, что может удерживать это излучение и делать уровни температуры комфортными и обитаемыми, чтобы поддерживать жизнь.

Парниковый эффект — это двигатель, который помогает солнечной радиации, падающей на земную поверхность, в значительной степени удерживаться. Благодаря парниковому эффекту на нашей планете могут появиться условия для жизни. Когда солнечная радиация попадает на поверхность, она почти наполовину возвращается в атмосферу, чтобы выбросить ее в космическое пространство. Часть этого излучения обратно от поверхности поглощается и отражается облаками и атмосферной пылью. Однако этого количества поглощенного излучения недостаточно для поддержания стабильной температуры.

Вот где появляются парниковые газы. Это различные газы, которые способны удерживать часть тепла, излучаемого земной поверхностью, возвращая достигнутое солнечное излучение обратно в атмосферу. К парниковым газам относятся: водяной пар, диоксид углерода (CO2), оксиды азота, оксиды серы, метан, так далее. С увеличением количества парниковых газов, вызванных деятельностью человека, солнечная радиация становится все более вредной, поскольку оказывает воздействие на окружающую среду, флору, фауну и людей.

Сумма всех видов солнечной радиации — это те, которые позволяют жизнь на планете. Будем надеяться, что проблему увеличения выбросов парниковых газов удастся решить и ситуация не станет опасной.

Содержание статьи соответствует нашим принципам редакционная этика. Чтобы сообщить об ошибке, нажмите здесь.

Полный путь к статье: Сетевая метеорология » Метеорология » Виды солнечного излучения

Солнечная радиация и её влияние на организм человека и климат

Лучистая энергия Солнца является основным, а практически единственным источником тепла для поверхности Земли и для ее атмосферы. Радиация, поступающая от звезд и от Луны, ничтожно мала по сравнению с солнечной радиацией. Также ничтожно мал и поток тепла, направленный к земной поверхности и в атмосферу из глубин Земли.

Часть солнечной радиации представляет собой видимый свет. Тем самым Солнце является для Земли источником не только тепла, но и света, важного для жизни на земной поверхности. Лучистая энергия Солнца превращается в тепло отчасти в самой атмосфере, но главным образом на земной поверхности. Она идет здесь на нагревание верхних слоев почвы и воды, а от их и воздуха. Нагретая земная поверхность и нагретая атмосфера в свою очередь сами излучают невидимую инфракрасную радиацию. Отдавая эту радиацию в мировое пространство, земная поверхность и атмосфера охлаждаются.

Наблюдения показывают, что средние годовые температуры земной поверхности и атмосферы в любой точке Земли мало меняются от года к году. Таким образом, если рассматривать Землю за более или менее длительные многолетние промежутки времени, то можно сказать, что она находится в тепловом равновесии: приход тепла уравновешивается его потерей. Но так как Земля (с атмосферой) получает тепло, поглощая солнечную радиацию, и теряет тепло путем собственного излучения, то можно заключить, что она находится и в лучистом равновесии: приток радиации к ней уравновешивается отдачей радиации в мировое пространство.

Спектральный состав солнечной радиации

На интервал длин волн между 0,1 и 4 мк приходится 99% всей энергии солнечной радиации. Всего 1% остается на радиацию с меньшими и большими длинами волн, вплоть до рентгеновых лучей и радиоволн. Видимый свет занимает узкий интервал длин волн, всего от 0,40 до 0,75 мк. Однако в этом интервале заключается почти половина всей солнечной лучистой энергии (46%). Почти столько же (47%) приходится на инфракрасные лучи, а остальные 7% — на ультрафиолетовые. В метеорологии принято выделять коротковолновую и длинноволновую радиацию. Коротковолновой называют радиацию в диапазоне длин волн от 0,1 до 4 мк. Она включает, кроме видимого света, еще ближайшую к нему по длинам волн ультрафиолетовую и инфракрасную радиацию. Солнечная радиация на 99% является такой коротковолновой радиацией. К длинноволновой радиации относят радиацию земной поверхности и атмосферы с длинами волн от 4 до 100-120 мк. Интенсивность прямой солнечной радиации

Радиацию, приходящую к земной поверхности непосредственно от солнечного диска, называют прямой солнечной радиацией, в отличие от радиации, рассеянной в атмосфере. Солнечная радиация распространяется от Солнца по всем направлениям. Но расстояние от Земли до Солнца так велико, что прямая радиация падает на любую поверхность на Земле в виде пучка параллельных лучей, исходящего как бы из бесконечности. Даже Земной шар в целом так мал в сравнении с расстоянием от Солнца, что всю солнечную радиацию, падающую на него, без заметной погрешности можно считать пучком параллельных лучей.

Приток прямой солнечной радиации на земную поверхность или на любой вышележащий уровень в атмосфере характеризуется интенсивностью радиации I

, т. е. количеством лучистой энергии, поступающим за единицу времени (одну минуту) на единицу площади (один квадратный сантиметр), перпендикулярной к солнечным лучам.

Рис. 1. Приток солнечной радиации на поверхность, перпендикулярную к лучам (АВ

), и на горизонтальную поверхность (
АС
).

Легко понять, что единица площади, расположенной перпендикулярно к солнечным лучам, получит максимально возможное в данных условиях количество радиации. На единицу горизонтальной площади придется меньшее количество лучистой энергии:

I’ = I sinh

где h

— высота солнца (рис. 1).

Все виды энергии взаимно эквивалентны. Поэтому лучистую энергию можно выразить в единицах любого вида энергии, например в тепловых или механических. Естественно выражать ее в тепловых единицах, потому что измерительные приборы основаны на тепловом действии радиации: лучистая энергия, почти полностью поглощаемая в приборе, переходит в тепло, которое и измеряется. Таким образом, интенсивность прямой солнечной радиации будет выражаться в калориях на квадратный сантиметр в минуту (кал/см2мин).

Параметры солнечного излучения и радиации

Энергоэффективность – эффективное (рациональное) использование энергетических ресурсов – достижение экономически оправданной эффективности использования топливоэнергетических ресурсов при существующем уровне развития техники и технологии и соблюдении требований к охране окружающей среды.

Коэффициент полезного действия (КПД) – характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к затраченной энергии, полученной системой.

Возобновляемые источники энергии – означают неископаемые источники энергии (ветер, солнечная энергия, геотермальная, энергия волн, приливы, гидроэнергия, биомасса, газ из органических отходов, газ установок по обработке сточных вод и биогазы) (Директива 2003/54/ЕС).

Человечество потребляет энергию, в подавляющем большинстве, полученную при сжигании традиционных ископаемых углеводородов, с каждым годом все больше. Но суммарное количество этой потребляемой энергии составляет всего около 0,0125 % доли процента от энергии возобновляемых источников, имеющихся на планете Земля, главная из которых – энергия Солнца [1]. Задача в том, как научиться эффективно использовать эти ресурсы.

Кроме того, энергия возобновляемых источников экологически чистая энергия.

Последние десятилетия постоянно поднимается вопрос о снижении странами выбросов в атмосферу парниковых газов, влияющих, по мнению ряда ученых, на потепление климата планеты и выживание человечества [2, 3]. Теплоэнергетика, наряду с другими отраслями, вносит большой вклад в накопление парниковых газов, поскольку именно при сжигании ископаемого топлива в котлах коммунального хозяйства и индивидуальных домов, происходит выброс диоксида углерода. Применение, при решении вопросов теплоснабжения, высокоэффективных технологий, возобновляемых источников энергии, позволит сохранить планету.

В мире сложная экономическая ситуация. Экономика многих стран-лидеров благосостояния стагнирует, либо развивается очень низкими темпами. В такие периоды мирового развития актуальным становится вопрос экономии энергоресурсов. Отопление и потребление горячей воды – значительные статьи расходов бюджетов, как индивидуальных домовладельцев, так и государств (к примеру, Россия), исторически взявших на себя затраты на поддержание функционирования систем жилищно-коммунального хозяйства (ЖКХ). Снижение стоимости киловатта тепловой энергии, доставленной конечному потребителю – одна из важнейших экономических задач, стоящей перед техническими и фундаментальными науками.

Тепловой солнечный коллектор (ТСК) – устройство для сбора тепловой энергии Солнца, переносимой видимым светом и ближним инфракрасным излучением.

Инсоляция – облучение поверхности или пространства параллельным пучком лучей, поступающих с направления, в котором виден в данный момент центр солнечного диска.

Фактическая инсоляция всегда зависит от ориентации и конфигурации освещаемого солнцем объекта.

Единицей измерения потока солнечной энергии в системе СИ является ватт на квадратный метр (Вт/м2). При среднем расстоянии от Земли до Солнца – 150 миллионов километров – плотность энергии солнечного излучения, которое достигает атмосферы Земли, составляет в среднем 1,367 кВт/м2. На рис. 1 представлена интенсивность падающего на Землю солнечного излучения в зависимости от длины волны.

Интенсивность падающего на Землю солнечного излучения в зависимости от длины волны

Рис. 1. Интенсивность падающего на Землю солнечного излучения в зависимости от длины волны

Солнечная радиация – энергетическая освещенность (облученность или поверхностная плотность потока излучения), создаваемая электромагнитным излучением, поступающим от Солнца, атмосферы и земной поверхности, единицы измерения:

мгновенное значение в кВт/м2, часовые и суточные суммы в МДж/м2.Тепловая энергия солнца – излучение солнечной радиации в диапазоне частот 350–1100 нм.

Суммарное солнечное излучение – прямое и рассеянное солнечное излучение, поступающее на горизонтальную поверхность. Единицы измерения: мгновенное значение в кВт/м2, часовые и суточные суммы в МДж/м2.

Прямое солнечное излучение – энергетическая освещенность, поступающая на деятельную поверхность в виде пучка параллельных лучей, исходящих непосредственно от диска Солнца. Единицы измерения: мгновенное значение в кВт/м2, часовые и суточные суммы в МДж/м2.

Рассеянное солнечное излучение – энергетическая освещенность, поступающая на земную поверхность со всего небесного свода под действием атмосферных и оптических факторов, за исключением действия прямого солнечного излучения. Единицы измерения: мгновенное значение в кВт/м2, часовые и суточные суммы в МДж/м2.

Отраженное солнечное излучение (применительно к ТСК) – энергетическая освещенность, создаваемая направленным солнечным излучением, отраженным от поверхности отражателя на поверхность ТСК. Единицы измерения: мгновенное значение в кВт/м2, часовые и суточные суммы в МДж/м2.

В пасмурные дни прямая солнечная радиация отсутствует и нагрев солнечных коллекторов зависит только от рассеянного солнечного излучения. Прямое солнечное излучение отсутствует, если в дневное время, предметы не дают тени. В средней полосе России осень и зима пасмурные и доля рассеянной энергии в эти периоды времени составляет до 90 % от общей солнечной энергии. Соотношение всех видов энергий солнечного излучения сильно зависят от климатических и географических данных. Эти показатели представлены во многих изданиях, большинство из которых относятся к периоду образования СССР, например [4, 5]. Одним из важнейших вопросов эффективной работы ТСК является их правильного расположение относительно солнца. Конструкции солнечных коллекторов могут быть стационарными, ориентированными на положение солнца в определенный момент времени, или оснащенными механизмами, способными отслеживать его движение.

Солнечный треккер – это устройство, позволяющее следить за движением солнца по небосводу, и перемещать СК в положение, в котором поглощение солнечных лучей происходит наиболее эффективно. Использование этих устройств позволило бы значительно увеличить эффективность работы гелиосистемы.

Но далеко не всегда используются такие устройства. Причина этому их стоимость и необходимость в квалифицированном техническом обслуживании. Большинство ТСК, применяемых для индивидуальных и децентрализированных объектов строительства, являются стационарными, ориентированными на фиксированное положение Солнца, конструкциями. Их расположение определяется формой крыши или опорной рамы. Очень важно правильно выбрать направление на Солнце и угол наклона фиксированных солнечных панелей.

Для оптимальной ориентации коллекторов, необходимо знать основные угловые параметры вращения Земли вокруг Солнца и вокруг своей оси (широта места установки φ, часовой угол ω, угол солнечного склонения δ, угол наклона к горизонту β, азимут α). Их схема представлена на рис. 2.

Широта места φ – одна из географических координат: дуга меридиана между экватором и параллелью данного места, или угол между плоскостью экватора и отвесной линией в данном месте земной поверхности. Изменяется от 0 до 90°; от экватора до Северного полюса – северная широта, от экватора до Южного полюса – южная широта.

Основные и дополнительные углы движения Солнца

Рис. 2. Основные и дополнительные углы движения Солнца: а – схема кажущегося движения солнца по небосводу; б – углы, определяющие положение точки А на земной поверхности относительно солнечных лучей

Часовой угол Солнца (ω) – угол между меридианом данного пункта наблюдений и кругом склонения светила; или дуга экватора между плоскостями меридиана и круга склонения. Величина (ω) отсчитывается от меридиана к западу. Часовой угол (ω) переводит местное солнечное время в число градусов, которое солнце проходит по небу. По определение часовой угол равен нулю в полдень. Земля поворачивается на 15° за один час. Утром угол направления Солнца отрицательный, вечером – положительный.

Необходимо помнить о разнице директивного времени часовых поясов и реального астрономического солнечного времени. К примеру, в Москве в январе эта разница составляет 2298 секунд, в Краснодаре 1964 секунды, Екатеринбурге – 3971 секунды. Во Владивостоке – 4339 секунды. Это отличие астрономического и директивного времени надо учитывать при установке солнечных коллекторов. Значение астрономического времени места вычисляется по формулам, но сейчас легко найти различные автоматические калькуляторы, где нужно только ввести искомое место и происходит автоматический

расчет астрономического времени, директивного и разницы между ними. К примеру. такой ресурс на time. satmaps. info, dateandtime. info/ru/citysunrisesunset. php?id=524901, продолжительность светового дня для любого места в любое время planetcalc. ru/300/.

В Москве, продолжительность светового дня меняется от 7 до 17 часов 30 минут, следовательно, Солнце перемещается за это время по дуге около 105 градусов зимой и 260 градусов летом.

Угол склонения Солнца (δ) зависит от вращения Земли вокруг Солнца, поскольку орбита вращения имеет эллиптическую форму и сама ось вращения тоже наклонена, то угол меняется в течение года от значения 23,45° до –23,45°. Угол склонения становится равным нулю два раза в год в дни весеннего и осеннего равноденствия.

Склонение солнца для конкретно выбранного дня определяется по формуле:

где n – порядковый номер дня в году, отсчитанный от 1-го января.

Наклон к горизонту (β) образуется между горизонтальной плоскостью и солнечной панелью.

Азимут (α) характеризует отклонение поглощающей плоскости коллектора от южного направления, при ориентировании солнечного коллектора точно на юг азимут = 0°.

Вопросы эффективного расположения солнечных тепловых коллекторов в зависимости от периода эксплуатации в течение года и другие вопросы проектирования солнечных тепловых коллекторов будут рассмотрены в других разделах учебного пособия.

По данным института АЕЕ INTEC, на конец 2012 г. в мире установлено 383 млн квадратных метров солнечных тепловых установок общей тепловой мощностью 268,1 ЕВт с годовой выработкой тепловой энергии 225 ТВт·ч [6]. С каждым годом эти показатели только возрастают. К сожалению, в России общая площадь солнечных тепловых установок оценивается в 30 тыс. м2 [7].

По удельной тепловой мощности гелиоустановок на 1000 человек первое место занимает Кипр (542 кВт, площадью 774 м2), второе – Австрия (406 кВт, 580 м2), третье – Израиль (400 кВт, 571 м2). На сегодняшний день большинство гелиоустановок построены в Китае – на площади 217,4 млн м2 (152,2 ЕВт), или 64,9 % от общемирового использования этих установок. В Европе – 56,1 млн м2 (39,3 ЕВт), или 16,7 % [7].

Исследования, проведенные лабораторией возобновляемых источников энергии Института высоких температур РАН, позволили создать «Атлас ресурсов солнечной энергии на территории России» [8]. Согласно данным, представленным в этой работе, более 60 % территории России, в том числе и многие северные районы, характеризуются среднегодовым поступлением солнечной радиации от 3,5 до 4,5 кВт·ч/м2 в день, а регионы Приморья и юга Сибири от 4,5 до 5,0 кВт·ч/м2 в день, что не сильно отличается от аналогичных показателей центральной Европы (5,0–5,5 кВт·ч/м2 в день).

Карта распределения суммарной солнечной радиации на наклонную поверхность (угол равен широте) для территории России, представлена на рис. 3 [8].

В табл. 1 приведены усреднённые данные по среднемесячной энергии солнечного излучения (инсоляции) для некоторых городов с учётом климатических условий (частоты и силы облачности) для неподвижных панелей, ориентированных на юг под разными углами наклона, и для систем, отслеживающих движение Солнца. Инсоляция измерялась на открытом пространстве.

Таблица 1. Среднемесячные значения солнечного излучения и долей рассеянной солнечной радиации для ряда городов Российской Федерации, Республики Белорусь, Казахстана [4]

Наклон панели к горизонту суммарно по месяцам, Дж / м2 (кВт·ч / м2) сум-марно за год
январь февраль март апрель май июнь июль август сентябрь октябрь ноябрь декабрь
Российская Федерация
Архангельск 0° (гор.) 12·106 61·106 207·106 356·106 494·106 575·106 565·106 385·106 186·106 71·106 20·106 4·106 2,94·109 (816)
Астрахань
46,4°с.ш.
0° (гор.) 117·106 (32,4) 190·106 (52,9) 344·106 (95,5) 524·106 (145,5) 682·106 (189,4) 756·106 (209,9) 683·106 (189,7) 629·106 (174,7) 460·106 (127,8) 294·106 (81,7) 162·106 (45,0) 96·106 (26,6) 4,94·109 (1371,1)
35° 202·106 (56,1) 280·106 (77,9) 441·106 (122,5 582·106 (161,6) 676·106 (187,8) 712·106 (197,7) 664·106 (184,5) 684·106 (189,9) 593·106 (164,6) 449·106 (124,7) 289·106 (80,2) 169·106 (46,9) 5,74·109 (1593,6)
90°
(верт.)
224·106 (62,1) 273·106 (75,9) 358·106 (99,5) 371·106 (103,0) 350·106 (97,1) 331·106 (92,0) 330·106 (91,8) 404·106 (112,1) 444·106 (123,2) 419·106 (116,5) 311·106 (86,4) 190·106 (52,7) 4,00·109 (1112,2)
вращение вокруг полярной оси 250·106 (69,4) 346·106 (96,0) 566·106 (157,1) 786·106 (218,3) 965·106 (268,0) 1055·106 (293,3) 968·106 (269,1) 994·106 (276,1) 824·106 (229,0) 592·106 (164,4) 368·106 (102,3) 206·106 (57,3) 7,92·109 (2200,2)
Владивосток
43,1°с.ш.
0° (гор.) 262·106 (72,7) 336·106 (93,2) 468·106 (130,0) 486·106 (135,1) 518·106 (143,9) 465·106 (129,2) 448·106 (124,3) 449·106 (124,8) 429·106 (119,1) 340·106 (94,3) 233·106 (64,6) 208·106 (57,8) 4,64·109 (1289,5)
50° 438·106 (121,7) 519·106 (144,1) 531·106 (147,5) 469·106 (130,3) 502·106 (139,5) 608·106 (169,0) 619·106 (171,8) 623·106 (173,0) 497·106 (138,1 436·106 (121,1) 395·106 (109,6) 393·106 (109,1) 6,05·109 (1681,3)
90°
(верт.)
284·106 (79,0) 379·106 (105,2) 457·106 (126,8) 460·106 (127,7) 529·106 (147,1) 637·106 (177,0) 598·106 (166,0) 501·106 (139,2) 325·106 (90,2) 270·106 (74,9) 232·106 (64,4) 241·106 (66,9) 4,91·109 (1364,2)
вращение вокруг полярной оси 547·106 (151,9) 567·106 (157,6) 592·106 (164,3) 699·106 (94,2) 662·106 (184,0) 702·106 (194,9) 760·106 (211,1) 817·106 (227,0) 682·106 (189,3) 644·106 (178,9) 542·106 (150,6) 514·106 (142,8) 7,73·109 (2146,7)
Волгоград 0° (гор.) 109·106 176·106 364·106 494·106 682·106 708·106 708·106 615·106 431·106 255·106 134·106 71·106 4,75·109 (1319)
Воронеж 0° (гор.) 84·106 142·106 289·106 385·106 565·106 620·106 590·106 473·106 326·106 176·106 80·106 50·106 3,78·109 (1050)
Екатеринбург 0° (гор.) 65·106 146·106 318·106 446·106 570·106 615·106 588·106 462·106 282·106 145·106 78·106 46·106 3,76·109 (1045)
Иркутск 0° (гор.) 105·106 192·106 385·106 491·106 599·106 611·106 586·106 491·106 360·106 235·106 117·106 71·106 4,24·109 (1179)
Казань 0° (гор.) 54·106 117·106 251·106 394·106 561·106 641·106 590·106 502·106 285·106 130·106 54·106 29·106 3,61·109 (1002)
Кострома 0° (гор.) 46·106 121·106 266·106 404·106 546·106 600·106 590·106 455·106 254·106 109·106 44·106 27·106 3,46·109 (962)
Краснодар 0° (гор.) 117·106 184·106 314·106 440·106 595·106 636·106 653·106 540·106 402·106 264·106 130·106 75·106 4,35·109 (1208)
Красноярск 0° (гор.) 46·106 147·106 327·106 444·106 486·106 620·106 578·106 377·106 243·106 163·106 67·106 34·106 3,54·109 (982)
Курск 0° (гор.) 84·106 172·106 274·106 372·106 554·106 605·106 584·106 475·106 316·106 165·106 67·106 52·106 3,72·109 (1033)
Махачкала 0° (гор.) 132·106 182·106 316·106 500·106 670·106 708·106 700·106 616·106 438·106 284·106 148·106 104·106 4,80·109 (1333)
Москва
55,7°с.ш.,

Доля рассеянного излучения в общей инсоляции

Город янв. фев. март апр. май июнь июль авг. сен. окт. ноя. дек. в среднем за год
Алма-Ата 57 % 56 % 52 % 42 % 40 % 34 % 28 % 31 % 31 % 37 % 50 % 53 % 39 %
Москва 93 % 73 % 64 % 56 % 50 % 49 % 54 % 54 % 61 % 67 % 69 % 84 % 57 %

Растительный покров, соседние здания, снежный покров, близость открытых водных поверхностей и другие факторы могут влиять на реальные значения полной солнечной энергии, падающей на тепловой коллектор. Для определения дневных средних показателей, разделите указанные значения на количество дней в месяце. Реальные дневные показатели могут отличаться от средних в несколько раз, но с точки зрения работы солнечного теплового коллектора, важны именно средние значения.

Распределение суммарной солнечной радиации на наклонную поверхность для территории России

Рис. 3. Распределение суммарной солнечной радиации на наклонную поверхность (угол равен широте) для территории России [8]

Все данные указаны в джоулях на квадратный метр (Дж/м2). В скобках справочно приведены те же величины в кВт·ч/м2 (1 кВт·ч = 3,6 МДж).

Также в Приложении указаны значения доли рассеянного излучения в общей инсоляции для городов Москва и Алма-Ата.

Список литературы:

  1. Шуткин О.И. Перспективы в мире и состояние в России // Energy Fresh. 2011. № 3. С. 25-27.
  2. United Nations on Climate Change. General Convention Kyoto, 1997.
  3. Грицевич И. Протокол конференции по глобальному климату в Киото: новые правила игры на следующее десятилетие // Экономическая эффективность. Ежеквартальный бюллетень Центра по эффективному использованию энергии (ЦЭНЭФ). М., 1998. № 18 (январь-март).
  4. Научно-прикладной справочник по климату СССР. Серия 3. Многолетние данные. Части 1–6, вып. 1–34. – Санкт-Петербург: Гидрометеоиздат, 1989–1998.
  5. ГОСТ 16350-80 Климат СССР. Районирование и статистические параметры климатических факторов для технических целей.
  6. Бутузов В.А. Солнечное теплоснабжение в мире и в России // С.О.К. 2013. № 8.
  7. Бутузов В.А. Обзор мирового рынка солнечных систем теплоснабжения // С.О.К. 2013. № 12.
  8. Попель О.С., Фрид С.Е., Коломиец Ю.Г., Киселева С.В., Терехова Е.Н. Атлас ресурсов солнечной энергии на территории России. – М.: ОИВТ РАН, 2010. – 84 с.

Виды спектров излучения Спектр излучения Солнца и спектр абсолютно черного тела Увеличенная часть главного изображения Спектральные серии водорода Электроны, уровни и испускаемый свет Спектр натрия Линии поглощения в солнечном спектре

Солнечная постоянная и общий приток солнечной радиации к Земле

Интенсивность солнечной радиации перед вступлением ее в атмосферу (обычно говорят: «на верхней границе ав отсутствии атмосферы») называют солнечной постоянной. Смысл слова постоянная состоит здесь в том, что эта величина не зависит от поглощения и рассеяния радиации в атмосфере. Она относится к радиации, на которую атмосфера еще не повлияла. Солнечная постоянная, зависит, таким образом, только от излучательной способности Солнца и от расстояния между Землей и Солнцем.

Земля вращается вокруг Солнца по мало растянутому эллипсу, в одном из фокусов которого находится Солнце. В начале января она наиболее близка к Солнцу (147 млн. км), в начале июля — наиболее далека от него (152 млн. км). Так как интенсивность радиации меняется обратно пропорционально квадрату расстояния, то солнечная постоянная в течение года меняется на ±3,5%. При среднем расстоянии Земли от Солнца солнечная постоянная, по новейшим определениям, с использованием ракетных измерений, равна 2,00±0,04 кал/см2мин.

На освещенное полушарие Земли на верхней границе атмосферы за одну минуту падает количество солнечной энергии, равное произведению солнечной постоянной на площадь большого круга Земли, выраженную в квадратных сантиметрах. При среднем радиусе Земли 6371 км эта площадь равна 12,75*1017 см2, а приходящая на нее за одну минуту лучистая энергия равна 25*1017 кал. За год Земля получает 1,37*1024 кал.

В среднем на каждый квадратный километр земной поверхности приходится за год 2,6*1015 кал. Чтобы получить такое количество тепла искусственно, нужно было бы сжечь свыше 400 тыс. т каменного угля. Все существующие на Земле запасы каменного угля равноценны тридцатилетнему притоку солнечной радиации к Земле. За 1,5 суток Солнце дает Земле столько же энергии, сколько дают электростанции всех стран в течение года. При этом солнечная радиация, приходящая к Земле, — менее чем одна двухмиллиардная доля всего излучения Солнца.

Свет — движущаяся энергия

Спектр солнечного излучения образно напоминает клавиатуру пианино. Один ее конец имеет низкие ноты, в то время как другой — высокие. То же самое относится и к электромагнитному спектру. Один конец имеет низкие частоты, а другой — высокие. Низкочастотные волны являются длинными в течение заданного периода времени. Это такие вещи, как радар, телевизор и радиоволны. Высокочастотные излучения — это высокоэнергетические волны с короткой длиной. Это означает, что длина самой волны очень коротка для данного периода времени. Это, например, гамма-лучи, рентгеновские и ультрафиолетовые лучи.

Вы можете думать об этом так: низкочастотные волны похожи на подъем на холм с постепенным поднятием, в то время как высокочастотные волны похожи на быстрый подъем на крутой, почти вертикальный холм. При этом высота каждого холма одинакова. Частота электромагнитной волны определяет, сколько энергии она несет. Электромагнитные волны, которые имеют большую длину и, следовательно, более низкие частоты, несут гораздо меньше энергии, чем с более короткими длинами и более высокими частотами.

Вот почему рентгеновские лучи и ультрафиолетовое излучение могут быть опасными. Они несут так много энергии, что, если попадают в ваше тело, могут повредить клетки и вызвать проблемы, такие как рак и изменение в ДНК. Такие вещи, как радио и инфракрасные волны, которые несут гораздо меньше энергии, на самом деле не оказывают на нас никакого влияния. Это хорошо, потому что вы, конечно, не хотите подвергать себя риску, просто включив стерео.

Видимый свет, который мы и другие животные можем видеть нашими глазами, расположен почти в середине спектра. Мы не видим никаких других волн, но это не значит, что их там нет. На самом деле, насекомые видят ультрафиолетовый свет, но не наш видимый. Цветы выглядят для них совсем по-другому, чем для нас, и это помогает им знать, какие растения посетить и от каких из них держаться подальше.

основные спектры солнечного излучения

Изменения солнечной радиации в атмосфере и на земной поверхности

Проходя сквозь атмосферу, солнечная радиация частично рассеивается атмосферными газами и аэрозольными примесями к воздуху и переходит в особую форму рассеянной радиации. Частично же она поглощается молекулами атмосферных газов и примесями к воздуху и переходит в теплоту, идет на нагревание атмосферы.

Нерассеянная и непоглощенная в атмосфере прямая солнечная радиация достигает земной поверхности. Она частично отражается от земной поверхности, а в большей степени поглощается ею и нагревает ее. Часть рассеянной радиации также достигает земной поверхности, частично от нее отражается и частично ею поглощается. Другая часть рассеянной радиации уходит вверх, в межпланетное пространство. В результате поглощения и рассеяния радиации в атмосфере прямая радиация, дошедшая до земной поверхности, изменена в сравнении с тем, что было на границе атмосферы. Интенсивность радиации уменьшается, а спектральный состав ее изменяется, так как лучи разных длин волн поглощаются и рассеиваются в атмосфере по-разному.

Поглощение солнечной радиации в атмосфере

В атмосфере поглощается сравнительно небольшое количество солнечной радиации, при этом главным образом в инфракрасной части спектра. Это поглощение — избирательное: разные газы поглощают радиацию в разных участках спектра и в разной степени.

Азот поглощает радиацию только очень малых длин волн в ультрафиолетовой части спектра. Энергия солнечной радиации в этом участке спектра совершенно ничтожна, и потому поглощение азотом практически не отражается на интенсивности солнечной радиации. В большей степени, но все же очень мало поглощает солнечную радиацию кислород — в двух узких участках видимой части спектра и в ультрафиолетовой его части. Более сильным поглотителем солнечной радиации является озон. Его содержание в воздухе, даже в стратосфере, очень мало; тем не менее он настолько сильно поглощает ультрафиолетовую радиацию, что из солнечной постоянной теряется несколько процентов. В результате поглощения в верхних слоях атмосферы в солнечном спектре у земной поверхности не наблюдаются волны короче 0,29 мк.

Сильно поглощает радиацию в инфракрасной области спектра углекислый газ; но его содержание в атмосфере ничтожно, и поэтому поглощение им в общем незначительно. Основным же поглотителем радиации в атмосфере является водяной пар, сосредоточивающийся в тропосфере и, особенно в нижней ее части. Из общего состава солнечной радиации водяной пар поглощает значительную долю в инфракрасной области спектра. Хорошо поглощают солнечную радиацию также атмосферные аэрозоли, т. е. облака и твердые частички, взвешенные в атмосфере.

В целом в атмосфере поглощается 15-20% радиации, приходящей от Солнца к Земле. В каждом отдельном месте поглощение меняется с течением времени в зависимости как от переменного содержания в воздухе поглощающих субстанций, главным образом водяного пара, облаков и пыли, так и от высоты солнца над горизонтом, т. е. от толщины слоя воздуха, проходимого лучами на пути сквозь атмосферу.

Защита от солнечной радиации

Ультрафиолетовое излучение, исходящее от Солнца – сильный раздражитель, которого надо избегать. Длительное нахождение под воздействием солнечных лучей может иметь следующие последствия для человека:

  • ожоги;
  • обострение хронических болезней;
  • общий перегрев.

Чтобы солнечная радиация не смогла навредить здоровью человека, надо придерживаться следующих рекомендаций:

  • ограничивать продолжительность загара и заниматься этим до или после обеда;
  • во время пребывания на улице в солнечный день надевать одежду с длинным рукавом, солнцезащитные очки и широкополую шляпу или кепку;
  • загорая на пляже, пользоваться специальными солнцезащитными кремами.

Людям, которые любят загорать в ясные летние дни, надо быть очень осторожными. Грудным детям и старикам с заболеваниями сердца нужно меньше находиться под солнцем и больше времени проводить в тени.

Рассеяние солнечной радиации в атмосфере

Кроме поглощения, прямая солнечная радиация на пути сквозь атмосферу ослабляется еще путем рассеяния, причем ослабляется более значительно. При этом рассеяние радиации тем больше, чем больше содержит воздух аэрозольных примесей.

Рассеянием называется частичное преобразование радиации, имеющей определенное направление распространения (а такой именно и является прямая солнечная радиация, распространяющаяся в виде параллельных лучей), в радиацию, идущую по всем направлениям. Рассеяние происходит в оптически неоднородной среде, т. е. в среде, где показатель преломления меняется от точки к точке. Такой оптически неоднородной средой является атмосферный воздух, содержащий мельчайшие частички жидких и твердых примесей — капельки, кристаллы, ядра конденсации, пылинки. Но оптически неоднородной средой является и чистый, свободный от примесей воздух, так как в нем вследствие теплового движения молекул постоянно возникают сгущения и разрежения, колебания плотности. Таким образом, встречаясь с молекулами и посторонними частичками в атмосфере, солнечные лучи теряют прямолинейное направление распространения, рассеиваются. Радиация распространяется от рассеивающих частичек таким образом, как если бы они сами были источниками радиации.

Около 25% энергии общего потока солнечной радиации превращается в атмосфере в рассеянную радиацию. Правда, значительная доля рассеянной радиации также приходит к земной поверхности. Но это будет уже особый вид радиации, существенно отличный от прямой радиации.

Во-первых, рассеянная радиация приходит к земной поверхности не от солнечного диска, а от всего небесного свода. Поэтому приходится измерять ее приток на горизонтальную поверхность. Интенсивностью рассеянной радиации мы будем называть ее приток в калориях на один квадратный сантиметр горизонтальной поверхности в минуту.

Влияние солнечной радиации на организм человека

Электромагнитный спектр солнечной радиации состоит из инфракрасной, видимой и ультрафиолетовой частей. Поскольку их кванты обладают различной энергией, то они оказывают разнообразное действие на человека.

  1. расширение кровеносных сосудов
    Результатом воздействия инфракрасного излучения является тепловой эффект, который сопровождается расширением кровеносных сосудов, усилением кровотока и кожного дыхания. Происходит расслабление сосудов и мышц, обладающее болеутоляющим и противовоспалительным эффектом. Мягкое тепло стимулирует образование и усвоение биологически активных веществ.
  2. Видимое излучение оказывает значительное фотохимическое действие, благодаря которому в окружающих тканях происходят весьма важные для организма процессы. Именно кванты видимого света активизируют работу зрительного анализатора, и человек видит мир во всём многообразии красок. Солнечный свет активизирует обменные процессы в организме, стимулирует работу коры головного мозга, улучшает эмоциональное состояние человека. Именно свет синхронизирует суточные и сезонные ритмы у человека, определяя время сна и бодрствования. Их нарушение приводит к бессоннице, ухудшению трудоспособности и депрессии.
  3. Ультрафиолетовая часть является жизненно важным фактором. Её недостаток приводит к ослаблению иммунитета, обострению хронических заболеваний и функциональным расстройствам нервной системы, тормозит выработку жизненно необходимых веществ.

освещение в помещении

Чрезвычайно велико и гигиеническое значение солнечной радиации. Поскольку видимый свет является решающим фактором в получении информации о внешнем мире, в помещении необходимо обеспечивать достаточный уровень освещённости. Его регламентирование производится согласно СНиП, которые для солнечной радиации составляются с учётом свето-климатических особенностей различных географических зон и учитываются при проектировании и строительстве различных объектов.

Даже поверхностный анализ электромагнитного спектра солнечного излучения доказывает, как велико влияние этого вида радиации на организм человека.

Результаты измерений прямой солнечной радиации

При неизменной прозрачности атмосферы интенсивность прямой солнечной радиации зависит от оптической массы атмосферы, т. е. в конечном счете от высоты солнца. Поэтому в течение дня солнечная радиация должна сначала быстро, потом медленнее нарастать от восхода солнца до полудня и сначала медленно, потом быстро убывать от полудня до захода солнца.

Но прозрачность атмосферы в течение дня меняется в некоторых пределах. Поэтому кривая дневного хода радиации даже в совершенно безоблачный день обнаруживает некоторые неправильности. Различия в интенсивности радиации в полдень в первую очередь связаны с различиями в полуденной высоте солнца, которая зимой меньше, чем летом. Минимальная интенсивность в умеренных широтах приходится на декабрь, когда высота солнца всего меньше. Но максимальная интенсивность приходится не на летние месяцы, а на весенние. Дело в том, что весной воздух наименее замутнен продуктами конденсации и мало запылен. Летом запыление возрастает, а также увеличивается содержание водяного пара в атмосфере, что несколько уменьшает интенсивность радиации.

Максимальные значения интенсивности прямой радиации для некоторых пунктов таковы (в кал/см2мин): Бухта Тикси 1,30, Павловск 1,43, Иркутск 1,47, Москва 1,48, Курск 1,51, Тбилиси 1,51, Владивосток 1,46, Ташкент 1,52.

Из этих данных видно, что максимальные значения интенсивности радиации очень мало растут с убыванием географической широты, несмотря на рост высоты солнца. Это объясняется увеличением влагосодержания, а отчасти и запылением воздуха в южных широтах. На экваторе максимальные значения радиации не очень превышают летние максимумы умеренных широт. В сухом воздухе субтропических пустынь (Сахара) наблюдались, однако, значения до 1,58 кал/см2 мин.

С высотой над уровнем моря максимальные значения радиации возрастают вследствие уменьшения оптической массы атмосферы при той же высоте солнца. На каждые 100 м высоты интенсивность радиации в тропосфере увеличивается на 0,01-0,02 кал/см2 мин. Мы уже говорили, что максимальные значения интенсивности радиации, наблюдающиеся в горах, достигают 1,7 кал/см2 мин и более.

Солнечные вспышки – высокая радиационная опасность

Вспышки на Солнце – большая опасность для человека и всего живого на Земле, поскольку плотность потока солнечного излучения может превышать обычный уровень космического излучения в тысячу раз. Так, выдающийся советский ученый А. Л. Чижевский связал периоды образования солнечных пятен с эпидемиями тифа (1883-1917 г) и холеры (1823-1923 г) в России. На основании сделанных графиков он еще в 1930 году предсказал возникновение обширной пандемии холеры в 1960-1962 годах, которая и началась в Индонезии в 1961 году, затем быстро распространилась на другие страны Азии, Африки и Европы.

Сегодня получено множество данных, свидетельствующих о связи одиннадцатилетних циклов солнечной активности со вспышками заболеваний, а также с массовыми миграциями и сезонами бурного размножения насекомых, млекопитающих и вирусов. Гематологи установили увеличение количество инфарктов и инсультов в периоды максимальной солнечной активности. Такая статистика связана с тем, что в это время у людей повышается свертываемость крови, а так как у больных с заболеваниями сердца компенсаторная деятельность угнетена, возникают сбои в его работе вплоть до некрозов сердечной ткани и кровоизлияний в мозг.

Большие солнечные вспышки происходят не так часто – раз в 4 года. В это время увеличивается количество и размер пятен, в солнечной короне образуются мощные коронарные лучи, состоящие из протонов и небольшого количества альфа-частиц. Самый мощный их поток астрологи зарегистрировали в 1956 году, когда плотность космического излучения на поверхности земли увеличилась в 4 раза. Еще одним последствием подобной солнечной активности стало полярное сияние, зафиксированное в Москве и Подмосковье в 2000 году.

Результаты измерений рассеянной радиации

Интенсивность рассеянной радиации, измеряемая, как сказано выше, для единицы горизонтальной поверхности, также меняется в течение дня.

Она возрастает до полудня по мере возрастания высоты солнца и убывает после полудня. Зависит она и от прозрачности атмосферы; однако уменьшение прозрачности, т. е. увеличение числа помутняющих частиц в атмосфере, не уменьшает, а увеличивает рассеянную радиацию. Кроме того, рассеянная радиация в очень широких пределах меняется в зависимости от облачности; радиация, отраженная облаками, также частично рассеивается, в связи с чем общая интенсивность рассеянной радиации возрастает. По той же причине отражение радиации снежным покровом увеличивает рассеянную радиацию.

В безоблачные дни рассеянная радиация невелика. Даже при высоком солнце, т. е. в полуденные часы летом, ее интенсивность в отсутствии облаков не превышает 0,1 кал/см2 мин. Облачность увеличивает эту величину в 3-4 раза.

В Арктике, при сравнительно тонких облаках и снежном покрове, рассеянная радиация летом может достигать 1 кал/см2 мин. Очень велика она летом и в Антарктиде. С увеличением высоты места над уровнем моря интенсивность рассеянной радиации убывает.

Рассеянная радиация может, таким образом, существенно дополнять прямую солнечную радиацию, особенно при низком солнце.

Рассеянная радиация не только увеличивает нагревание земной поверхности. Она увеличивает и освещенность на земной поверхности. Особенно существенно, иногда до 40%, увеличивается общая освещенность, если на небе есть облака, не закрывающие солнечный диск.

Распределение радиации «на границе атмосферы»

Для климатологии представляет существенный интерес вопрос о распределении притока и отдачи радиации по Земному шару. Рассмотрим сначала распределение солнечной радиации на горизонтальную поверхность «на границе атмосферы». Можно было бы также сказать: «в отсутствии атмосферы». Этим мы допускаем, что нет ни поглощения, ни рассеяния радиации, ни отражения ее облаками. Распределение солнечной радиации на границе атмосферы является простейшим. Оно действительно существует на высоте нескольких десятков километров. Указанное распределение называют солярным климатом. Известно, как меняется в течение года солнечная постоянная и, стало быть, количество радиации, приходящее к Земле. Если определять солнечную постоянную для фактического расстояния Земли от Солнца, то при среднем годовом значении 1,98 кал/см2 мин. она будет равна 2,05 кал/см2 мин. в январе и 1,91 кал/см2 мин. в июле.

Количество радиации, получаемое за сутки на границе атмосферы, зависит от времени года и широты места. Под каждой широтой время года определяет продолжительность притока радиации. Но под разными широтами продолжительность дневной части суток в одно и то же время разная.

Но приток солнечной радиации на горизонтальную поверхность зависит не только от продолжительности дня, а еще и от высоты солнца. Количество радиации, приходящее на границе атмосферы на единицу горизонтальной поверхности, пропорционально синусу высоты солнца. А высота солнца не только меняется в каждом месте в течение дня, но зависит и от времени года. Высота солнца на экваторе меняется в течение года от 90 до 66,5°, на тропиках — от 90 до 43°, на полярных кругах — от 47 до 0° и на полюсах от 23,5 до 0°.

На верхней границе атмосферы вне тропиков имеется в годовом ходе один максимум радиации, приходящийся на время летнего солнцестояния, и один минимум, приходящийся на время зимнего солнцестояния. Но между тропиками приток радиации имеет два максимума в году, приходящиеся на те сроки, когда солнце достигает наибольшей полуденной высоты. На экваторе это будет в дни равноденствий, в других внутритропических широтах — после весеннего и перед осенним равноденствием, отодвигаясь тем больше от сроков равноденствий, чем больше широта. Амплитуда годового хода на экваторе мала, внутри тропиков невелика; в умеренных и высоких широтах она значительно больше.

До земной поверхности солнечная радиация доходит ослабленной атмосферным поглощением и рассеянием. Кроме того, в атмосфере всегда есть облака, и прямая солнечная радиация часто вообще не достигает земной поверхности, поглощаясь, рассеиваясь и отражаясь обратно облаками. Облачность может уменьшать приток прямой радиации в широких пределах. Например, в Ташкенте, в зоне пустыни, в малооблачном августе теряется вследствие наличия облаков всего 20% прямой солнечной радиации. Но во Владивостоке с его муссонным климатом потеря прямой радиации вследствие облачности летом составляет 75%. В Петербурге, даже в среднем за год, облака не пропускают к земной поверхности 65% прямой радиации.

Из таблицы видно, насколько существенно дополняется этот приток прямой радиации к земной поверхности рассеянной радиацией. Величины рассеянной радиации в общем меньше, чем прямой, но порядок величин тот же. В тропических и средних широтах величина рассеянной радиации — от половины до двух третей прямой радиации; под 50-60° широты она уже близка к прямой, а в высоких широтах (60-90°) рассеянная радиация почти весь год больше прямой. Летом приток рассеянной радиации в высоких широтах больше, чем в других зонах северного полушария. Более точное представление о распределении радиации но Земному шару можно получить из климатологических (многолетних средних) карт. Мы рассмотрим дальше такие карты для суммарной радиации.

Итак, рассмотрим распределение годовых и месячных количеств (сумм) суммарной радиации по Земному шару. Мы видим, что оно не вполне зонально: изолинии (т. е. линии равных величин) радиации на картах не совпадают с широтными кругами. Отклонения эти объясняются тем, что на распределение радиации по Земному шару оказывают влияние прозрачность атмосферы и облачность.

В декабре (рис. 3) наибольшие суммы радиации, до 20-22 ккал/см2 и даже выше, в пустынях южного полушария. Но в облачных районах у экватора они снижены до 8-12 ккал/см2. В зимнем северном полушарии радиация быстро убывает на север; к северу от 50-й параллели она менее 2 ккал/см2 и несколько севернее полярного круга равна нулю. В летнем южном полушарии она убывает к югу до 10 ккал/см2 и ниже в широтах 50-60°. Но затем она растет -до 20 ккал/см2 у берегов Антарктиды и свыше 30 ккал/см2 внутри Антарктиды, где она, таким образом, больше, чем летом в тропиках.

В июне (рис. 4) наивысшие суммы радиации, свыше 22 ккал/см2, над северо-восточной Африкой, Аравией, Иранским нагорьем. До 20 ккал/см2 и выше они в Средней Азии; значительно меньше, до 14 ккал/см2, в тропических частях материков южного полушария. В облачных приэкваториальных областях они, как и в декабре, снижены до 8-12 ккал/см2. В летнем северном полушарии суммы радиации убывают от субтропиков к северу медленно, а севернее 50° с. ш. возрастают, достигая 20 ккал/см2 и более в Арктическом бассейне. В зимнем южном полушарии они быстро убывают к югу, до нуля за южным полярным кругом.

Суммарная радиация

Всю солнечную радиацию, приходящую к земной поверхности, прямую и рассеянную вместе, называют суммарной радиацией. Под интенсивностью суммарной радиации будем понимать приток ее энергии за одну минуту на один квадратный сантиметр горизонтальной поверхности, помещенной под открытым небом и незатененной от прямых солнечных лучей. Таким образом, интенсивность суммарной радиации равна

Is = I sinh+i

где I

— интенсивность прямой радиации,
i
— интенсивность рассеянной радиации,
h
— высота солнца.

При безоблачном небе суммарная радиация имеет суточный ход с максимумом около полудня и годовой ход с максимумом летом. Частичная облачность, не закрывающая солнечный диск, увеличивает суммарную радиацию по сравнению с безоблачным небом; полная облачность, напротив, ее уменьшает. В среднем облачность уменьшает суммарную радиацию. Поэтому летом приход суммарной радиации в дополуденные часы в среднем больше, чем в послеполуденные. По той же причине в первую половину года он больше, чем во вторую.

Основные спектры солнечного излучения

Солнце обладает разным излучением: от рентгеновских лучей до радиоволн. Солнечная энергия — это свет и тепло. Его состав:

  • 6-7 % ультрафиолетового света,
  • около 42 % видимого света,
  • 51 % ближнего инфракрасного.

Мы получаем солнечной энергии при интенсивности 1 киловатт на квадратный метр на уровне моря в течение многих часов в день. Около половины излучения находится в видимой коротковолновой части электромагнитного спектра. Другая половина — в ближней инфракрасной, и немного в ультрафиолетовом отделе спектра.

Отражение солнечной радиации. Поглощенная радиация. Альбедо Земли

Падая на земную поверхность, суммарная радиация в большей своей части поглощается в верхнем, тонком слое почвы или воды и переходит в тепло, а частично отражается. Величина отражения солнечной радиации земной поверхностью зависит от характера этой поверхности. Отношение количества отраженной радиации к общему количеству радиации, падающей на данную поверхность, называется альбедо поверхности. Это отношение выражается в процентах.

Итак, из общего потока суммарной радиации I sinh+i

отражается от земной поверхности часть его
(I sinh + i) А
, где
А
— альбедо поверхности. Остальная часть суммарной радиации
(I sinh + i)*(1-А)
поглощается земной поверхностью и идет на нагревание верхних слоев почвы и воды. Эту часть называют поглощенной радиацией.

Альбедо поверхности почвы в общем заключается в пределах 10-30%; в случае влажного чернозема оно снижается до 5%, а в случае сухого светлого песка может повышаться до 40%. С возрастанием влажности почвы альбедо снижается. Альбедо растительного покрова — леса, луга, поля — заключается в пределах 10-25%. Для свежевыпавшего снега альбедо 80-90%, для давно лежащего снега — около 50% и ниже. Альбедо гладкой водной поверхности для прямой радиации меняется от нескольких процентов при высоком солнце до 70% при низком солнце; оно зависит также от волнения. Для рассеянной радиации альбедо водных поверхностей 5-10%. В среднем альбедо поверхности мирового океана 5-20%. Альбедо верхней поверхности облаков — от нескольких процентов до 70-80% в зависимости от типа и мощности облачного покрова; в среднем же оно 50-60%.

Преобладающая часть радиации, отраженной земной поверхностью и верхней поверхностью облаков, уходит за пределы атмосферы в мировое пространство. Также уходит в мировое пространство часть рассеянной радиации, около одной трети ее. Отношение этой уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству солнечной радиации, поступающему в атмосферу, носит название планетарного альбедо Земли или просто альбедо Земли.

Планетарное альбедо Земли оценивается в 35-40%; по-видимому, оно ближе к 35%. Основную часть планетарного альбедо Земли составляет отражение солнечной радиации облаками.

Излучение земной поверхности

Верхние слои почвы и воды, снежный покров и растительность сами излучают длинноволновую радиацию; эту земную радиацию чаще называют собственным излучением земной поверхности. Земная поверхность излучает почти как абсолютно черное тело, и интенсивность ее излучения при +15° С, или 288° К, равна 0,6 кал/см2 мин. Столь большая отдача радиации с земной поверхности приводила бы к быстрому ее охлаждению, если бы этому не препятствовал обратный процесс — поглощение солнечной и атмосферной радиации земной поверхностью. Абсолютные температуры земной поверхности заключаются между 180 и 350°. При таких температурах испускаемая радиация практически заключается в пределах 4-120 мк. Следовательно, вся эта радиация инфракрасная, не воспринимаемая глазом.

Встречное излучение

Атмосфера нагревается, поглощая как солнечную радиацию (хотя в сравнительно небольшой доле, около 15% всего ее количества, приходящего к Земле), так и собственное излучение земной поверхности. Кроме того, она получает тепло от земной поверхности путем теплопроводности, а также при испарении и последующей конденсации водяного пара. Будучи нагретой, атмосфера излучает сама. Так же как и земная поверхность, она излучает невидимую инфракрасную радиацию примерно в том же диапазоне длин волн.

Большая часть (70%) атмосферной радиации приходит к земной поверхности, остальная часть уходит в мировое пространство. Атмосферную радиацию, приходящую к земной поверхности, называют встречным излучением (Еа); встречным потому, что оно направлено навстречу собственному излучению земной поверхности. Земная поверхность поглощает это встречное излучение почти целиком (на 90-99%). Таким образом, оно является для земной поверхности важным источником тепла в дополнение к поглощенной солнечной радиации.

Основной субстанцией в атмосфере, поглощающей земное излучение и посылающей встречное излучение, является водяной пар. Он поглощает инфракрасную радиацию в большой области спектра — от 4,5 до 80 мк, за исключением интервала между 8,5 и 11 мк.

Углекислота сильно поглощает инфракрасную радиацию, но лишь в узкой области спектра, озон — слабее и также в узкой области спектра.

Источник всей энергии

Мы принимаем солнечный свет как должное, но так не обязано быть, потому что, по сути, вся энергия на Земле зависит от этой большой, яркой звезды в центре нашей Солнечной системы. И пока мы находимся в ней, мы должны также сказать спасибо нашей атмосфере, потому что она поглощает часть излучения, прежде чем оно достигнет нас. Это важный баланс: слишком много солнечного света, и на Земле становится жарко, слишком мало — и она начинает замерзать.

Проходя через атмосферу, спектр солнечного излучения у поверхности Земли дает энергию в разных формах. Для начала рассмотрим различные способы ее передачи:

  1. Проводимость (кондукция) — это когда энергия передается от прямого контакта. Когда вы обжигаете руку горячей сковородой, потому что забыли надеть прихватку, это проводимость. Посуда передает тепло вашей руке через прямой контакт. Кроме того, когда ваши ноги касаются холодной плитки в ванной утром, они переносят тепло на пол через прямой контакт — проводимость в действии.
  2. Рассеивание — это, когда энергия передается через токи в жидкости. Это также может быть и газ, но процесс в любом случае будет такой же. Когда жидкость нагрета, молекулы возбуждены, разрозненны и менее плотные, поэтому они стремятся вверх. Когда они остывают, снова падают вниз, создавая клеточный текущий путь.
  3. Радиация (излучение) — это, когда энергия передается в виде электромагнитных волн. Подумайте о том, как хорошо сидеть рядом с костром и чувствовать, как приветственное тепло излучается от него к вам — это радиация. Радиоволны, световые и тепловые волны могут путешествовать, перемещаясь из одного места в другое без помощи каких-либо материалов.

солнечное излучение

Эффективное излучение

Встречное излучение всегда несколько меньше земного. Поэтому ночью, когда солнечной радиации нет и к земной поверхности приходит только встречное излучение, земная поверхность теряет тепло за счет положительной разности между собственным и встречным излучением. Эту разность между собственным излучением земной поверхности и встречным излучением атмосферы называют эффективным излучением (Ее

Ee = Es — Ea

Эффективное излучение представляет собой чистую потерю лучистой энергии, а следовательно, и тепла с земной поверхности ночью.

Интенсивность эффективного излучения в ясные ночи составляет около 0,10-0,15 кал/см2 мин на равнинных станциях умеренных широт и до 0,20 кал/см2 мин на высокогорных станциях. С возрастанием облачности, увеличивающей встречное излучение, эффективное излучение убывает. В облачную погоду оно гораздо меньше, чем в ясную.

Эффективное излучение, существует и в дневные часы. Но днем оно перекрывается или частично компенсируется поглощенной солнечной радиацией. Поэтому земная поверхность днем теплее, чем ночью.

В общем земная поверхность в средних широтах теряет эффективным излучением примерно половину того количества тепла, которое она получает от поглощенной радиации.

Радиационный баланс земной поверхности

Разность между поглощенной радиацией и эффективным излучением

R = (I sinh + i)(1 — A) — Ee

называют радиационным балансом земной поверхности. Другое ее название — остаточная радиация.

Радиационный баланс переходит от ночных, отрицательных значений к дневным, положительным после восхода солнца при высоте его 10-15°. От положительных значений к отрицательным он переходит перед заходом солнца при той же его высоте над горизонтом. При наличии снежного покрова радиационный баланс переходит к положительным значениям только при высоте солнца около 20-25°, так как при большом альбедо снега поглощение им суммарной радиации мало. Днем радиационный баланс растет с увеличением высоты солнца и убывает с ее уменьшением. В ночные часы, когда суммарная радиация отсутствует, отрицательный радиационный баланс равен эффективному излучению и потому меняется в течение ночи мало, если только условия облачности остаются одинаковыми.

Позиционирование солнечных модулей

Солнечные лучи, которые достигают поверхности Земли, подразделяют на два вида: прямые и рассеянные. Прямые солнечные лучи — это лучи, которые непосредственно с поверхности Солнца достигают поверхности Земли. Мощность прямого солнечного излучения зависит от чистоты атмосферы, высоты Солнца над линией горизонта (зависит от географической широты и времени дня), а также от положения поверхности по отношению к Солнцу. Рассеянные солнечные лучи поступают из верхних слоев атмосферы и зависят от того, каким образом прямые солнечные лучи отражаются от Земли и окружающей среды. Благодаря повторяющемуся процессу отражения между покрытой снегом поверхностью Земли и нижней стороной облаков мощность рассеянного солнечного излучения может достигать больших значений. Солнечные лучи несут с собой неиссякаемый поток солнечной энергии. Они постоянно доставляют на Землю большее количество энергии, чем нам сегодня необходимо Плотность солнечных лучей в космосе равняется примерно 1,4 кВт/м2. Из них около 30% отражается назад в космос, так и не достигнув Земли. На поверхности Земли плотность солнечных лучей составляет 1 кВт/м2.

  1. Прямое солнечное излучение
  2. Поглощенное в атмосфере земли солнечное излучение
  3. Отраженное солнечное излучение
  4. Рассеянное солнечное излучение

Солнечные батареи должны быть ориентированы под определенным углом к горизонтальной поверхности. Это зависит от географического положения объекта. Небольшие отклонения от оптимальных значений не оказывают большого влияния на эффективность генерации, потому что в течение дня линия движения солнца проходит с востока на запад. При этом угол падения солнечных лучей будет постоянно меняться.

Линия движения солнца проходит с востока на запад. Наиболее эффективная работа солнечных модулей происходит при полном освещении модуля и перпендикулярном падении солнечных лучей на модуль. Солнечные батареи, как правило, устанавливаются на крыше при помощи монтажной конструкции в фиксированном положении, и не могут следовать за солнцем в течение дня. По этой причине Солнечные батареи не могут работать с полной отдачей в течение всего дня.

Так как на протяжении года Земля движется вокруг Солнца, также происходят сезонные изменения угла падения солнечных лучей на поверхность земли.

  1. Угол падения солнечных лучей зимой
  2. Угол падения солнечных лучей летом

Обратная ситуация с углом наклона происходит в летний период. Чем меньше угол, тем лучше, естественно оптимальные углы зависят от Вашего географического местоположения. В идеале, крепить Солнечные баттреи лучше на конструкцию с изменяемым углом наклона или на треккер. Если нет возможности менять угол наклона дважды в год (лето/зима), то модули лучше закрепить под оптимальным углом, значение которого составляет среднее значение между оптимальным летним и зимним углом. Для каждой широты есть свой оптимальный угол наклона солнечных модулей.

Обычно принимается для весны и осени оптимальный угол наклона равным значению широты местности. Для зимы к этому значению прибавляется 10-15 градусов, а летом от этого значения отнимается 10-15 градусов. Поэтому обычно мы рекомендуем изменять угол наклона дважды в год лето/зима.

Небольшие отклонения до 5 градусов от оптимальных значений не существенно сказываются на эффективности генерации.

Предлагаем Вам рассмотреть 3 варианта монтажных конструкций солнечных модулей и наглядно показать эффективность применения таких решений. Смоделируем работу автономной энергосистемы в профессиональном ПО в условиях г. Москвы. Установленная мощность системы 1 кВт (6 Солнечных модулей мощностью 170 Ватт), ориентация на Юг.

Вариант 1. Фиксированный угол наклона.

Наиболее распространенный способ крепления солнечных панелей на крыше дома под углом 45 градусов.

Вариант 2. Сезонное изменение угла наклона лето/зима.

В том случае, если у Вас установлена система с изменяемым углом наклона лето/зима, Вы получаете прибавку сгенерированной электроэнергии около 10-12%, что является достаточно высоким показателем. Это особенно актуально в зимний период, когда использование АСЭ малоэффективно в условиях средней полосы.

Вариант 3. Использование треккера с отслеживанием оптимального угла по двум осям.

Данный способ является наиболее эффективным и дорогостоящим. В случае использования треккера, Вы можете получить около 50% дополнительной электроэнергии в течение года. Установка треккера практически невозможна на крыше дома. Треккеры бывают 2х типов. С отслеживанием угла по оси X и системы отслеживания по обеим осям X и Y. Треккеры представляют собой отдельно стоящие конструкции, которые, как правило, устанавливаются на земле. Принцип работы основан на фото датчике, который определяет оптимальный угол падения солнечных лучей.

Очевидно, что углы наклона и позиционирование солнечных модулей играют огромную роль в эффективности генерации. Поэтому мы настоятельно рекомендуем использовать конструкции с изменяемым углом наклона лето/зима.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *