Куда направлена сила действующая со стороны первого заряда на второй
Перейти к содержимому

Куда направлена сила действующая со стороны первого заряда на второй

Закон Кулона

Еще в древности было известно, что наэлектризованные тела взаимодействуют. Силу взаимодействия двух небольших заряженных шариков с помощью крутильных весов впервые измерил Шарль Кулон. Он сформулировал закон, который позже назвали его именем.

Так же, было выяснено, что сила, с которой два заряда притягиваются, или отталкиваются, зависит не только от самих зарядов, но и от вещества, в котором эти заряды находятся.

Опыт Кулона

Кулон нашел способ измерить взаимное действие двух зарядов. Для этого он использовал крутильные весы.

Ему не пришлось применять дополнительную особо чувствительную аппаратуру. Потому, что взаимное действие зарядов имело достаточную для наблюдения интенсивность.

Примечание: Опыт Кулона похож на опыт Кавендиша, который экспериментально определил гравитационную постоянную G.

Устройство крутильных весов

Такие весы (рис. 1) содержат перекладину — тонкий стеклянный стержень, расположенный горизонтально. Он подвешен на тонкой вертикально натянутой упругой проволоке.

На одном конце стержня находится небольшой металлический шарик. К другому концу прикреплен груз, который используется, как противовес.

Еще один металлический шарик, прикрепленный ко второй палочке из стекла, можно располагать неподалеку от первого шарика. Для этого в верхней крышке корпуса весов проделано отверстие.

Если наэлектризовать шарики, они начнут взаимодействовать. А прикрепленная к проволоке перекладина, на которой находится один из шариков, будет поворачиваться на некоторый угол.

На корпусе весов на уровне палочки располагается шкала с делениями. Угол поворота связан с силой взаимного действия шариков. Чем больше угол поворота, тем больше сила, с которой шарики действуют друг на друга.

Чтобы сдвинувшийся шарик вернуть в первоначальное положение, нужно закрутить проволоку на некоторый угол. Так, чтобы сила упругости скомпенсировала силу взаимодействия шариков.

Для закручивания проволоки в верхней части весов есть рычажок. Рядом с ним расположен диск, а на нем – еще одна угловая шкала с делениями.

По нижней шкале определяют точку, в которую необходимо вернуть шарик. Верхней шкалой пользуются, чтобы установить угол, на который нужно рычажком закрутить проволоку.

С помощью крутильных весов Шарль Кулон выяснил, как именно сила взаимного действия зависит от величины зарядов и расстояния между зарядами.

В те годы единиц для измерения заряда не было. Поэтому ему пришлось изменять заряд одного шарика с помощью метода половинного деления.

Когда он касался заряженным шариком второго такого же шарика, заряды между ними распределялись поровну. Таким способом, можно было уменьшать заряд одного из шариков, участвующих в опыте, в 2, 4, 8, 16 и т. д. раз.

Так опытным путем Кулон получил закон, формула которого очень похожа на закон всемирного тяготения.

В память о его заслугах, силу взаимодействия зарядов называют Кулоновской силой.

Закон Кулона для зарядов в вакууме

Рассмотрим два точечных заряда, которые находятся в вакууме (рис. 2).

На рисунке 2 сила \(\large F_ \) – это сила, с которой положительный заряд Q отталкивает второй положительный заряд q. А сила \(\large F_ \) принадлежит заряду q, с такой силой он отталкивает заряд Q.

Примечание: Точечный заряд – это заряженное тело, размером и формой которого можно пренебречь.

Силы взаимодействия зарядов, по третьему закону Ньютона, равны по величине и направлены противоположно. Поэтому, для удобства можно ввести обозначение:

\[\large F_ = F_ = F\]

Для силы взаимодействия зарядов в вакууме Шарль Кулон сформулировал закон так:

Два точечных заряда в вакууме,
взаимодействуют с силой
прямо пропорциональной
произведению величин зарядов
и обратно пропорциональной
квадрату расстояния между ними.

Формула для этого закона на языке математики запишется так:

\(F \left( H \right) \) – сила, с которой два точечных заряда притягиваются, или отталкиваются;

\(|q| \left( \text<Кл>\right) \) – величина первого заряда;

\(|Q| \left( \text<Кл>\right) \) – величина второго заряда;

\(r \left( \text<м>\right) \) – расстояние между двумя точечными зарядами;

\(k \) – постоянная величина, коэффициент в системе СИ;

Сила – это вектор. Две главные характеристики вектора – его длина и направление.

Формула позволяет найти одну из характеристик вектора F — модуль (длину) вектора.

Чтобы определить вторую характеристику вектора F – его направление, нужно воспользоваться правилом: Мысленно соединить два неподвижных точечных заряда прямой линией. Сила, с которой они взаимодействуют, будет направлена вдоль этой прямой линии.

Сила Кулона – это центральная сила, так как она направлена вдоль прямой, соединяющей центры тел.

Примечание: Еще один пример центральной силы — сила тяжести.

Что такое коэффициент k с точки зрения физики

Постоянная величина \(k \), входящая в формулу силы взаимодействия зарядов, имеет такой физический смысл:

\(k \) — это сила, с которой отталкиваются два положительных точечных заряда по 1 Кл каждый, когда расстояние между ними равно 1 метру.

Значение постоянной k равно девяти миллиардам!

Это значит, что заряды взаимодействуют с большими силами.

Константу k можно вычислить опытным путем, расположив два известных заряда (не обязательно по 1 Кулону каждый) на удобном для измерений расстоянии (не обязательно 1 метр) и измерив силу из взаимного действия.

Нужно подставить известные величины зарядов, расстояние между ними и измеренную силу в такую формулу:

Величина k связана с электрической постоянной \(\varepsilon\) такой формулой:

Поэтому дробь из правой части этой формулы можно встретить в различных справочниках физики, где она заменяет коэффициент k.

Закон Кулона для зарядов в веществе

Если два точечных заряда находятся в веществе, то сила их взаимного действия будет меньше, чем в вакууме. Для зарядов в веществе закон Кулона выглядит так:

\(F \left( H \right) \) – сила взаимодействия зарядов в веществе;

\(|q| ; |Q| \left( \text<Кл>\right) \) – величины зарядов;

\(r \left( \text<м>\right) \) – расстояние между зарядами;

\( k = 9\cdot 10^ <9>\) – постоянная величина;

\( \varepsilon \) – диэлектрическая проницаемость вещества, для разных веществ различается, ее можно найти в справочнике физики;

Силы, с которыми заряды действуют друг на друга в веществе, отличаются от сил взаимодействия в вакууме в \( \varepsilon \) раз:

Примечание: Читайте отдельную статью, рассказывающую, что такое диэлектрическая проницаемость и электрическая постоянная.

Закон Кулона. Точечный заряд.

Силы электростатического взаимодействия зависят от формы и размеров наэлектризованных тел, а также от характера распределения заряда на этих телах. В некоторых случаях можно пренебречь формой и размерами заряженных тел и считать, что каждый заряд сосредоточен в одной точке.

Точечный заряд – это электрический заряд, когда размер тела, на котором этот заряд сосредоточен, намного меньше расстояния между заряженными телами. Приближённо точечные заряды можно получить на опыте, заряжая, например, достаточно маленькие шарики.

Взаимодействие двух покоящихся точечных зарядов определяет основной закон электростатики – закон Кулона. Этот закон экспериментально установил в 1785 году французский физик Шарль Огюстен Кулон (1736 – 1806). Формулировка закона Кулона следующая:

Эта сила взаимодействия называется кулоновская сила, и формула закона Кулона будет следующая:

где |q1|, |q2| – модули зарядов, r – расстояния между зарядами, k – коэффициент пропорциональности.

Коэффициент k в СИ принято записывать в форме:

где ε0 = 8,85 * 10 -12 Кл/Н*м 2 – электрическая постоянная, ε – диэлектрическая проницаемость среды.

Для вакуума ε = 1, k = 9 * 10 9 Н*м/Кл 2 .

Сила взаимодействия неподвижных точечных зарядов в вакууме:

Если два точечных заряда помещены в диэлектрик и расстояние от этих зарядов до границ диэлектрика значительно больше расстояния между зарядами, то сила взаимодействия между ними равна:

Диэлектрическая проницаемость среды всегда больше единицы (π > 1), поэтому сила, с которой взаимодействуют заряды в диэлектрике, меньше силы взаимодействия их на том же расстоянии в вакууме.

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела (рис. 1.8).

Силы взаимодействия двух неподвижных точечных заряженных тел

Рис. 1.8. Силы взаимодействия двух неподвижных точечных заряженных тел.

Кулоновские силы, как и гравитационные силы, подчиняются третьему закону Ньютона:

Кулоновская сила является центральной силой. Как показывает опыт, одноимённые заряженные тела отталкиваются, разноимённо заряженные тела притягиваются.

Вектор силы F2,1, действующей со стороны второго заряда на первый, направлен в сторону второго заряда, если заряды разных знаков, и в противоположную, если заряды одного знака (рис. 1.9).

Взаимодействие разноименных и одноименных электрических зарядов

Рис. 1.9. Взаимодействие разноименных и одноименных электрических зарядов.

Электростатические силы отталкивания принято считать положительными, силы притяжения – отрицательными. Знаки сил взаимодействия соответствуют закону Кулона: произведение одноимённых зарядов является положительным числом, и сила отталкивания имеет положительный знак. Произведение разноимённых зарядов является отрицательным числом, что соответствует знаку силы притяжения.

В опытах Кулона измерялись силы взаимодействия заряженных шаров, для чего применялись крутильные весы (рис. 1.10). На тонкой серебряной нити подвешена лёгкая стеклянная палочка с, на одном конце которой закреплён металлический шарик а, а на другом противовес d. Верхний конец нити закреплён на вращающейся головке прибора е, угол поворота которой можно точно отсчитывать. Внутри прибора имеется такого же размера металлический шарик b, неподвижно закреплённый на крышке весов. Все части прибора помещены в стеклянный цилиндр, на поверхности которого нанесена шкала, позволяющая определить расстояние между шариками a и b при различных их положениях.

Опыт Кулона (крутильные весы)

Рис. 1.10. Опыт Кулона (крутильные весы).

При сообщении шарикам одноимённых зарядов они отталкиваются друг от друга. При этом упругую нить закручивают на некоторый угол, чтобы удержать шарики на фиксированном расстоянии. По углу закручивания нити и определяют силу взаимодействия шариков в зависимости от расстояния между ними. Зависимость силы взаимодействия от величины зарядов можно установить так: сообщить каждому из шариков некоторый заряд, установить их на определённом расстоянии и измерить угол закручивания нити. Затем надо коснуться одного из шариков таким же по величине заряженным шариком, изменяя при этом его заряд, так как при соприкосновении равных по величине тел заряд распределяется между ними поровну. Для сохранения между шариками прежнего расстояния необходимо изменить угол закручивания нити, а следовательно, и определить новое значение силы взаимодействия при новом заряде.

Взаимодействие зарядов. закон кулона

формулы для конденсаторов

Одной из важнейших характеристик конденсатора является его емкость. Данный параметр определяется количеством электроэнергии, накапливаемой этим прибором. Накопление происходит в виде электронов. Их количество, помещающееся в конденсаторе, определяет величину емкости конкретного устройства.

Для измерения емкости применяется единица – фарада. Емкость конденсатора в 1 фараду соответствует электрическому заряду в 1 кулон, а на обкладках разность потенциалов равна 1 вольту. Эта классическая формулировка не подходит для практических расчетов, поскольку в конденсаторе собираются не заряды, а электроны. Емкость любого конденсатора находится в прямой зависимости от объема электронов, способных накапливаться при нормальном рабочем режиме.

формулы для конденсаторов

Для обозначения емкости все равно используется фарада, а количественные параметры определяются по формуле: С = Q / U, где С означает емкость, Q – заряд в кулонах, а U является напряжением. Таким образом, просматривается взаимная связь заряда и напряжения, оказывающих влияние на способность конденсатора к накоплению и удержанию определенного количества электричества.

Для расчетов емкости плоского конденсатора используется формула:

в которой
ε = 8,854187817 х 10-12 ф/м представляет собой постоянную величину. Прочие величины: ε – является диэлектрической проницаемостью диэлектрика, находящегося между обкладками, S – означает площадь обкладки, а d – зазор между обкладками.

Основной закон электростатики

В 1785 году Кулон представил в парижскую Академию наук доклад, в котором описывал устройство и применение сконструированных им электрических весов. Принцип действия механизма основан на крутильных свойствах металлической проволоки. Работая над конструкцией прибора, исследователь обратил внимание на зависимость силы, действующей на предметы, от расстояния между ними.

Использование энергии солнца на Земле – примеры для доклада

Закон Кулона - взаимодействие электрических зарядов, формула и задачи

Определение закона, открытого французским учёным, гласит: «Два одинаковых шарика, заряженные электричеством одной полярности, отталкиваются друг от друга с силой, величина, которой обратно пропорциональна квадрату расстояния между центральными точками шаров». Буквальное выполнение правила зависит от трёх обстоятельств. Условия, необходимые для выполнения закона:

Математическое выражение

Закон Кулона, формула которого напоминает математическую формулировку ньютоновского закона всемирного тяготения, относится к числу фундаментальных. Это значит, что в основе открытия лежат экспериментальные исследования. Кроме того, обнаруженные закономерности не вытекают из другого закона физики. Закон взаимодействия двух электрических зарядов в вакууме описывает формула F = k ∙ (q₁ ∙ q₂) ∕ r2, где:

  • F — кулонова сила;
  • k — коэффициент пропорциональности в законе Кулона;
  • q₁, q₂ — электрический заряд каждого тела, измеряемый в кулонах;
  • r — расстояние между телами.

Закон Кулона - взаимодействие электрических зарядов, формула и задачи

Коэффициент пропорциональности k = 9 ∙ 10⁹ рассчитывается из уравнения k = 1 ∕ 4πε₀, где ε₀ — электрическая постоянная, равная 8,85 ∙ 10⁻¹².

С учётом диэлектрической проницаемости среды ε, в которую помещены предметы, формула Кулона принимает полный вид: F = (q₁ ∙ q₂) ∕ 4πε₀ε r2.

Коэффициент ε показывает, во сколько раз ослабевает кулонова сила. Например, для керосина ε = 2,1, а для серной кислоты ε = 101. Это значит, что тела, погружённые в керосин, взаимодействуют с силой в 2,1 раза меньше, чем в вакууме, а в серной кислоте F понизится в 101 раз.

Закон Кулона в векторной форме выглядит следующим образом: F ̅₁₂ = ∙ (r ̄₁₂ ∕ r ₁₂), где:

  • F ̅₁₂ — вектор силы, действующей на второй заряд со стороны первого;
  • r ̄₁₂ — радиус вектора, направленный от первого заряда ко второму и по модулю равный расстоянию между заряженными частицами.

Электрический заряд создаёт в пространстве вокруг себя поле, которое характеризуется напряжённостью. Если в него поместить заряженную частицу, то появляется потенциальная энергия, способная совершать работу по перемещению этой частицы. Потенциал, характеризующий энергетическое состояние каждой точки поля, определяет количество работы, которая совершается при движении заряда в электростатическом поле.

Историческое значение

Открытие, сделанное Шарлем Кулоном, дало толчок дальнейшим исследованиям в области электрической энергии. Достижения науки придали ускорение использованию электротехники в жизни человечества. Учёные, продолжившие работы по изучению электричества:

Закон Кулона - взаимодействие электрических зарядов, формула и задачи

  • Ханс Кристиан Эрстед изучал влияние электротока на стрелку компаса;
  • А.-М. Ампер исследовал движение электричества;
  • М. Фарадей открыл явление электролиза.

Кулон заложил основы электростатики. На работы учёного опираются положения магнитостатики. Эксперименты, проведённые Шарлем Огюстеном, имеют фундаментальное и прикладное значение. Опыты француза создали методику вычисления единицы заряда с помощью величин, которые используются в механике, — расстояния и силы.

Кулон первым сформулировал на языке математики взаимодействие заряженных частиц.

Формула энергии конденсатора

С емкостью самым тесным образом связана другая величина, известная как энергия заряженного конденсатора. После зарядки любого конденсатора, в нем образуется определенное количество энергии, которое в дальнейшем выделяется в процессе разрядки. С этой потенциальной энергией вступают во взаимодействие обкладки конденсатора. В них образуются разноименные заряды, притягивающиеся друг к другу.

Формулировка закона:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Закон Кулона в данной формулировке справедлив только для точечных заряженных тел, так как только для них понятие расстояния между зарядами имеет определенный смысл. Точечных заряженных тел в природе нет. Но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно, как показывает опыт, не влияют на взаимодействие между ними. В этом случае тела можно рассматривать как точечные.

Легко обнаружить, что два заряженных шарика, подвешенные на нитях, либо притягиваются друг к другу, либо отталкиваются. Отсюда следует, что силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела.

Подобные силы называют центральными. Если через обозначить силу действующую на первый заряд со стороны второго, а через – силу, действующую на второй заряд со стороны первого (рис. 1), то, согласно третьему закону Ньютона, . Обозначим через радиус-вектор, проведенный от второго заряда к первому (рис. 2), тогда

Если знаки зарядов q1 и q2 одинаковы, то направление силы совпадает с направлением вектора ; в противном случае векторы и направлены в противоположные стороны.

Зная закон взаимодействия точечных заряженных тел, можно вычислить силу взаимодействия любых заряженных тел. Для этого тела нужно мысленно разбить на такие малые элементы, чтобы каждый из них можно было считать точечным. Складывая геометрически силы взаимодействия всех этих элементов друг с другом, можно вычислить результирующую силу взаимодействия.

Открытие закона Кулона – первый конкретный шаг в изучении свойств электрического заряда. Наличие электрического заряда у тел или элементарных частиц означает, что они взаимодействуют друг с другом по закону Кулона. Никаких отклонений от строгого выполнения закона Кулона в настоящее время не обнаружено.

Формула заряда конденсатора

Для выполнения зарядки, конденсатор должен быть подключен к цепи постоянного тока. С этой целью может использоваться генератор. У каждого генератора имеется внутреннее сопротивление. При замыкании цепи происходит зарядка конденсатора. Между его обкладками появляется напряжение, равное электродвижущей силе генератора: Uc = E.

формулы для конденсаторов

Обкладка, подключенная к положительному полюсу генератора, заряжается положительно (+q), а другая обкладка получает равнозначный заряд с отрицательной величиной (- q). Величина заряда q находится в прямой пропорциональной зависимости с емкостью конденсатора С и напряжением на обкладках Uc. Эта зависимость выражается формулой: q = C x Uc.

В процессе зарядки одна из обкладок конденсатора приобретает, а другая теряет определенное количество электронов. Они переносятся по внешней цепи под влиянием электродвижущей силы генератора. Такое перемещение является электрическим током, известным еще как зарядный емкостной ток (Iзар).

Расчёт конденсаторов

Один из главных параметров таких устройств – ёмкость. Рассчитать её можно по следующей формуле:

  • C – ёмкость,
  • q – заряд одной из обкладок элемента,
  • U – разность потенциалов между обкладками.

В электротехнике вместо понятия «разность потенциалов между обкладками» используется «напряжение на конденсаторе».

Ёмкость элемента не зависит от конструкции и размеров устройства, а только от напряжения на нём и заряда обкладок. Но эти параметры могут изменяться в зависимости от расстояния между ними и материала диэлектрика. Это учитывается в формуле:

  • С – реальная ёмкость,
  • Со – идеальная, при условии, что между пластинами вакуум или воздух,
  • ε – диэлектрическая проницаемость материала между ними.

Например, если в качестве диэлектрика используется слюда, «ε» которой 6, то ёмкость такого устройства в 6 раз больше, чем воздушного, а при изменении количества диэлектрика меняются параметры конструкции. На этом принципе основана работа ёмкостного датчика положения.

Устройство конденсатора

Устройство конденсатора

Единицей ёмкости в системе СИ является 1 фарад (F). Это большая величина, поэтому чаще применяются микрофарады (1000000mkF=1F) и пикофарады (1000000pF=1mkF).

Расчет плоской конструкции

Если нужно рассчитать плоский конденсатор, то необходимо учесть площадь обкладок и расстояние между ними. Это отражено в формуле, по которой рассчитывается ёмкость плоского конденсатора:

  • ε – диэлектрическая проницаемость изолирующего материала,
  • d – расстояние между пластинами.

Расчет конструкции цилиндрической формы

Цилиндрический конденсатор – это две соосные трубки различного диаметра, вставленные друг в друга. Между ними находится диэлектрик. При радиусе цилиндров, близком друг к другу и намного большем, чем расстояние между ними, цилиндрической формой можно пренебречь и свести расчёт к формуле, аналогичной той, по которой рассчитывается плоский конденсатор.

Вычисляются параметры такого устройства по формуле:

  • l – длина устройства,
  • R – радиус цилиндра,
  • ε – диэлектрическая проницаемость изолятора,
  • d – его толщина.

Расчёт сферической конструкции

Есть устройства, обкладки которых представляют собой два шара, вложенные друг в друга. Формула ёмкости такого прибора:

  • R1 – радиус внутренней сферы,
  • R2 – радиус внешней сферы,
  • ε – диэлектрическая проницаемость.

Формулы ёмкости конденсаторов различной формы

Формулы ёмкости конденсаторов различной формы

Ёмкость одиночного проводника

Кроме конденсаторов, способностью накапливать заряд обладают отдельные проводники. Одиночным проводником считается такой проводник, который бесконечно далёк от других проводников. Параметры заряженного элемента рассчитывается по формуле:

  • Q – заряд,
  • φ – потенциал проводника.

Объём заряда определяется размером и формой устройства, а также окружающей средой. Материал прибора значения не имеет.

Закон Кулона.

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряжен­ных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов. Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

Закон Кулона

.

где |q1| и |q2| — модули зарядов; r — расстояние между ними; k — коэффициент пропорциональнос­ти, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединя­ющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока — 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока 1 А за 1 с.

Заряд в 1 Кл очень велик. Сила взаимодействия двух точечных зарядов по 1 Кл каждый, расположенных на расстоянии 1 км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой 1 т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в 1 А — вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент k в законе Кулона при его записи в СИ выражается в Н · м 2 /Кл 2 . Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

Закон Кулона

Часто его записывают в виде , где ɛ0 =8,85 · 10 — 12 2 /H·м 2 — электрическая постоянная. В среде с диэлектрической проницаемостью ɛ закон Кулона имеет вид:

Закон Кулона

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *