Шкала электромагнитных волн
У того факта, что на свете не существует волн всех без исключения частот (от ν = 0 Г ц до ν = ∞ Г ц ), есть объективные причины. Они заключаются в том, что световые волны обладают не только волновыми, но и корпускулярными свойствами, что накладывает на их длину определенные ограничения.
Ограничения длины волны
Согласно квантовой теории, испускание электромагнитного излучения происходит в виде порций энергии – квантов. Энергия квантов связана с их частотой.
Формула содержит постоянную Планка – h = 6 , 62 · 10 — 34 Д ж · c , а h = h 2 π = 1 , 05 · 10 — 34 Д ж · с – это постоянная Планка с чертой.
Из формулы можно сделать вывод о невозможности существования бесконечной частоты, поскольку квантов с бесконечной величиной энергии не бывает. Также данное выражение ограничивает и низкие частоты, поскольку энергия кванта имеет минимально возможное значение W 0 , следовательно, существует и минимальная частота, ниже которой волна иметь не может.
Важно отметить, что пока не существует явных доказательств наличия нижней границы энергии у фотонов. В стабильных электромагнитных волнах между земной поверхностью и ионосферой отмечена минимальная частота, равная примерно 8 Г ц .
Шкала электромагнитных волн
На сегодняшний день известно несколько типов электромагнитных волн. Их основные характеристики приведены в таблице:
Название | Граница диапазона по длине волны λ | Граница диапазона по энергии квантов W |
гамма — излучение | λ < 1 , 2 · 10 — 3 н м | W > 1 М э В |
рентгеновское излучение | 1 , 2 · 10 — 3 н м < λ < 12 н м | 100 э В > W > 1 М э В |
ультрафиолетовое излучение | 12 н м < λ < 380 н м | 3 , 2 э В > W > 100 э В |
видимый спектр излучения | 380 н м < λ < 760 н м | 1 , 6 э В > W > 3 , 2 э В |
инфракрасное излучение | 760 н м < λ < 10 6 н м | 1 , 2 · 10 — 3 э В > W > 1 , 6 э В |
радиоволны | λ > 10 6 н м | W < 1 , 2 · 10 — 3 э В |
Шкала волн указывает на то, что каждый диапазон имеет свои индивидуальные особенности. Чем больше частота, тем сильнее проявляются корпускулярные свойства излучения.
В разных частях спектра электромагнитных излучений волны генерируются по-разному. Для изучения каждого типа волны существуют особые разделы физики. Различия между участками спектра заключаются не столько в физической природе волн, сколько в способах их приема и получения. Резкого перехода между ними, как правило, нет, возможно и перекрытие участков, поскольку границы условны.
Оптика изучает так называемый оптический диапазон электромагнитных волн – часть спектра с включением фрагментов зон инфракрасного и ультрафиолетового излучения, которая доступна человеческому глазу.
Кванты, которые присутствуют в видимой части излучения, называются фотонами.
Волны всего спектра электромагнитного излучения обладают как волновыми, так и квантовыми свойствами, однако те или иные свойства в зависимости от длины волн могут преобладать. Следовательно, для их изучения нужно пользоваться разными методами. Практическое применение у разных групп волн также различается в зависимости от длины.
Специфика различных видов электромагнитных волн
Оптический диапазон характеризуется слабым взаимодействием света и вещества, а также тем, что в нем выполняются законы геометрической оптики.
На частоты ниже оптического диапазона законы геометрической оптики уже не распространяются, а высокочастотное электромагнитное поле либо пронизывает вещество насквозь, либо разрушает его.
Видимый свет очень важен для всего живого на Земле, особенно для процессов фотосинтеза. Радиоволны активно применяются в телевидении, радиолокационных процессах, радиосвязи, т.к. это самые длинные волны спектра, которые могут быть легко сгенерированы с помощью колебательного контура (сочетания индуктивности и емкости). Радиоволны могут испускаться атомами и молекулами – это свойство находит применение в радиоастрономии.
Можно сформулировать общее утверждение, согласно которому источником электромагнитных волн являются частицы в атомах и ядрах. Они заряжены и движутся ускоренно.
В 1800 г. В. Гершель изучил на практике инфракрасную область спектра. Он расположил термометр ближе к красному краю спектра и увидел, что температура начала расти, значит, термометр нагрелся излучением, невидимым глазу. Инфракрасное излучение можно перевести в видимую часть диапазона с помощью специальных приборов (например, на этом свойстве основаны приборы ночного видения). Любое нагретое тело является источником инфракрасного излучения.
Ультрафиолетовое излучение было открыто И. Риттером. Он нашел невидимые глазу лучи за фиолетовой частью спектра и обнаружил, что они могут воздействовать на определенные химические соединения и убивать некоторые виды бактерий. Это свойство нашло широкое применение в медицине. Являясь частью солнечных лучей, ультрафиолет оказывает воздействие на человеческую кожу, способствуя ее потемнению (появлению загара).
В. Рентген в 1895 г. обнаружил еще один вид излучения, который был позже назван в его честь. Рентгеновские лучи не видны глазу и могут проходить через толстые слои непрозрачного вещества без значительного поглощения. Они также могут воздействовать на фотопленку и вызывать свечение некоторых видов кристаллов. Рентгеновские лучи широко применяются в области медицинской диагностики, а их способность воздействовать на живые организмы весьма значительна.
Гамма-излучением называется излучение, возникающее при возбуждении атомных ядер и взаимодействии элементарных частиц.
Гамма-излучение имеет наименьшую длину волны, следовательно, корпускулярные свойства у него наиболее выражены. Его принято рассматривать в качестве потока гамма-квантов. Существует перекрытие рентгеновских и гамма-волн в области длин 10 — 10 — 10 — 14 м .
Условие: объясните, что выступает в качестве излучателя для разных видов электромагнитных волн.
Решение
Электромагнитные волны всегда излучаются движущимися заряженными частицами. Они движутся ускоренно в атомах и ядрах, значит, именно там будет находиться источник волн. Радиоволны испускаются молекулами и атомами (единственный вид излучения, который можно воссоздать искусственным путем). Инфракрасное – за счет колебаний атомов в молекулах (здесь имеют место тепловые колебания, усиливающиеся с ростом температуры). Видимый свет создается отдельными возбужденными атомами. Ультрафиолетовый свет также является атомарным. Рентгеновские лучи создаются за счет взаимодействия электронов с высокой кинетической энергией с ядрами атомов, а также за счет собственного возбуждения ядер. Гамма-лучи образуются за счет возбужденных ядер и взаимном превращении элементарных частиц.
Условие: вычислите частоты волн в видимом диапазоне.
Решение
К видимому диапазону относятся волны, воспринимаемые человеческим глазом. Границы зрения индивидуальны и находятся в пределе λ = 0 , 38 — 0 , 76 м к м .
В оптике используются два основных вида частот. Первая из них – круговая – может быть определена как ω = 2 π T ( Т — период колебания волны). Вторая определяется как ν = 1 T .
Значит, мы можем связать одну частоту с другой при помощи следующего соотношения:
Зная, что скорость распространения электромагнитных волн в вакууме равна c = 3 · 10 8 м с , запишем:
В этом случае для границ видимого диапазона получим:
ν = c λ , ω = 2 π c λ .
Поскольку мы не знаем длины волн видимого света, то:
ν 1 = 3 · 10 8 0 , 38 · 10 — 6 = 7 , 9 · 10 14 ( Г ц ) ; v 2 = 3 · 10 8 0 , 76 · 10 16 = 3 , 9 · 10 14 ( Г ц ) ; ω 1 = 2 · 3 , 14 · 7 , 9 · 10 14 = 5 · 10 15 ( с — 1 ) ; ω 2 = 2 · 3 , 14 · 3 , 9 · 10 14 = 2 , 4 · 10 15 ( с — 1 ) .
А)Волны с минимальной частотойБ)волны идущие от нагретых телв) волны обладающ ие проникающей силой1) радиоволны2)инфракрасное излучение3)видимое излучение4)ультрофиолетовое излучение5)ренгеновское изл?
Какое из перечисленных ниже электромагнитных излучений имеет наибольшую длинну волныА?
Какое из перечисленных ниже электромагнитных излучений имеет наибольшую длинну волны
Излучение видимого спектра
Какие электромагнитные волны имеют огромную проникающую способность, оказывает сильное биологическое воздействие?
Какие электромагнитные волны имеют огромную проникающую способность, оказывает сильное биологическое воздействие?
2 инфракрасное излучение
3 видимое излучение и ультрафиолетовое
4 все виды волн
5 рентгеновское излучение
6 гамма излучение.
Расположите перечисленные виды электромагнитных излучений в порядке увеличения длины волны?
Расположите перечисленные виды электромагнитных излучений в порядке увеличения длины волны.
Помогите пожалуйста сделать : радиоволны, инфракрасное излучения, видимое излучения, ультрофеолетовое излучения, рентгеновское излучения, гамма(пользу, вред и открытие) Срочно?
Помогите пожалуйста сделать : радиоволны, инфракрасное излучения, видимое излучения, ультрофеолетовое излучения, рентгеновское излучения, гамма(пользу, вред и открытие) Срочно!
Заранее огромное спасибо!
Шкала электромагнитных волн содержит разные диапазоны, отличающиеся друг от друга физическими свойствами?
Шкала электромагнитных волн содержит разные диапазоны, отличающиеся друг от друга физическими свойствами.
Как изменится частота излучения при переходе от радиоволн к гамма излучению?
Помогите пожалуйста?
предметы (объекты) излучения,
влияние на человека (вредное / полезное).
Где используется ультрофиолетовое излучение?
Где используется ультрофиолетовое излучение?
Расположите виды электромагнитных волн изучаемых солнцем в порядке возрастаниерентгеновские излученияинфракрасное излучениеультрафиолетовое излучение?
Расположите виды электромагнитных волн изучаемых солнцем в порядке возрастание
Почему видимый свет, рентгеновское излучение и радиоволны называют электромагнитным излучением?
Почему видимый свет, рентгеновское излучение и радиоволны называют электромагнитным излучением?
Как фотоны связана с электромагнетизмом?
Какое излучение, из перечислены ниже, имеет самую большую длину волны : 1)ультрафиолетовые лучи, 2)видимое излучение, 3)радиоволнах, 4)ренгеновское излучение?
Какое излучение, из перечислены ниже, имеет самую большую длину волны : 1)ультрафиолетовые лучи, 2)видимое излучение, 3)радиоволнах, 4)ренгеновское излучение.
Вы перешли к вопросу А)Волны с минимальной частотойБ)волны идущие от нагретых телв) волны обладающ ие проникающей силой1) радиоволны2)инфракрасное излучение3)видимое излучение4)ультрофиолетовое излучение5)ренгеновское изл?. Он относится к категории Физика, для 5 — 9 классов. Здесь размещен ответ по заданным параметрам. Если этот вариант ответа не полностью вас удовлетворяет, то с помощью автоматического умного поиска можно найти другие вопросы по этой же теме, в категории Физика. В случае если ответы на похожие вопросы не раскрывают в полном объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете ознакомиться с вариантами ответов пользователей.
На 74 градусов. Наверное так.
Площадь верхнего основания конуса не имеет никакого значения. Со стороны нижнего основания на стол действует сила mg, распределённая по площади Sa Единственно, надо площадь перевести в квадратные метры Sa = 4 см² = 4 / 10000 м² = 0, 0004 м² P = mg /..
Поскольку за ПЕРИОД грузик пройдет расстояние, равное четырем амплитудам : L₀ = 4 * 3 = 12 см или 0, 12 м то число колебаний : n = L / L₀ = 0, 36 / 0, 12 = 3 Ответ : 3 колебания.
Q = λ * m = 4 * 330000 = 1320000Дж или 1320 кДж.
Решение Q = m * λ Отсюда находим массу m = Q / λ = 0, 1 кг 100 грамм свинца.
V = 72 км / ч = 20 м / с ; = V² / R = 20² / 500 = 0, 8 м / с² ; N = m(g — ) = 500×(10 — 0, 8) = 4600 Н (4500, если брать g за 9. 8 м / с²).
Правильный ответ это б.
0, 3 * m1 = N * 0, 2 0, 1 * N = 0, 3 * M m1 = 2M M = 1, 2 кг.
Потому что перемещение , cкорость, ускорение — величины векторные и работать с векторами труднее чем с проекциями.
Ответ : Объяснение : Дано : S₁ = S / 4V₁ = 72 км / чS₂ = 3·S / 4V₂ = 15 м / с____________Vcp — ? Весь путь равен S. Время на первой четверти пути : t₁ = S₁ / V₁ = S / (72·4) = S / 288 чВремя на остальной части пути : t₂ = S₂ / V₂ = 3·S / (15·4) = 3..
Есть ли верхний предел у электромагнитного спектра
Самое мощное излучение генерируется огромными астрофизическими объектами, но до нас доходят сильно ослабленные фотоны. Ученые пока не знают, насколько мощными может быть природное излучение — на этот вопрос только предстоит ответить
Исторически сложилось так, что все частицы с частотами более 10 19 герц (или с энергией более 50 000 электрон-вольт) называются гамма-лучами. В теории нет жесткого предела энергии, которую может иметь гамма-луч. Однако на практике есть целый ряд фактов, которые необходимо принимать во внимание, включая как астрофизические источники излучения, так и фундаментальные физические эксперименты.
Однако для начала давайте обратимся к вопросу о наиболее высокоэнергетических гамма-лучах, обнаруженных до сих пор. Излучение с такими энергиями регистрируются при помощи наземных приборов и исходят от огромных астрофизических объектов. Примером таких источников является пара активных галактик и Крабовидная туманность: оттуда к Земле приходят волны с энергиями до 10 27 Гц (5•10 12 эВ).
Помимо этих отдельных источников, существует также мощное диффузное гамма-излучение — наиболее мощные волны имели частоту 10 24 Гц (10 9 эВ), но ожидается, что этот вид лучей может иметь частоту до 10 30 Гц (10 15 эВ). Измерять волны таких высоких энергий крайне трудно, так как фотоны такого диапазона очень редки и физикам приходится просеивать огромный массив данных, чтобы попытаться найти нужный сигнал.
Возможно, никогда не узнаем, насколько высокоэнергетичными могут быть гамма-лучи в природе. Этот вид излучения доходит до наших телескопов, но перед этим проходит через пространство, частично рассеиваясь на частицах пыли и интерферируя с другими волнами. Поэтому даже фотоны самых высоких энергий рискуют потерять значительную часть своей интенсивности в пути до Земли. Кроме того, многие источники могут производить очень высокоэнергетические гамма-лучи, которые затем поглощаются его же атомами и переизлучаются в пространство.
В результате при самых экстремальных энергиях мы будем видеть только те гамма-лучи, которые генерируются относительно близкими источниками. Тем не менее, из наблюдаемого распределения энергий гамма-лучей мы знаем, что должны быть в состоянии обнаружить волны с более высокими энергиями, чем известно на данный момент. В настоящее время разрабатывается ряд проектов, которые будут собирать гамма-лучи сверхвысокой энергии из космических источников. Только такие эксперименты позволят нам установить верхний предел электромагнитного спектра, если он существует.
Волны в физике — виды, формулы и определения с примерами
Стоя на берегу озера или пруда, вы могли наблюдать, как кольцами разбегаются волны от места, куда был брошен камень, как волны раскачивают лодку или катер. Ветер нарушает равновесие морской поверхности, кажется, что море надвигается на берег, но это не так. Не перемещаются по полю колосья, когда «волнуется» нива, они только наклоняются и опять выпрямляются. Вслед за кораблем или лодкой всегда возникает типичная картина волн.
Волновые процессы широко распространены в природе. Физические основы волновых движений различны, но все они объясняются одинаковыми законами.
Что же такое волна и каковы причины возникновения волн
Вам известно, что твердые, жидкие и газообразные тела состоят из частей, взаимодействующих между собой. Если частица тела начинает совершать колебания, то в результате взаимодействия ее с другими частицами тела это движение распространяется с определенной скоростью во всех направлениях.
Волна — процесс распространения колебаний в любой среде. Волна — это изменение состояния среды, распространяющееся в пространстве и переносящее энергию.
Наблюдения. Рассмотрим особенности распространения волн. Если рассматривать волны на поверхности воды (рис. 204), то они кажутся валами, движущимися в определенном направлении, причем расстояния между валами, или гребнями, одинаковы.
Если бросить в воду поплавок, его не будет относить волной, а он начнет совершать колебания вверх-вниз, оставаясь почти на одном месте.
При распространении волны изменяется состояние колеблющейся среды, но не перенос вещества. От брошенного камня начинает колебаться определенный участок воды, эти колебания передаются соседним участкам и постепенно распространяются во все стороны. Течение воды не возникает, перемещается только форма ее поверхности.
Опыт 1. Закрепим один конец длинного резинового шнура и легонько заставим шнур колебаться. По шнуру побежит волна (рис. 205). Чем сильнее колеблется шнур, тем больше скорость распространения волны. Волна добежит до точки крепежа, отразится и побежит в обратном направлении.
При распространении волны изменяется только форма шнура, а каждый его участок колеблется относительно своего положения равновесия, причем колебания происходят в направлении, перпендикулярном направлению распространения волны (рис. 206). Такие волны называют поперечными волнами.
Поперечные волны
Поперечные волны — это волны, в которых частицы совершают колебания в направлении, перпендикулярном направлению распространения волны.
Опыт 2. Если ударить по одному из концов длинной мягкой пружины большого диаметра, то по пружине «побежит» сжатие. Повторяя удары, можно возбудить в пружине волну, представляющую собой последовательные сжатия и растяжения пружины, «бегущие» друг за другом (рис. 207). Любой виток пружины совершает колебания вдоль направления распространения волны. Такую волну называют продольной волной.
Продольные волны
Продольные волны — это волны, в которых частицы совершают колебания вдоль направления распространения волны.
При распространении волны движение передается от одного участка тела к другому. С передачей движения связана передача энергии. Передача энергии без передачи вещества — основное свойство всех волн.
Любые волны характеризуются длиной и скоростью их распространения.
Длина волны — это расстояние между ближайшими друг к другу точками волны, колеблющимися в одинаковых фазах (рис. 208).
Длину волны обозначают греческой буквой А. (лямбда). Ее единицей является один метр (1 м).
Волны любого происхождения распространяются в пространстве не мгновенно, а с определенной скоростью. Например, можно увидеть, как чайка летит над морем будто все время над одним гребнем волны. В этом случае скорость полета чайки равна скорости распространения волны.
А как можно определить скорость распространения волны?
Вы уже знаете, что любое колебание характеризуется периодом колебаний, то есть временем, после которого колебания повторяются. Тогда можно сказать, что за один период волна распространяется на расстояние . Поэтому скорость ее распространения можно найти по формуле:
где v — скорость распространения волны (м/с); — длина волны (м); Т — период колебаний (с).
Так как период и частота связаны соотношением
Пример №1
Определите скорость распространения волны на воде, если ее длина равна 180 м, а период колебаний — 15 с.
= 180 м
Решение
По формуле определяем скорость распространения волны на воде.
v = 180 м : 15 с = 12 м/с.
Ответ: 12 м/с.
Пример №2
Каково основное свойство механической волны?
Ответ: переносить энергию.
Интерференция волн
Для волн не очень больших амплитуд справедлив принцип суперпозиции: если в точку пространства приходят волны от нескольких источников, то эти волны накладываются друг на друга. В результате такого наложения в некоторых точках пространства может наблюдаться постоянное усиление колебаний, а в некоторых — ослабление. Выясним, почему и когда это происходит. Пусть в некоторую точку M поступают две когерентные волны — волны от двух источников , колеблющихся синхронно, то есть в одинаковых фазах и с одинаковой частотой (рис. 22.6, а).
Если волны приходят в точку М в противоположных фазах (в один и тот же момент времени одна волна «толкает» точку М вверх, а вторая «толкает» ее вниз), то волны будут постоянно гасить друг друга (рис. 22.6, б). Если же волны приходят в точку М в одинаковых фазах, то в точке M будут все время наблюдаться колебания с увеличенной амплитудой (рис. 22.6, в). явление наложения волн, вследствие которого в некоторых точках пространства наблюдается устойчивое во времени усиление или ослабление результирующих колебаний, называют интерференцией.
Дифракция волн
Судно, плывущее по морю, образует на поверхности воды волну. Если на своем пути волна встретит скалу или торчащую из воды ветку, то за скалой образуется тень (то есть непосредственно за скалу волна не проникает), а за веткой тень не образуется (волна ветку огибает).
Явление огибания волнами препятствий называют дифракцией (от лат. difractus — разломанный) (рис. 22.8).
В приведенном примере дифракция волны происходит на ветке, но не происходит на скале. Но это не всегда так. Если скала достаточно удалена от берега, то на некотором расстоянии от скалы тень исчезнет — волна обогнет и скалу. Дело в том, что дифракция наблюдается в двух случаях: 1) когда линейные размеры препятствий, на которые находит волна (или размеры отверстий, сквозь которые проходит волна), сопоставимы с длиной волны; 2) когда расстояние от препятствия до места наблюдения намного больше размера препятствия.
- Распространение в пространстве колебаний вещества или поля называют волной. Механической волной называют распространение колебаний в упругой среде.
- Волна распространяется в пространстве не мгновенно, а с конечной скоростью. При распространении волны происходит перенос энергии без переноса вещества. В некоторых точках пространства вследствие наложения волн друг на друга может наблюдаться устойчивое во времени усиление или ослабление результирующих колебаний — это явление называют интерференцией. Волны могут огибать препятствия — это явление называют дифракцией.
- Волну, в которой частицы среды колеблются перпендикулярно направлению распространения волны, называют поперечной. Волну, в которой частицы среды колеблются вдоль направления распространения волны, называют продольной.
- Волна периодична во времени и пространстве. Периодичность волны во времени характеризуется периодом колебаний каждой отдельной точки волны. Периодичность волны в пространстве характеризуется длиной волны. Длина волны — это расстояние, на которое распространяется волна за время, равное периоду колебаний. Длина λ, частота ν и скорость v распространения волны связаны формулой волны: v = λν .
Звуковые волны
Звучание флейты, шум мегаполиса, шорох травы, грохот водопада, человеческая речь, музыкальный звук, шум, акустический резонанс. Все это связано с распространением в пространстве определенных механических волн, которые называют звуковыми волнами. Их изучает акустика — наука о звуке. С элементами акустики вы начали знакомиться в курсе физики 9 класса. Итак, вспоминаем и узнаем новое.
Звуковые (акустические) волны — это механические волны с частотами от 20 Гц до 20 кГц. Звуковые волны обычно доходят до уха через воздух — в виде последовательных сгущений и разрежений (то есть в воздухе звуковые волны являются продольными). В зонах сгущений (разрежений) давление воздуха незначительно больше (меньше) атмосферного (рис. 23.1).
Рис. 23.1. Человеческое ухо воспринимает звуковые волны с избыточным (звуковым) давлением примерно от 20 мкПа (0 децибелов — порог слышимости) до 20 Па (120 децибелов — болевой порог). Для сравнения =100 000 Па
Звук — механическая волна, потому все свойства волнового движения касаются и звука.
- Звук распространяется в среде с конечной скоростью, зависящей от температуры, плотности, состава и других характеристик среды. Так, в жидкостях звук распространяется быстрее, чем в газах, и медленнее, чем в твердых телах. Скорость распространения звука обычно увеличивается с увеличением температуры среды (в воздухе при температуре 0 °С скорость распространения звука составляет около 330 м/с, а при 20 °С — 340 м/с). Кроме того, чем меньше масса молекул среды, тем быстрее распространяется звук.
- Источником звука является колеблющееся тело (рис. 23.2). Такие колебания могут быть вынужденными (диффузор громкоговорителя), свободными (струна гитары), автоколебаниями (струны смычковых инструментов).
- Звук не распространяется в вакууме.
- При распространении звука не происходит переноса вещества, но происходит перенос энергии.
- Звуковые волны могут накладываться друг на друга (явление интерференции); могут огибать препятствия (явление дифракции).
Как связаны субъективные и объективные характеристики звука
Все физические величины, характеризующие механические волны (амплитуда, частота, длина, энергия), являются и характеристиками звука. Эти величины не зависят от особенностей восприятия звука человеком, поэтому их называют объективными, или физическими, характеристиками звука. Субъективные характеристики звука (громкость, высота, тембр) обусловлены особенностями слуха человека, поэтому их называют физиологическими. Понятно, что физические и физиологические характеристики звука связаны (см. таблицу).
Громкость звука определяется прежде всего амплитудой звуковой волны (звуковым давлением), однако зависит и от частоты звуковой волны. Человеческое ухо плохо воспринимает звуки низких (около 20 Гц) и высоких (около 20 кГц) частот, лучше всего — средних частот (1–3 кГц).
Громкость звука измеряют в децибелах (дБ). Так, при частоте звука 1 кГц и звуковом давлении 20 Па громкость звука составляет 120 дБ — это болевой порог звука — наиболее громкий звук, который может воспринимать человек, не чувствуя боли (звук такой громкости издает двигатель реактивного самолета).
Тембр звука определяется составом звуковой волны: кроме основной частоты (по которой мы и оцениваем высоту звука) любой звук содержит несколько более слабых и более высоких дополнительных частот — обертонов. Именно благодаря тембру мы узнаем человека по голосу, отличаем звуки фортепиано от звуков флейты и т. д. Каждый музыкальный инструмент, каждый человек или животное имеют свой тембр.
Что такое акустический резонанс
На любое тело, расположенное в пределах распространения звуковой волны, действует периодическая сила, частота которой равна частоте волны. Под действием этой силы тело начинает совершать вынужденные колебания. Если частота собственных колебаний тела сов падает с частотой звуковой волны, то амплитуда колебаний тела увеличивается и оно начинает издавать звук — наблюдается акустический резонанс.
Акустический резонанс — это явление резкого возрастания амплитуды звукового сигнала при приближении частоты сигнала-возбудителя к частоте собственных колебаний системы.
Наблюдать акустический резонанс можно с помощью опыта с двумя камертонами, имеющими одинаковую частоту (рис. 23.3).
Акустический резонанс используют для увеличения интенсивности звука, созданного некоторым источником (струной, ножками камертона, голосовыми связками и т. д.). Например, для увеличения громкости камертона его присоединяют к деревянному ящику (резонатору), собственная частота колебаний воздуха в котором равна частоте колебаний камертона. Камертон, присоединенный к резонатору, звучит гораздо громче, чем тот, который держат в руке.
Акустический резонанс используют во многих музыкальных инструментах. Воздух в трубах органа, корпусах арф, бандур, гитар и т. д. резонирует с тонами и обертонами звуков, издаваемых колеблющимися телами, и усиливает их. Полость рта — резонатор для звуковых волн, которые создаются благодаря колебаниям голосовых связок. Рис. 23.3. Если заставить звучать один из камертонов, из-за резонанса начнет звучать и второй
Звуковая волна, достигнув уха, испытывает ряд преобразований. Сначала она действует на барабанную перепонку, заставляя ее вибрировать. Чем громче звук, тем сильнее вибрирует перепонка, передавая звуковые колебания в среднее ухо, где они усиливаются.
Усиленный звук попадает во внутреннее ухо с заполненной жидкостью улиткой. Поверхность улитки покрыта волосковыми клетками, количество которых достигает 15 000. Каждая клетка резонирует с определенным диапазоном частот. Обнаружив «собственную» частоту, клетка начинает колебаться, возбуждая нервные окончания, и в мозг идет нервный импульс — человек слышит звук.
С возрастом количество волосковых клеток уменьшается (от 15 000 у ребенка до 4 тысяч у пожилого человека). Первыми погибают клетки, «отвечающие» за высокую частоту, поэтому взрослый человек не слышит высоких звуков (подросток слышит звуки до 22 кГц, пожилой человек — до 12 кГц).
Вспоминаем инфра- и ультразвук
Инфразвук (от лат. infra — ниже, под) — это механические волны, частота которых меньше 20 Гц. Инфразвуковые волны возникают во время штормов, землетрясений, цунами, извержений вулканов, вследствие ударов о берег морских волн. Некоторые существа способны воспринимать инфразвуковые волны (рис. 23.4). Источником инфразвука могут быть и объекты, созданные человеком: турбины, двигатели внутреннего сгорания и т. д. В городах наибольший уровень инфразвука около автомагистралей.
Инфразвук очень опасен для животных и человека: он может вызывать симптомы морской болезни, головокружение, потерю зрения, стать причиной повышенной агрессивности. При длительном воздействии интенсивное инфразвуковое излучение может привести к остановке сердца. При этом человек даже не понимает, что происходит, ведь он не слышит инфразвука. Механические волны, частота которых превышает 20 кГц, называют ультразвуковыми волнами (от лат. ultra — сверх, за пределами).
Ультразвук есть в шуме ветра и водопада, в звуках, которые издают некоторые живые существа. Установлено, что ультразвук до 100 кГц воспринимают многие насекомые и грызуны; улавливают его и собаки.
Слабый ультразвук — основа ультразвуковой локации — определения расположения и характера движения объекта с помощью ультразвука. Так, летучие мыши и дельфины, излучая ультразвук и воспринимая его эхо, могут даже в полной темноте найти дорогу или поймать добычу. Ультразвуковое исследование позволяет «увидеть» еще не родившегося младенца, исследовать состояние внутренних органов, выявить инородные тела в тканях. Ультразвуковую локацию применяют также на морских судах — для выявления объектов в воде (сонары) и исследования рельефа морского дна (эхолоты); в металлургии — для выявления и установления размеров дефектов в изделиях (дефектоскопы).
Мощный ультразвук применяют в технике (обработка прочных материалов, сварка, очистка поверхностей от загрязнений); медицине (измельчение камней в организме, что позволяет избежать хирургических операций); пищевой промышленности (изготовление сыров, соусов); косметологии (изготовление кремов, зубной пасты).
- Механические волны с частотами 20 Гц — 20 кГц называют звуковыми волнами (звуком). Субъективные характеристики звука: высота звука (определяется частотой звуковой волны); громкость звука (определяется амплитудой и частотой звуковой волны); тембр звука (определяется спектром звуковой волны).
- Явление резкого возрастания амплитуды звукового сигнала в случае приближения частоты сигнала-возбудителя к частоте собственных колебаний системы называют акустическим резонансом. Акустические резонаторы имеют почти все музыкальные инструменты.
- Механические волны, частота которых меньше 20 Гц, называют инфразвуковыми волнами (инфразвук). Механические волны, частота которых превышает 20 кГц, называют ультразвуковыми волнами (ультразвук).
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.