Физический смысл диэлектрической проницаемости вещества. Условия на границе раздела диэлектриков с различной диэлектрической проницаемостью.
ε — безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды). Величина ε показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.
увеличивает электроёмкость за счёт физических свойств вещества-изолятора
Нормальная составляющая вектора напряженности Е на границе двух диэлектриков скачкообразно изменяется обратно пропорционально относительным проницаемостям этих сред: Е1/Е2=е1/е2
Нормальная составляющая вектора электрического смещения D не изменяется при переходе границы.
Тангенциальная составляющая вектора Е не изменяется при переходе границы.
Тангенциальная составляющая вектора D на границе двух диэлектриков скачкообразно изменяется прямо пропорционально относительным проницаемостям этих сред.
Поле вектора D наглядно можно изобразить с помощью линий этого вектора. Линии вектора E начинаются и заканчиваются как на свободных, так и на связанных зарядах. Источниками и стоками поля вектора D являются только свободные заряды: только на них могут начинаться и заканчиваться линии этого вектора. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.
линии поля вектора E
9 Пьезоэлектрики, сегнетозлектрики, пироэлектрики, электреты — свойства и применения.
Пьезоэлектрики— кристаллические вещества, в которых при сжатии или растяжении в определённых направлениях возникает электрическая поляризация даже в отсутствии поля.
Если же кварцевую пластинку сжать в направлении, перпендикулярном первоначальному, то возникает поперечный пьезоэффект, т.е. полярность зарядов на гранях пластинки изменится на обратную, соответственно изменяется и направление вектора напряженности электрического поля.
Пьезоэффектобратим, т.е. если на гранях кварца создать разноименные заряды, то он либо сжимается, либо растягивался в зависимости от их полярности (обратный пьезоэффект).
Деформация диэлектрика зависит линейно от напряженности Е внешнего электрического поля.
Пироэлектрики
С пьезоэлектрическими свойствами веществ тесно связаны их пироэлектрические свойства. В кристалле при нагревании возникают внутренние напряжения, вызванные температурными градиентами. В результате на поверхности кристалла появляются электрические заряды.
Природа пироэлектричества была открыта в 1756 г. на кристаллах турмалина и объяснена русским академиком Эпинусом, который впервые объяснил и поляризацию
Пироэлектрики используютсяв технике в качестве индикаторов и приёмников излучений.
Сегнетоэлектрики – кристаллические, диэлектрики, обладающие в определённом интервале температур спонтанной (самопроизвольной) поляризацией, которая существенно изменяется под влиянием внешних воздействий. Впервые явление было обнаружено у сегнетовой соли и было названо сегнетоэлектричеством.
Сегнетоэлектрический эффект наблюдается только в определенном интервале температур. Сегнетова соль, например, сегнетоэлектрик при температурах от
–18° до +24°С, титанат бария — при температуре ниже 125°С. Эта температура называетс сегнтоэлектрической точкой Кюри (qс). При t > qс сегнетоэлектрик превращается в обычный диэлектрик.
Электреты – диэлектрики, длительно сохраняющие поляризованное состояние после снятия внешнего воздействия, вызвавшего поляризацию, и создающие электрическое поле в окружающем
Электреты применяют как источники постоянного электрического поля (электретные микрофоны и телефоны, вибродатчики, генераторы слабых сигналов, электрометры, электростатические вольтметры
10 Энергия электрического поля, ее объемная плотность.
Энергия заряженного конденсатора
локализована в его электрическом поле.
Для плоского конденсатора
Объёмная плотность энергии электрического поля равна
Объемная плотность энергии электричес- кого поля при наличии диэлектрика в e раз больше, чем при отсутствии диэлек- трика.
— соответствует объемной плотности энергии поля в вакууме.
— связано с дополнительной объем- ной плотностью энергии, расходуемой на поляризацию диэлектрика Формула объемной плотности энергии поля справедлива не только для однородного поля, но и для любого не однородного поля, изменяющегося во времени. Тогда энергию неоднородного поля можно найти интегрированием по объему, занимаемым полем.
11) Постоянный электрический ток — его характеристики и условия существования. Уравнение непрерывности
Постоя́нный ток — электрический ток, который с течением времени не изменяется по величине и направлению
Хар-ка :
· Сила тока — это количество электричества Q, протекающее через поперечное сечение проводника в единицу времени.
· Плотность тока — это отношение силы тока I к площади поперечного сечения S проводника δ = I/S.
· Электродвижущая сила — величина, численно равная работе, совершаемой источником электрической энергии при переносе единицы положительного заряда по всей замкнутой цепи
Диэлектрическая проницаемость: что это такое, формула, таблица
В этой статье мы расскажем о самых важных вещах, связанных с диэлектрической проницаемостью. Среди прочего, вы узнаете о важных ролях, которые она играет, и о её типичных значениях.
Простое объяснение
В повседневной жизни вы сталкиваетесь с различными веществами, такими как металлы, вода или кислород. Каждое из этих веществ по-разному реагирует на электрические поля.
Диэлектрическая проницаемость (диэлектрическая постоянная или абсолютная диэлектрическая проницаемость) ε описывает способность материала к поляризации электрическими полями и определяется следующим образом: ε = εr * ε0 .
Здесь εr – относительная проницаемость, а ε0 – электрическая постоянная (или диэлектрическая проницаемость вакуума).
Если понимать значение термина “проницаемость” буквально, то это мера того, насколько сильно материя “пропускает” электрическое поле. Поэтому проницаемость можно рассматривать как меру того, насколько материя может быть поляризована.
Диэлектрическая проницаемость вакуума
Особую роль играет диэлектрическая проницаемость вакуума (также называемая проницаемостью вакуума). В этом разделе мы расскажем вам о значении и единицах измерения проницаемости вакуума, о том, как она связана с другими константами, и о ее значении в контексте других важных законов.
Числовое значение и единица измерения
Диэлектрическая проницаемость вакуума ε0 имеет значение 8,85418781762039 * 10 -12 или 8.85 * 10 -12 , что более практично для расчетов. Единицей измерения константы является [ Ф·м −1 ] или если выражать через основные единицы СИ [ м −3 ·кг −1 ·с 4 ·А 2 ].
Взаимосвязь с другими константами
Существует замечательная связь между электрической постоянно ε0, магнитной постоянно μ0 и скоростью света в вакууме с0. То есть верно следующее соотношение: c0 2 = 1 / ε0 * μ0 .
До 2019 года это уравнение точно определяло значение постоянной электрического поля. Однако в ходе пересмотра ситуация изменилась, и с 20 мая 2019 года как электрическая постоянная, так и магнитная постоянная имеют определенную погрешность измерения.
Это уравнение было первым указанием на то, что свет может быть электромагнитной волной.
Закон Кулона и электрический потенциал
Помимо связи со скоростью света, электрическая постоянная фигурирует в других важных законах электродинамики. К ним относятся, например:
- :
- : φ ( r ) = q / 4 * π * ε0 * r .
В частности, закон Кулона является основой электростатики, поэтому константа электрического поля также имеет большое значение.
Диэлектрическая проницаемость: общий случай
В этом разделе мы рассмотрим общий случай. Мы объясним физический смысл абсолютной диэлектрической проницаемости с помощью электроизоляционных материалов и объясним, что такое относительная диэлектрическая проницаемость.
Диэлектрическая проницаемость диэлектриков
В электроизолирующих материалах (диэлектриках) электрические заряды связаны с атомами или молекулами. Поэтому они могут лишь немного перемещаться внутри атомов или молекул. Электрическое поле может изменить распределение заряда в диэлектрике двумя важными способами: деформацией и вращением. Даже если отдельные электрические заряды могут двигаться незначительно, совокупность всех движений определяет поведение электроизоляционного материала.
Поляризация
В зависимости от того, состоит ли материал из полярных или неполярных молекул, реакция на внешнее электрическое поле различна. С неполярной молекулой происходит растягивание (деформация), при котором поле индуцирует дипольный момент в каждой молекуле материала. Все эти дипольные моменты направлены в ту же сторону, что и электрическое поле.
В полярной молекуле, с другой стороны, происходит вращение, так что и здесь все дипольные моменты направлены в сторону электрического поля. В целом внешнее электрическое поле вызывает образование в материале большого количества диполей, все из которых ориентированы в том же направлении, что и внешнее поле. Таким образом, материал поляризуется. Поляризация P описывает, сколько дипольных моментов приходится на единицу объема материала.
Диэлектрическая проницаемость диэлектриков
Таким образом, поляризация диэлектрика вызывается электрическим полем. Возникающие направленные дипольные моменты, в свою очередь, создают электрическое поле, противодействующее внешнему полю. Таким образом, это противоположное поле ослабляет внешнее поле. В целом, связь между поляризацией и внешним электрическим полем сложная. Для многих веществ, так называемых линейных диэлектриков, поляризация пропорциональна полю. Применяется следующее соотношение:
P = ε0 * χ * E , где
Здесь ε0 – электрическая постоянная, а χ – электрическая поляризуемость. Электрическое поле E в этом уравнении является полным полем. Поэтому причиной этого могут быть частично свободные заряды и частично сама поляризация.. Свободные заряды – это все те носители заряда, которые не являются результатом поляризации. Таким образом, это полное электрическое поле очень трудно рассчитать, поскольку мы обычно не имеем информации о распределении поляризационных зарядов.
Для справки: χ — коэффициент, зависящий от химического состава, концентрации, структуры (в том числе от агрегатного состояния) среды, температуры, механических напряжений и т. д. (от одних факторов более сильно, от других слабее, конечно же и в зависимости от диапазона изменений каждого), и называемый (электрической) поляризуемостью (а чаще, по крайней мере для того случая, когда он выражается скаляром — диэлектрической восприимчивостью) данной среды.
Википедия
Электрическая индукция
Чтобы иметь возможность рассчитать электрическое поле даже в присутствии диэлектрика, вводится электрическая индукция D. В линейной среде: D = ε0 * E + P = ε0 * E + ε0 * χe * E = ε0 * ( 1 + χe ) * E и поэтому D также пропорциональна E .
Если вы объедините константы вместе ε = ε0 * ( 1 + χe ), то получится: D = ε * E .
Постоянная ε и называется диэлектрической проницаемостью.
Относительная диэлектрическая проницаемость
Величина: εr = 1 + χe = ε / ε0 называется относительной проницаемостью (также относительной диэлектрической проницаемостью). С его помощью полное электрическое поле в присутствии диэлектрика определяется следующим образом: E = D / ε = D / εr * ε0 .
При постоянной электрической индукции относительная проницаемость, таким образом, определяет, насколько сильно ослабляется электрическое поле. Чем больше относительная проницаемость, тем больше ослабляется электрическое поле и, следовательно, уменьшается общая напряженность электрического поля.
Термин относительная проницаемость может привести к неправильному пониманию того, что относительная проницаемость для данного материала является константой. На самом деле, относительная проницаемость зависит от многих факторов. Среди них:
- температура материала;
- частота внешнего электрического поля;
- напряженность внешнего электрического поля.
Для некоторых материалов относительная проницаемость дополнительно зависит от направления. Следовательно, в случае таких материалов это не просто число, а часто тензор второго порядка.
Особенно наглядную иллюстрацию влияния диэлектриков с разной относительной проницаемостью можно получить, поместив диэлектрик между двумя пластинами конденсатора. Если измерить электрическое напряжение на конденсаторе до и после введения диэлектрика, то можно обнаружить, что напряжение на конденсаторе уменьшается ровно на величину εr относительной диэлектрической проницаемости. Это следует непосредственно из уравнения: E = U / d для величины электрического поля между пластинами конденсатора, расположенными на расстоянии d друг от друга. Это также иллюстрирует, почему εr называется относительной проницаемостью. Напряжение на конденсаторе уменьшается на коэффициент εr за счет введения диэлектрика, по сравнению со случаем, когда между пластинами только вакуум.
Относительные диэлектрические проницаемости отдельных материалов
Наконец, мы приводим таблицу с типичными значениями относительной диэлектрической проницаемости (относительной диэлектрической проницаемости) различных материалов. Следует отметить, что в таких таблицах обычно указывается относительная проницаемость, а не сама абсолютная диэлектрическая проницаемость. Поэтому, если вы ищете таблицу для определения абсолютной диэлектрической проницаемости определенного материала, вы должны помнить, что приведенное там значение не является непосредственно той проницаемостью, которую вы ищете. Однако для заданного значения относительной проницаемости можно вычислить соответствующую абсолютную диэлектрическую проницаемость без особых дополнительных усилий. То есть нужно применять следующую уже известную нам формулу: ε = εr * ε0 .
Вещество | εr |
Вакуум | ровно 1 |
Гелий | 1,000065 |
Медь | 5,6 |
Воздух (сухой) | 1,00059 |
Метанол | 32,6 |
Бумага | 1 – 4 |
Вода ( 20°C, 0 – 3 ГГц ) | 80 |
Вода ( 0°C, 0 – 1 ГГц ) | 88 |
Таблица 1. Относительная диэлектрическая проницаемость выбранных веществ
(если не указано иное: при 18°C и 50 Гц)
В предыдущем разделе мы упоминали, что относительная проницаемость зависит, помимо прочего, от температуры и частоты. Поэтому важно знать и температуру, и частоту, если вы хотите получить значение из таблицы. Например, относительная проницаемость воды при температуре 20°C и частоте 0 ГГц равна 80. Если температура 0°C, а частота та же, относительная проницаемость воды равна 88. Медь, с другой стороны, имеет относительную проницаемость 5,6. Это означает, что вода как среда уменьшит напряжение на конденсаторе в 80 раз, в то время как медь уменьшит его только в 5,6 раз.
Относительная диэлектрическая проницаемость
Относи́тельная диэлектри́ческая проница́емость среды ε — безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды). Величина ε показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.
Содержание
Измерение
Относительная диэлектрическая проницаемость вещества εr может быть определена путем сравнения ёмкости тестового конденсатора с данным диэлектриком (Cx) и ёмкости того же конденсатора в вакууме (Co):
где εr — диэлектрическая проницаемость вещества между обкладками, εо — электрическая постоянная, S — площадь обкладок конденсатора, d — расстояние между обкладками.
Параметр диэлектрической проницаемости учитывается при разработке печатных плат. Значение диэлектрической проницаемости вещества между слоями в сочетании с его толщиной влияет на величину естественной статической ёмкости слоев питания, а также существенно влияет на волновое сопротивление проводников на плате.
Зависимость от частоты
Следует отметить, что диэлектрическая проницаемость в значительной степени зависит от частоты электромагнитного поля. Это следует всегда учитывать, поскольку таблицы справочников обычно содержат данные для статического поля или малых частот вплоть до нескольких единиц кГц без указания данного факта. В то же время существуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров. Полученное оптическим методом (частота 10 14 Гц) значение будет значительно отличаться от данных в таблицах.
Рассмотрим, например, случай воды. В случае статического поля (частота равна нулю), относительная диэлектрическая проницаемость при нормальных условиях приблизительно равна 80. Это имеет место вплоть до инфракрасных частот. Начиная примерно с 2 ГГц εr начинает падать. В оптическом диапазоне εr составляет приблизительно 1,8. Это вполне соответствует факту, что в оптическом диапазоне показатель преломления воды равен 1,33. [1] В узком диапазоне частот, называемом оптическим, диэлектрическое поглощение падает до нуля, что собственно и обеспечивает человеку механизм зрения [источник не указан 665 дней] в земной атмосфере, насыщенной водяным паром. С дальнейшим ростом частоты свойства среды вновь меняются. О поведении относительной диэлектрической проницаемости воды в диапазоне частот от 0 до 10 12 (инфракрасная область) можно прочитать на [1] (англ.)
Что такое диэлектрическая проницаемость
Заряды взаимодействуют друг с другом в различных средах с различной силой, определяемой законом Кулона. Свойства этих сред определяет величина, называемая диэлектрической проницаемостью.
Что такое диэлектрическая проницаемость
Согласно закону Кулона, два точечных неподвижных заряда q1 и q2 в вакууме взаимодействуют между собой с силой, заданной формулой Fкл=((1/4)*π* ε )*(|q1|*|q2|/r 2 ), где:
- Fкл – сила Кулона, Н;
- q1, q2 – модули зарядов, Кл;
- r – расстояние между зарядами, м;
- ε0 – электрическая постоянная, 8,85*10 -12 Ф/м (Фарад на метр).
Если взаимодействие происходит не в вакууме, в формулу входит ещё одна величина, определяющая влияние вещества на силу Кулона, и запись закона Кулона выглядит так:
Эта величина обозначается греческой буквой ε (эпсилон), она безразмерна (не имеет единицы измерения). Диэлектрическая проницаемость является коэффициентом ослабления взаимодействия зарядов в веществе.
Часто в физике диэлектрическая проницаемость используется совместно с электрической постоянной, в этом случае удобно ввести понятие абсолютной диэлектрической проницаемости. Она обозначается εa и равна εa= ε * ε. В этом случае абсолютная проницаемость имеет размерность Ф/м. Обычную проницаемость ε также называют относительной, чтобы отличить ее от εa.
Природа диэлектрической проницаемости
В основе природы диэлектрической проницаемости лежит явление поляризации под действием электрического поля. Большинство веществ в целом электрически нейтральны, хотя и содержат заряженные частицы. Эти частицы расположены в массе вещества хаотично и их электрические поля в среднем нейтрализуют друг друга.
В диэлектриках находятся, в основном связанные заряды (их называют диполями). Эти диполи условно представляют собой связки из двух разноименных частиц, которые по толщине диэлектрика ориентированы спонтанно и в среднем создают нулевую напряженность электрического поля. Под действием внешнего поля диполи стремятся сориентироваться согласно приложенной силе. В результате создается дополнительное электрическое поле. Сходные явления происходят и в неполярных диэлектриках.
В проводниках процессы похожие, только там имеются свободные заряды, которые под действием внешнего поля разделяются и также создают собственное электрическое поле. Это поле направлено навстречу внешнему, экранирует заряды и снижает силу их взаимодействия. Чем больше способность вещества к поляризации, тем выше ε.
Диэлектрическая проницаемость различных веществ
Разные вещества имеют различную диэлектрическую проницаемость. Значение ε для некоторых из них приведено в таблице 1. Очевидно, что эти значения больше единицы, поэтому взаимодействие зарядов, по сравнению с вакуумом, всегда уменьшается. Также надо заметить, что для воздуха ε немногим более единицы, поэтому взаимодействие зарядов в воздухе практически не отличается от взаимодействия в вакууме.
Таблица 1. Значения электрической проницаемости для различных веществ.
Вещество | Диэлектрическая проницаемость |
---|---|
Бакелит | 4,5 |
Бумага | 2,0..3,5 |
Вода | 81 (при +20 град.С) |
Воздух | 1,0002 |
Германий | 16 |
Гетинакс | 5..6 |
Дерево | 2,7..7,5 (различные сорта) |
Керамика радиотехническая | 10..200 |
Слюда | 5,7..11,5 |
Стекло | 7 |
Текстолит | 7,5 |
Полистирол | 2,5 |
Полихлорвинил | 3 |
Фторопласт | 2,1 |
Янтарь | 2,7 |
Диэлектрическая проницаемость и ёмкость конденсатора
Знание величины ε на практике важно, например, при создании электрических конденсаторов. Их ёмкость зависит от геометрических размеров обкладок, расстояния между ними и диэлектрической проницаемости диэлектрика.
Если надо получить конденсатор повышенной ёмкости, то увеличение площади обкладок ведет к увеличению габаритов. На уменьшение расстояния между электродами также имеются практические ограничения. В этом случае может помочь применение изолятора с увеличенной диэлектрической проницаемостью. Если применить материал с более высоким ε, можно кратно уменьшить размер обкладок или увеличить расстояние между ними без потерь электрической ёмкости.
В отдельную категорию выделяют вещества, называемые сегнетоэлектриками, у которых при определенных условиях возникает спонтанная поляризация. В рассматриваемой области для них характерны два момента:
- большие значения диэлектрической проницаемости (характерные значения — от сотен до нескольких тысяч);
- возможность управлять величиной диэлектрической проницаемости путем изменения внешнего электрического поля.
Эти свойства используются для изготовления конденсаторов большой ёмкости (за счёт увеличенных значение диэлектрической проницаемости изолятора) с небольшими массогабаритными показателями.
Такие устройства работают только в низкочастотных цепях переменного тока – при увеличении частоты их диэлектрическая проницаемость падает. Другое применение сегнетоэлектриков – конденсаторы переменной ёмкости, чьи характеристики меняются под действием приложенного электрического поля с изменяющимися параметрами.
Диэлектрическая проницаемость и потери в диэлектрике
Также от значения диэлектрической проницаемости зависят потери в диэлектрике – это та часть энергии, которая теряется в диэлектрике на его нагрев. Для описания этих потерь обычно применяется параметр tg δ – тангенс угла диэлектрических потерь. Он характеризует мощность диэлектрических потерь в конденсаторе, у которого диэлектрик изготовлен из материала с имеющимся tg δ. А удельная мощность потерь для каждого вещества определяется формулой p=E 2 *ώ*ε *ε*tg δ, где:
- p – удельная мощность потерь, Вт;
- ώ=2*π*f – круговая частота электрического поля;
- E – напряженность электрического поля, В/м.
Очевидно, что чем выше диэлектрическая проницаемость, тем выше потери в диэлектрике при прочих равных условиях.
Зависимость диэлектрической проницаемости от сторонних факторов
Следует заметить, что значение диэлектрической проницаемости зависит от частоты электрического поля (в данном случае – от частоты напряжения, приложенного к обкладкам). С ростом частоты значение ε у многих веществ падает. Этот эффект ярко выражен для полярных диэлектриков. Объяснить это явление можно тем, что заряды (диполи) перестают успевать следовать за полем. У веществ, для которых характерна ионная или электронная поляризация, зависимость диэлектрической проницаемости от частоты мала.
Поэтому так важен подбор материалов для выполнения диэлектрика конденсатора. То, что работает на низких частотах, не обязательно позволит получить качественную изоляцию на высоких. Чаще всего на ВЧ в качестве изолятора применяют неполярные диэлектрики.
Также диэлектрическая проницаемость зависит от температуры, причем у разных веществ по-разному. У неполярных диэлектриков она падает с ростом температуры. В этом случае для конденсаторов, выполненных с применением такого изолятора, говорят об отрицательном температурном коэффициенте ёмкости (ТКЕ) – ёмкость с ростом температуры падает вслед за ε. У других веществ проницаемость с ростом температуры увеличивается, и можно получить конденсаторы с положительным ТКЕ. Включив в пару конденсаторы с противоположными ТКЕ, можно получить термостабильную ёмкость.