Немного об основах схемотехники светодиодных ламп
Судя по комментариям, многих людей интересуют не только параметры светодиодных ламп, но и теория их внутреннего устройства. Потому я решил немного поговорить об основах схемотехнических решений, чаще всего применяемых в этой области.
Итак, ядром и главным компонентом светодиодной лампочки является светодиод. С точки зрения схемотехники светоизлучающие диоды ничем не отличаются от любых других, разве только тем, что в смысле применения их как собственно диодов они обладают ужасными параметрами – очень маленьким допустимым обратным напряжением, относительно большой емкостью перехода, огромным рабочим падением напряжения (порядка 3.5 В для белых светодиодов – например, для выпрямительного диода это был бы кошмар) и т.д.
Однако мы понимаем, что главная ценность светодиодов для человечества состоит в том, что они светятся, причем порой достаточно ярко. Чтобы светодиод светился долго и счастливо, ему необходимо два условия: стабильный ток через него и хороший теплоотвод от него. Качество теплоотвода обеспечивается различными конструкционными методами, потому сейчас мы не будем останавливаться на этом вопросе. Поговорим о том, зачем и как современное человечество достигает первой цели – стабильного тока.
Понятное дело, что для освещения более всего интересны белые светодиоды. Делаются они на основе кристалла, излучающего синий свет, залитого люминофором, переизлучающим часть энергии в желто-зеленой области. На заглавной картинке хорошо видно, что токоведущие проволочки уходят в нечто желтое — это и есть люминофор; кристалл расположен под ним. На типичном спектре белого светодиода хорошо виден синий пик:
Спектры светодиодов с разными цветовыми температурами: 5000K (синий), 3700K (зеленый), 2600K (красный). Подробнее тут.
Мы уже разобрались, что в схемотехническом смысле светодиод отличается от любого другого диода только значениями параметров. Здесь надо сказать, что прибор это принципиально нелинейный; то есть, знакомому со школы закону Ома он совершенно не подчиняется. Зависимость тока от приложенного напряжения на таких устройствах описывается т.н. вольт-амперной характеристикой (ВАХ), причем для диода она носит экспоненциальный характер. Из этого следует, что самое незначительное изменение приложенного напряжения приводит к огромному изменению тока, но и это еще не все – при изменении температуры (а также старении) ВАХ смещается. Кроме этого, положение ВАХ слегка разное для разных диодов. Оговорю отдельно – не только для каждого типа, но для каждого экземпляра, даже из одной партии. По этой причине распределение тока через диоды, включенные параллельно, обязательно будет неравномерным, что не может хорошо сказаться на долговечности конструкции. При изготовлении матриц стараются либо использовать последовательное включение, что решает проблему в корне, либо выбирать диоды с примерно одинаковым прямым падением напряжения. Чтобы облегчить задачу, производители обычно указывают так называемый «бин» — код выборки по параметрам (по напряжению в том числе), в которую попадает конкретный экземпляр.
ВАХ белого светодиода.
Соответственно, чтобы все работало хорошо, светодиод необходимо подключать к устройству, которое вне зависимости от внешних факторов будет с высокой точностью автоматически подбирать такое напряжение, при котором в цепи протекает заданный ток (например, 350 мА для одноваттных светодиодов), причем контролировать процесс непрерывно. Вообще, такое устройство называется источником тока, но в случае светодиодов в наши дни модно употреблять заморское слово «драйвер». В целом, драйвером часто называют решения, главным образом предназначенные для работы в конкретном применении – например, «драйвер MOSFET» — микросхема, предназначенная для управления конкретно мощными полевыми транзисторами, «драйвер семисегментного индикатора» — решение для управления конкретно семисегментниками, и т.д. То есть, называя источник тока драйвером светодиодов, люди намекают, что этот источник тока по задумке предназначен именно для работы со светодиодами. Например, он может иметь специфичные функции – что-нибудь в духе наличия светового интерфейса DMX-512, определения обрыва и короткого замыкания на выходе (а обычный источник тока, вообще, должен без проблем работать и на короткое замыкание), и т.п. Тем не менее, понятия часто путают, и, например, называют драйвером самый обычный адаптер (источник напряжения!) для светодиодных лент.
Кроме того, устройства, предназначенные для задания режима осветительного прибора, часто называют балластом.
Итак, источники тока. Самым простым источником тока может быть сопротивление, включенное последовательно со светодиодом. Так делают при малых мощностях (где-то до полуватта), например, в тех же светодиодных лентах. С увеличением мощности потери на резисторе становятся слишком велики, а требования к стабильности тока повышаются, и потому возникает необходимость в более продвинутых устройствах, поэтичный образ которых я нарисовал выше. Все они строятся по одинаковой идеологии – в них имеется регулирующий элемент, контролируемый обратной связью по току.
Стабилизаторы тока разделяются на два типа – линейные и импульсные. Линейные схемы – родственники резистора (сам резистор и его аналоги также относятся к этому классу). Особого выигрыша в КПД они обычно не дают, зато повышают качество стабилизации тока. Импульсные схемы являют собой наилучшее решение, однако они сложнее и дороже.
Давайте теперь кратко пробежимся по тому, что в наши дни можно увидеть внутри светодиодных ламп или рядом с ними.
1. Конденсаторный балласт
Конденсаторный балласт являет собой развитие идеи насчет включения сопротивления последовательно со светодиодом. В принципе, светодиод можно подключить в розетку прямо так:
Встречновключенный диод необходим для того, чтобы не допустить пробоя светодиода в момент, когда сетевое напряжение сменит полярность – я уже упоминал, что светодиодов с допустимым обратным напряжением в сотни вольт не встречается. В принципе, вместо обратного диода можно поставить еще один светодиод.
Номинал резистора в схеме выше рассчитан для тока светодиода около 10 – 15 мА. Поскольку напряжение сети гораздо больше падения на диодах, последнее можно не учитывать и считать прямо по закону Ома: 220/20000
11 мА. Можно подставить пиковое значение (311 В) и убедиться, что даже в предельном случае ток диода не превысит 20 мА. Все выходит замечательно, кроме того, что на резисторе будет рассеиваться мощность около 2.5 Вт, а на светодиоде – около 40 мВт. Таким образом, КПД системы составляет порядка 1.5% (в случае одного светодиода будет еще меньше).
Идея рассматриваемого метода заключается в том, чтобы заменить резистор конденсатором, ведь известно, что в цепях переменного тока реактивные элементы обладают способностью ограничивать ток. Кстати, использовать дроссель тоже можно, более того, так делают в классических электромагнитных балластах для люминесцентных ламп.
Считая по формуле из учебника, легко получить, что в нашем случае требуется конденсатор емкостью 0.2 мкФ, либо катушка индуктивностью около 60 Гн. Здесь становится ясно, почему в подобных балластах светодиодных ламп никогда не встречаются дроссели – катушка такой индуктивности представляет собой серьезное и дорогое сооружение, а вот конденсатор на 0.2 мкФ добыть гораздо проще. Разумеется, он должен быть рассчитан на пиковое сетевое напряжение, причем лучше с запасом. На практике применяются конденсаторы с рабочим напряжением не менее 400 В. Немного дополнив схему, получаем то, что уже видели в предыдущей статье.
«Микрофарад» сокращется именно как «мкФ». Я останавливаюсь на этом потому, что достаточно часто вижу людей, пишущих в этом контексте «мФ», в то время как последнее — сокращение от «миллифарад», то есть 1000 мкФ. По-английски «микрофарад», опять же, пишется отнюдь не как «mkF», но, напротив, «uF». Это потому, что буква «u» напоминает букву «μ» с оторванным хвостиком.
Итак, 1 Ф/F = 1000 мФ/mF = 1000000 мкФ/uF/μF, и никак иначе!
Кроме того, «Фарад» — мужского рода, так как назван в честь великого физика-мужчины. Так что, «четыре микрофарада», но не «четыре микрофарады»!
Как я уже говорил, преимущество у такого балласта только одно – простота и дешевизна. Подобно балласту с резистором, здесь обеспечивается не слишком хорошая стабилизация тока, и, что еще хуже, присутствует значительная реактивная составляющая, что не особо хорошо для сети (особенно при заметных мощностях). Кроме того, при увеличении желаемого тока будет расти необходимая емкость конденсатора. Например, если мы хотим включить одноваттный светодиод, работающий при токе 350 мА, нам потребуется конденсатор емкостью около 5 мкФ, рассчитанный на напряжение 400 В. Это уже дороже, больше по габаритам и сложнее в конструкционном плане. С подавлением пульсаций здесь тоже все непросто. В целом можно сказать, что конденсаторный балласт простителен только для небольших ламп-маячков, не более того.
2. Бестрансформаторная понижающая топология
Это схемотехническое решение относится к семейству бестрансформаторных преобразователей, включающему в себя понижающую, повышающую и инвертирующую топологии. Кроме того, к бестрансформаторным преобразователям также относится SEPIC, преобразователь Чука и другая экзотика, вроде переключаемых конденсаторов. В принципе, драйвер светодиодов можно построить на основе любой из них, однако на практике в этом качестве они встречаются гораздо реже (хотя повышающая топология применяется, например, во многих фонариках).
Один из вариантов драйвера на основе бестрансформаторной понижающей топологии приведен на рисунке ниже.
В живой природе такое включение можно наблюдать на примере ZXLD1474 или варианта включения ZXSC310 (которая в исходной схеме включения, кстати, как раз повышающий преобразователь).
Здесь светодиод включается последовательно с катушкой. Схема управления отслеживает ток с помошью измерительного резистора R1 и управляет ключом T1. Если ток через светодиод падает ниже заданного минимума, транзистор открывается, и катушка с включенным последовательно с ней светодиодом оказывается подключенной к источнику питания. Ток в катушке начинает линейно нарастать (красный участок на графике), диод D1 в это время заперт. Как только схема управления регистрирует достижение током заданного максимума, ключ закрывается. В соответствии с первым законом коммутации катушка стремится поддержать ток в цепи за счет энергии, накопленной в магнитном поле. В этот момент ток протекает через диод D1. Энергия поля катушки расходуется, сила тока линейно убывает (зеленый участок на графике). Когда ток падает ниже заданного минимума, схема управления регистрирует это и снова открывает транзистор, подкачивая энергию в систему – процесс повторяется. Таким образом, ток поддерживается в заданных пределах.
Отличительная особенность понижающей топологии – возможность сделать пульсации светового потока сколь угодно малыми, поскольку в таком включении ток через светодиод никогда не прерывается. Путь приближения к идеалу лежит через увеличение индуктивности и повышение частоты коммутации (сегодня существуют преобразователи с рабочими частотами до нескольких мегагерц).
На основе такой топологии был сделан драйвер лампы Gauss, рассмотренной в предыдущей статье.
Недостатком метода является отсутствие гальванической развязки – когда транзистор открыт, схема оказывается напрямую соединенной с источником напряжения, в случае сетевых светодиодных ламп – с сетью, что может быть небезопасно.
3. Обратноходовый преобразователь
Несмотря на то, что обратноходовый преобразователь содержит нечто, похожее на трансформатор, в данном случае эту деталь правильнее называть двухобмоточным дросселем, поскольку ток никогда не течет через обе обмотки одновременно. В действительности по принципу действия обратноходовый преобразователь похож на бестрансформаторные топологии. Когда T1 открыт, ток в первичной обмотке нарастает, энергия в запасается в магнитном поле; при этом полярность включения вторичной обмотки сознательно подбирается такой, чтобы диод D3 на этом этапе был закрыт и тока на вторичной стороне не текло. Ток нагрузки в этот момент поддерживает конденсатор С1. Когда T1 закрывается, полярность напряжения на вторичной обмотке становится обратной (поскольку производная тока в первичной обмотке меняет знак), D3 открывается и накопленная энергия передается на вторичную сторону. В смысле стабилизации тока все то же самое – схема управления анализирует падение напряжения на резисторе R1 и подстраивает временные параметры так, чтобы ток через светодиоды оставался постоянным. Чаще всего обратноходовый преобразователь применяется при мощностях не более 50 Вт; далее он перестает быть целесообразным из-за возрастающих потерь и необходимых габаритов трансформатора-дросселя.
Надо сказать, что существуют варианты обратноходовых драйверов без оптоизолятора (например). Они полагаются на тот факт, что токи первичной и вторичной обмоток связаны, и при определенных оговорках можно ограничиться анализом тока первичной обмотки (или, чаще, отдельной вспомогательной обмотки) – это позволяет сэкономить на деталях и, соответственно, удешевить решение.
Обратноходовый преобразователь хорош тем, что он, во-первых, обеспечивает изоляцию вторичной части от сети (выше безопасность), а, во-вторых, позволяет относительно легко и дешево изготавливать лампы, совместимые со стандартными диммерами для ламп накаливания, а также устраивать коррекцию коэффициента мощности.
Немного о пульсациях
Как уже было упомянуто, импульсные источники работают на достаточно высоких частотах (на практике – от 30 кГц, чаще около 100 кГц). Потому ясно, что сам по себе исправный драйвер не может быть источником большого коэффициента пульсаций – прежде всего потому, что на частотах выше 300 Гц этот параметр просто не нормируется, ну и, кроме того, высокочастотные пульсации в любом случае достаточно легко отфильтровать. Проблема заключается в сетевом напряжении.
Дело в том, что, разумеется, все перечисленные выше схемы (кроме схемы с гасящим конденсатором) работают от постоянного напряжения. Потому на входе любого электронного балласта прежде всего стоит выпрямитель и накопительный конденсатор. Предназначением последнего является питать балласт в те моменты, когда сетевое напряжение уходит ниже порога работы схемы. И здесь, увы, необходим компромисс – высоковольтные электролитические конденсаторы большой емкости, во-первых, стоят денег, а, во-вторых, занимают драгоценное место в корпусе лампы. Здесь же коренится причина проблем с коэффициентом мощности. Описанная схема с выпрямителем имеет неравномерное потребление тока. Это приводит к возникновению высших гармоник оного, что и является причиной ухудшения интересующего нас параметра. Причем чем лучше мы будем пытаться отфильтровать напряжение на входе балласта, тем более низкий коэффициент мощности мы получим, если не предпринимать отдельных усилий. Этим объясняется тот факт, что почти все лампы с низким коэффициентом пульсаций, которые мы видели, показывают очень посредственный коэффициент мощности, и наоборот (разумеется, введение активного корректора коэффициента мощности скажется на цене, потому на нем пока что предпочитают экономить).
Пожалуй это все, что в первом приближении можно сказать на тему электроники светодиодных ламп. Надеюсь, что этой статьей я в какой-то мере ответил на все вопросы схемотехнического толка, которые были заданы мне в комментариях и личных сообщениях.
Продление срока службы светодиодных ламп. Понижение тока/ремонт
Наткнулся на статейку. тк заколебался уже лампы покупать. оставлю тут.
Как правило, в светодиодных лампах сильно завышен рабочий ток светодиодов, в связи с чем светодиоды деградируют и выходят через год — два из строя. Часть ламп после ремонта и понижения тока на 15-20% работают долго, но часть выходит из строя повторно, так как светодиоды сильно деградировали, и можно понижать ток сразу на 40-50%. Световой поток от светодиода при уменьшении с предельного тока до номинального падает не в 2, а в 1.5 раза, а значит яркость лампы не уменьшится в 2 раза.
В лампах ECO-C37 3.5Вт 4000K E14 на 220В/50Гц 1244 с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 0,62мкф (624 надпись и 400
) применяются кругляш S5-C37 3030 4-27,8мм с последовательно включенными 4 светодиодами на 15.8В, 55мА 0,87W, в итоге 63В, 3,5W. Нужно уменьшить ёмкость понижающего конденсатора до 0,47 мкф (474) и рабочим напряжение 400
соответственно. Таким образом рабочий ток 4-х светодиодов упадёт с 55 мА до 42 мА, напряжение с 63 до 58 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 27%.
В лампах 5.4W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,3мкф (135 надпись и 400
) применяются последовательных 10 светодиодов на 6В, 90мА 0,54W, в итоге 60В, 5,4W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400
соответственно. Таким образом рабочий ток 10-ти светодиодов упадёт с 90 мА до 60 мА, напряжение с 60 до 56 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 30%.
В лампах Ecola A50 LED 7W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,1мкф (115 надпись и 400
) применяются последовательных 40 светодиодов на 3В, 57мА 0,54W, в итоге 120В, 6,6W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400
соответственно. Таким образом рабочий ток 40-ти светодиодов упадёт с 57 мА до 52 мА, напряжение с 120 до 114 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 10%.
В лампах 3.5W Feron LB-40 E27 2700K на AC
220-240V на основе драйвера микросхемы BP3122 (8 ног) и трансформатора 12x12x10мм применяются 6 последовательно (3 планки)-параллельно (по 2 светодиода на планке) включенных светодиодов на 3.13В 85мА, 0,3W. На светодиоды идёт 9.4В, 170мА, 1.6W. Для понижения тока нужно увеличить резистор c 1 на 2 ногу CS (BP3122) с 2.2 ома до 2.7 ома путём замены или допайки последовательно R50 — 0.5 омного резистора. Мощность снизится на 19%. Рабочее напряжение на светодиодах снизится до 9 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,21W. На плате светодиодов надпись 3WG45B.
В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 10 последовательно (по 5 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,1В 90мА, 0,3W. На каждой планке стоят 2 светодиода из разных групп. На 2 группы светодиодов идёт 15,4В, 180мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 2.2 ома до 3.2 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 32%. Рабочее напряжение на группах светодиодов снизится до 15,2 Вольта, ток до 120мА, соответственно для одного светодиода 3,0В, 60мА, 0,2W. На плате светодиодов надпись BL-5650.
В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 8 последовательно (по 4 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,2В 110мА, 0,35W. На каждой планке стоят 2 светодиода из одной группы. На 2 группы светодиодов идёт 12,8В, 220мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 1.8 ома до 2.8 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 36%. Рабочее напряжение на группах светодиодов снизится до 12,2 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,2W.
В лампах 9W E27 4000K на AC 220V на основе стабилизатора тока — микросхемы BP2832 2832 (8 ног) применяется круг A60-2835-26 из 2 параллельных линеек по 13 последовательно включенных светодиодов, на 6,15В 57мА, 0.35W. На все светодиоды идёт 80В, 114мА, 9W. Для понижения тока нужно увеличить резистор 1R65 до 1R8 или 2R0 ома путём замены (я поставил параллельно 2 и 22 ома, итогом 1,8 Ома). Мощность снизится на 9-18%, до 8W-7.5W. Рабочее напряжение на группах светодиодов снизится до 78 Вольт, ток до 52-47мА, соответственно для одного светодиода 6В, 52-47мА, 0,31-0,28W.
В лампах 10W E27 4200K на AC 230V FLL-A60-9-230-4K-E27 на основе стабилизатора тока — микросхемы BP9916C 9916C (8 ног) применяется круг A60-2835-1W-10C из 10 последовательно включенных светодиодов, на 8,9В 90мА, 0.8W. На все светодиоды идёт 89В, 90мА, 8W. Для понижения тока нужно увеличить параллельно включенные резисторы 5R9 и 6R8 ом, до 5R9+2R2 и 6R8 — с вычисленного 3.15 ома до 3.7 ома путём замены или допайки последовательно с 5,9 омным ещё 2,2 омного резистора. Мощность снизится на 17%, до 7W. Рабочее напряжение на группах светодиодов снизится до 87,6 Вольт, ток до 79мА, соответственно для одного светодиода 8,76В, 79мА, 0,7W.
В лампах 11W на AC 220V на основе стабилизатора тока — микросхемы BP9918C 9918C (3 ноги) применяются 18 последовательно включенных светодиодов, на 11В 55мА, 0,6W. На все светодиоды идёт 200В, 55мА, 11W. Для понижения тока нужно увеличить параллельно включенные резисторы 10 и 12 ом, до 20 и 12 ом (средняя нога CS BP9918C) — с вычисленного 5.5 ома до 7.5 ома путём замены или допайки последовательно с 10 омным ещё 10 омного резистора. Мощность снизится на 28%, до 8W. Рабочее напряжение на группах светодиодов снизится до 180 Вольт, ток до 44мА, соответственно для одного светодиода 10В, 44мА, 0,44W.
В лампах 12W на 220В 50Гц, 4000K E27 на основе стабилизатора тока — микросхемы BP2833A 2833A (8 ноги) на плате L2029-03-40 распаяны 23 последовательно включенных светодиода, на 3,2В 162мА, 0,52W. На все светодиоды идёт 73,6В, 162мА, 12W. Для понижения тока нужно увеличить параллельно включенные резисторы 2R10 и 2R70 ом, до 2R10 и 3R2 ом (8 нога BP2833A) — с вычисленного 1.18 ома до 1.26 ома путём замены. Мощность снизится на 8%, до 11W. Рабочее напряжение на группах светодиодов снизится до 73 Вольт, ток до 150мА, соответственно для одного светодиода 3.17В, 150мА, 0,47W.
В лампах Космос AC 220V 3W на основе стабилизатора тока 200ма — микросхемы BP2812 (8 ног) (плата GL-0AC5W_V2.0) применяются 10 последовательно включенных светодиодов, на 30.7В 90мА, 2.8W, плата T2-P45-3W. От лабораторного БП ставлю 31.5В и эти светодиоды жрут 50ма и светят слабее, что говорит о нестандартном. В схеме же осциллографом форма напряжения 31 В ровная, а до зеленого дросселя пульсации.
В лампах с али 15W Warm White 220V RoHS на основе стабилизатора тока 2 микросхемы MBI1802 (плата D44-22P-01 3611E) применяются 22 последовательно включенных светодиода, разорванных на 16 и 6 штук микросхемами. На светодиодах 38V и 109V постоянки соответственно, ток 57мА, 8.5W, в середине на U1 и U2 микросхемах 43V, всего 190V. На одном светодиоде 6.7V, 0.38W. От сети было потребление
230V, 62мА на переменке. Внимание, эта лампа на фотоаппарате сильно мерцает! Обязательно паяем конденсатор от 4.7 uF до 10 uF на 400V после диодного моста и для кондёра есть много места в цоколе. После впайки кондёра ток возрастает до 92мА и светодиоды сгорят за 5 сек. Для уменьшения тока нужно на микросхемах 1802 вместо R1 и R2 по 13 Ом впаять два резистора по 15 Ом (ток упадёт до 50мА), если хай себе мерцает и не паять кондёр, или по 23 Ома (можно резюки стоя допаять последовательно в длину два по 10 Ом) (ток упадёт до 52мА), если паять кондёр.
В лампах Ming & Ben 18W 6500K 220V-240V 50/60H RoHS на основе 2-х стабилизаторов тока — 2-е микросхемы JZ1009AE (8 ног) (плата D49-18P-01 29045B 2019-D, если хотите посмотреть аналог, гуглите D44-22P-01) применяются 18 светодиодов из 6-ти последовательных секций по 3 параллельных светодиода на 162В 110мА, 18W (В схеме можно померить только импульсное напряжение после диодного моста 200В, и напряжение в разрыв цепи светодиодов 50В, а на каждой секции светодиодов 27В), соответственно для одного светодиода 27В, 37мА, 0,99W. Для понижения тока нужно увеличить 2 резистора R1 и R2 с 10 Ом до 15 Ом (между 1 ногой и 2-4 ногами JZ1009AE) — путём замены или добавить резисторы 5,1 Ома последовательно. Мощность снизится на 33%, до 12W. Рабочее напряжение на 1 секции светодиодов снизится до 26,5 Вольт, ток до 74мА, соответственно для одного светодиода 26,5В, 24,6мА, 0,66W. Для справки, лампа потребляла от
220V 81мА 18W до переделки и 54мА 12W после. В этих лампах нет конденсатора, поэтому они мерцают.
В лампах Космос basic A65 E27 25Вт 4500K 220В/50Гц 0,100A модель LED25wA65E2745 световой поток 2100 лм срок службы 25000 ч на основе стабилизатора тока — микросхемы HA5836AE (8 ног) (плата N018082 V1.1) применяются 22 светодиода (11 последовательных секций по 2 светодиода в параллель) на 99В 176мА, 17W, плата A65Y 2P11S N018080A (и N018082). Для понижения тока нужно увеличить резистор 1R07 ом, до 1R30 (между 7,8 ногой и 1 ногой HA5836AE) — с 1,07 ома до 1.3 ома путём замены на 1R3 или на 1R0 и 0R3 ома. Мощность снизится на 19%, до 14W. Рабочее напряжение на секциях светодиодов снизится до 98 Вольт, ток до 146мА, соответственно для одного светодиода 8,9В, 146мА, 1,3W. Для справки, лампа потребляла от
220V 105мА 23W до переделки и 70мА 15W после.
Нужно понимать, что если «всеволишь» в одной из секций из трёх параллельных светодиодов вышел из строя «всеволишь» один светодиод, то через два оставшихся потекёт ток как через три и нужно понизить ток в 1,5 раза (чтобы было как раньше), а чтобы понизить — нужно в 2,2 раза, или же сначала сгорит более слабый один из двух, а сразу за ним и третий, потому что через него потечёт весь ток. Производители ламп делают гарантированно умирающие максимально неремонтнопригодные схемы.
В светильнике VARTON EB40-095-0-280-2180 213L — там 4 полоски VARTON EB 18-222-1-12 9W DC27V DW — формат 9 пар = 18 светодиодов = 4×18=72 светодиода, плата JBT-IW0401-006 REV 2.1 20130715, чип IW3623-00, конденсаторы 33uFx450V и 50v220uF x 2шт, трансформаторы JBT-IW0401-29V, JBT-IW0401-EE16, дроссель UU9.8-40mH, транзисторы D13007, X13001, 7N65A, спаренный диод SFF1004. На светодиодные ленты шло 28.7В 1.14А, 32.7 Ватта. Соответственно на один светодиод 3.2В, 142мА, 0.45Вт. Для понижения тока нужно снять R36 — 3.6 Ома (стоит в параллель 4 штуки R25 R34 R26 R36 — 3R30, 3R60, 3R30, 3R60) — ток упадёт до 0.86А, вольтаж до 27.7В, мощность до 23,8 Вт, а яркость упадёт на 27%. Если же к R25 допаять последовательно 2R2 — 2 шт, то ток упадёт до 0.98А, вольтаж до 28.1В, мощность до 27,5Вт, а яркость на 16%. При ремонте светильника был найден высохший C16 47uFx25V, симптомы поломки через 7 лет работы — постепенно увеличивающаяся задержка перед свечением, потом совсем перестал включаться.
В уличном фонаре СТАРТ LED FL20W42 20 Вт IP65 плата YDZ220 14LED корпус YTZ-3.1-00017 SL-A-2-1 применяются две микросхемы RM9001E с резисторами RS1 и RS4 по 22 Ома — увеличиваем каждый до 33 или даже до 44 Ом — мощность упадёт до 15 или даже до 10 Вт — фонарь будет работать долго. В фонаре на этой микросхеме нет конденсатора, поэтому он мерцает.
Также, в лампах с массивным алюминиевым радиатором между ним и кругляшом светодиодов часто отсутствует белая теплопроводящая паста КПТ-8, желательно её нанести.
Если не опасно и есть возможность разобрать лампу — то желательно снять пластиковый или стеклянный стакан — стекло греть путем включения лампы )) — то это даст дополнительное охлаждение, а с исчезновением пластика немного повысит световой поток, но даст синеватый оттенок и точечные источники света будут слепить глаза при попадании лампы в зрительную область.
Если есть возможность намного более качественно улучшить охлаждение лампы путём установки горизонтально, в всегда холодном месте или путём разбора на составляющие и при разносе греющихся компонентов или установке их на массивные радиаторы, то можно снижать потребление лампы не на 30%, а на 10-15%. На заводе срок действия лампы точно посчитан на уровне 1 года — дешевые, 2 года — средние, 3 года — дорогие, поэтому важно сделать чтобы не ярко светило, а долго. Для яркости просто ставьте больше ламп. Если не снижать рабочий ток, то через время деградируют и светодиоды, и конденсаторы.
Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь
На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.
Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.
Всё описанное ниже справедливо и для светильников и для ламп.
Содержание статьи
Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер
В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:
1. Отсутствие стабилизации по напряжению или току.
2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.
Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.
Схема светодиодной лампы с гасящим конденсатором:
А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» — это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:
Импульсные драйвера для светодиодов
В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.
Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.
Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:
1. Бестрансформаторный, соответственно без гальванической развязки.
2. Трансформаторный – с гальванической развязкой.
Гальваническая развязка – это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.
Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.
Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.
Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.
В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.
Во втором – выгорит предохранитель или дорожка печатной платы.
Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.
Защита светодиодных ламп: схемы и способы
Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:
1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.
2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.
3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.
Варистор для защиты ламп и другой бытовой техники
Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.
Внешний вид варисторов
Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;
Um — максимально допустимое действующее переменное напряжение (среднеквадратичное);
Um= — максимально допустимое постоянное напряжение;
Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;
W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.
Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;
Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.
Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.
Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.
Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим – защита не будет эффективной.
Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые УЗИП.
Вот схема его подключения для трёхфазной сети, для однофазной – аналогично.
Эти схемы с использованием дифавтомата и защитой от высокого потенциала на одном или двух проводах однофазной цепи не менее интересны.
Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.
Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.
В этом видео ролике автор интересно рассказывает о таком способе защиты.
Готовые решения
Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.
На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.
Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.
Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.
Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).
Внутри расположено три детали, одну из которых мы рассмотрели выше:
Вот принципиальная схема. Вы можете её повторить.
Заключение
Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.
Профессиональное развитие начинается здесь: Телеграмм канал Домашняя электрика
Стабилизаторы напряжения для светодиодных ламп
В основном все светодиодные лампы Китайского производства и как известно горят они в несколько раз меньший срок чем заявленный Китайцами. Все из за того, что эти ребята как и все продавцы мира хотят больше заработать и специально делают лампы которые рассчитаны на 12В о чем они открыто сообщают. Но они никак не отмечают тот факт, что в автомобиле напряжение 12В бывает только в заглушенном состоянии да ито при хорошо заряженном аккумуляторе доходит до 12,8В. При заведенном двигателе и рабочем генераторе напряжение становится еще выше, в плоть до 14,4-14,8В. В новых автомобилях в нафаршированной комплектации встречается и выше 15В. Из за чего "наши" Китайские лампы работают с большой перегрузкой, сильно греются но зато горят чуть ярче. Это конечно же вредит кристаллам диодов которые просто напросто выгорают. Лампы в виде "кукурузы" начинают мигать или вовсе не горят.
У меня напряжение при заведенной машине колеблется от 14,1В до 14,6В, поэтому и мои лампы работают меньше положенного срока. Чтобы решить проблему с их скоротечным перегораниям я решил собрать и поставить в систему стабилизаторы тока. Покупать я посчитал не разумно из за дороговатой стоимости. Порыскал по интернетам другие решения и вот собрал сам стабилизаторы. Пока что поставил только на задние стоп сигналы и лампы задней скорости, всего 4шт.
Суть в них в том чтобы стабилизироваться входящее напряжение, которое бывает постоянно разное от 12В до 15В в постоянное напряжение 12В.
Для стабилизатора понадобилось
— Транзистор L7812
— Конденсатор 330мкФ/16В
— Конденсатор 100мкФ/16В
— Диод 1N4007
— Радиатор 1PIN
— Термопаста
— Термоусадка