Мендосинский мотор. Виды и устройство. Работа и применение
Технология вечного двигателя была интересна во все времена. Именно поэтому многие ученые, в том числе обычные люди пытаются решить вопрос его создания. Считается, что создание вечного двигателя произведет мировую революцию и сделает его создателя известным и богатым человеком. Но необходимо учитывать, что наукой на данный момент отвергается возможность его разработки, ведь придется нарушить физические законы. В сети постоянно появляются подобного рода двигатели, но до сих пор решить данную проблему так и не удалось.
Одним из таких двигателей является мендосинский мотор. Данное изобретение часто называют солнечным вечным двигателем. У него нет проводов, шлангов или иных кабелей, через которые подводится питание. И если не знать, как он работает, то этот движок можно назвать фантастическим. Он может вращаться просто так и при этом находиться в левитирующем состоянии. Но не все так просто.
Мендосинский мотор появился в 1994 году благодаря стараниям американца Ларри Спринга. Свое название двигатель получил благодаря окрестности Мендосино, которая находится на побережье Калифорнии. Долгий период времени данный агрегат располагался в магазине Лари. Спустя некоторое время он стала пользоваться большой популярностью среди местных жителей. Объяснялось это просто – ротор крутился без остановки, при этом находился практически в подвешенном состоянии.
В уникальном устройстве движка Спринга ось опиралась на стекла благодаря заостренным пяткам. Однако в современных конструкциях несколько изменилась. Сегодня ось буквально левитирует. С одной стороны ось опирается только о воздушное пространство. Только с другой стороны ось ротора опирается о стену, чтобы обеспечивалось равновесное положение. Подобная конструкция дает возможность устройству действовать бесконечно долго, но при соблюдении одного условия — это наличие солнечной энергии.
Устройство
Мендосинский мотор, как и большая часть электродвигателей, включает в свою структуру ротор и статор. Однако по своей сути агрегат не является стандартным движком. В данном случае в качестве статора выступает подставка, которая имеет постоянный магнит, а также магнитную опору. Ротор же выполнен в виде каркаса из диэлектрика с комплектом солнечных элементов.
Активация батареек происходит в момент падения на них фотонов солнца. Благодаря этому батареи начинают создавать электрический ток. Этот ток направляется на катушки, которые наматываются на ротор. При прохождении электротока через катушки, которые окружают ротор, появляется магнитное поле. Благодаря взаимодействию данного поля со статорным полем, то есть возникающим от постоянного магнита, ротор начинает вращаться.
Для небольшого устройства требуется всего лишь несколько ватт мощности, что позволяет ротору вращаться довольно быстро. Однако для промышленных агрегатов нескольких ватт мощности будет маловато, потребуются солнечные элементы на порядок больше.
Ротор, который располагается на валу из металла, обладает прямоугольным сечением и устанавливается горизонтально. В результате это позволяет планомерно размещать солнечные батареи. На концах вала ставятся магниты кольцевого вида. Такое устройство с боковым расположением магнитов обеспечивает левитирование ротора. В то же время трение здесь почти отсутствует.
Во время работы наблюдается состояние, когда магниты на валу точно располагаются над магнитными подставками, что дает ротору вращаться в воздухе без какого-либо взаимодействия. В ряде моделей на одной из сторон вала может располагаться стенка из стекла, дерева или металла. Это делается для того, чтобы вал не имел возможности смещаться в сторону.
Принцип работы
Мендосинский мотор имеет следующий принцип работы:
- Ротор обладает прямоугольной формой, на каждой стороне которой располагается своя солнечная батарейка. Когда фотоны света направляются на одну из солнечных элементов, размещенных на роторе, происходит генерация электротока.
- Электроток идет в обмотку ротора, находящуюся над магнитом статора. В результате появления электротока в обмотке, образуется магнитное поле, вследствие чего ротор начинает отталкиваться данной обмоткой от магнита статора.
- Далее свет падает на следующую солнечную панель, благодаря чему электроток действуют на следующую обмотку. Образуется магнитное поле, которое также приводит в движение ротор. То есть наблюдается постоянное перемещение: свет появляется на одной панели, идет генерация электротока, происходит возбуждение обмотки и наблюдается вращение ротора. И так периодически. И так пока на панели падает необходимое количество света солнца, будет вращаться движок.
- Подвеска ротора выполняется с использованием постоянных магнитов с целью получения минимального коэффициента трения. Такой подход вызван тем что создается весьма небольшая мощность движка. Это лишает возможности преодолевать существенной больший коэффициент трения. В то же время ось ротора может подпираться стенкой, дабы обеспечить дополнительную устойчивость, а также равновесное состояние. В подобном состоянии агрегат способен функционировать бесконечно долго, единственным условиям является то, что установка получает постоянно небольшой приток солнечной энергии.
Если говорить точно, то в данной установке происходит выталкивание проводников катушек благодаря силе тока. Так как на катушки ток подается поочередно, то и их выталкивание осуществляется поочередно. В результате мендосинский мотор можно назвать бесколлекторным магнитно-левитационным солнечным двигателем, который обладает малой мощностью.
Применение
На данный момент мотор не является запатентованным. Основная причина заключается в том, что у него нет полезного применения. Такое устройство не сможет раскрутить генератор, чтобы было можно полноценно вырабатывать электрический ток. В теории можно было быть создать сотни и тысячи таких устройств, чтобы они генерировали электрический ток. Однако на практике это будет невероятно дорого и нерентабельно. Гораздо проще на той же площади установить солнечные панели для выработки электрического тока. Будет гораздо проще и эффективнее.
На мотор можно навесить лопасти вентилятора, чтобы они вращались и охлаждали помещение. Но здесь также имеются ограничения. Повесить можно будет лишь декоративные лопасти, которые будут создавать едва заметный поток воздуха. На текущий момент времени вся ценность устройства кроется в его лаконичности, эстетичности, необычности и возможности левитировать. Поэтому сегодня данное устройство продается китайцами в качестве конструктора для учебных целей и готового изделия в качестве необычного предмета.
Плюсы и минусы
К достоинствам можно отнести:
- Необычность.
- Эффект левитации.
- Альтернативный источник энергии, но на данный момент не нашедший применения.
- Простота исполнения.
- Декоративность.
К недостаткам можно отнести:
- Отсутствие полезного применения в промышленности.
- Достаточная дороговизна.
Самодельный мендосинский мотор
В интернете полно инструкций и рекомендаций, при помощи которых при должном желании можно собрать собственный мендосинский мотор. Если не хочется сильно заморачиваться, то можно приобрести готовый китайский конструктор для сборки. Такой настольный конструктор вполне можно приобрести в качестве подарка ребенку.
Для начала нужно будет подготовить материалы и инструменты. В качестве материалов нужно взять:
- Шпон, доски и рейки.
- Деревянный штырь диаметром 13 мм.
- Специальный клей.
- Обмоточную проволоку диаметром 0,28 или 0,3 мм длиной минимум 30 метров.
- Четыре специальные солнечные панели.
- Два кольцевых магнита.
- Опорные магниты.
- Магниты для статора.
Для начала следует разложить магниты на валу. В качестве основания берется деревянный штырь длиной 25 см. кольцевые магниты закрепляются на валу. Следует подобрать интервал между магнитами, чтобы «плавающий» магнит находился в устойчивом положении, то есть, чтобы он удерживался в воздухе. Определив расстояние, производится монтаж второй пары магнитов. При этом магниты должны несколько отстоять от стены, чтобы была стабильность левитации. Тем не менее, стабильность будет обеспечиваться в точке контакта со стеной.
Далее нужно собрать ротор, который выполняется из шпона. Его нужно обмотать медным проводом. Делается 10 витков в одну сторону, потом 10 — в другую сторону. Такие же действия повторяются при пересечении первичной обмотки. Затем необходимо подсоединить солнечные панели. Они крепятся на основании таким образом, чтобы образовался своеобразный квадрат. Панели соединяются с обмоткой ротора. Осталось поместить ротор поверх собранной конструкции с магнитами и направить на панель солнечный свет. Полученный мендосинский мотор должен начать вращаться.
Магнито-солнечный двигатель с левитирующим ротором (Мендосинский мотор)
Здравствуйте друзья. Сегодня я хочу рассказать о наборе для самостоятельной сборки забавного «вечного двигателя», коим является Мендосинский мотор. Конечно это не вечный двигатель и не Бестопливный генератор энергии (БТГ). На самом деле энергия для вращения ротора вырабатывается солнечными элементами, установленными непосредственно на ротор двигателя. Также, «левитирующий ротор» всего навсего имеет магнитный подвес, но смотрится эффектно.
Двигатель из набора собирается достаточно легко, однако есть нюансы…
История создания и описание (взято из Wiki):
Мендосинский мотор был изобретён в 1994 году американским конструктором и популяризатором науки Ларри Спрингом. Назван по имени округа Мендосино в штате Калифорния, где проживает изобретатель.
Мотор состоит из ротора многоугольного (обычно квадратного) сечения, насаженного на вал. Ротор имеет два набора обмоток с питанием от солнечных батарей. Вал расположен горизонтально, вблизи его концов находятся два постоянных кольцевых магнита. Магниты на валу обеспечивают левитацию, так как находятся над отталкивающими постоянными магнитами, расположенными в основании. Дополнительный магнит, находящийся под ротором, создаёт магнитное поле, которое взаимодействуя с током в обмотках ротора создаёт крутящий момент.
Освещение подаётся с одной из сторон. Когда свет падает на одну из солнечных батарей, она генерирует электрический ток, который течёт по обмотке ротора. Этот ток производит магнитное поле, которое взаимодействует с полем магнита под ротором. Это взаимодействие приводит ротор во вращение. При повороте ротора следующая солнечная батарея обращается к источнику света и возбуждает ток в следующей обмотке. Процесс повторяется до тех пор, пока на батареи падает свет. Можно провести аналогию с работой коллекторного двигателя постоянного тока: вместо щёточного электрического коллектора в данном двигателе используется «световой коллектор».
Поскольку невозможно сделать статическую устойчивую магнитную подвеску на постоянных магнитах, с одной или двух сторон ось опирается на стенку. Магнитная подвеска очень неустойчива, и важно хорошо сбалансировать ротор.
Состав набора: Помимо присутствующего на фото, в комплекте было следующее:
— полоска медной фольги с клеевой стороной;
— отрезок медного провода в лаковой изоляции;
— маленький ключ «шестигранник»;
— пропеллер;
— 3 металлических шарика;
— 1 металлический циллиндрик;
— 2 латунные фигурные шайбы;
— стикер со ссылкой на инструкцию (http://handsmagic.cc/solar-motor-type2/).
Сборка:
1. Установка упора
2. Приклеивание магнитов Т.к. клея в комплекте не было использовал сначала клей ПВА, сохнет долго, адгезия к магнитам очень слабая, магниты выскакивают, сцепляются между собой, разрушаются от соударений. ПВА не подходит.
Пробовал термоклей из термопистолета, в принципе вариант приемлемый, клеится быстро, адгезия к дереву отличная, к магнитам слабовата, но есть.
Лучший вариант — клей Момент. Из минусов — долго сохнет.
Важное замечание: магниты необходимо ориентировать все в одном направлении. Большой магнит на дне подставки клеится в любой ориентации.
3. Пайка Для начала необходимо из комплектного куска медного провода в лаковой изоляции нарезать 4 одинаковых отрезка. Далее необходимо все концы проводов, как этих отрезков, так и обмоток, залудить. Я для этого использую таблетку аспирина. Единственный минус — уж очень едкий запах. Соединить солнечные элементы с обмотками ротора необходимо по следующей схеме:
4. Дальше, с помощью отрезков 2-х стороннего скотча необходимо закрепить солнечные элементы на ротор таким образом, чтобы элементы одной обмотки располагались на противоположных поверхностях.
5. С помощью комплектной медной ленты необходимо закрепить кольцевые магниты на оси ротора. Также необходимо предварительно проверить их ориентацию относительно магнитов подставки. Все магниты должны быть сориентированы в одну сторону.
Тут необходимо сделать замечание: в моем случае комплектной ленты не хватило — магниты сидели неплотно. Поэтому я счистил медную ленту и намотал обычный прозрачный скотч. Так и красивее и нет ограничения по количеству — не закончится 🙂
6. Ось ротора представляет из себя трубку с внутренним диаметром близким с диаметром комплектных шариков. Один из этих шариков необходимо вставить в тот конец трубки, который будет упираться в металлический упор.
7. Если всё сделано правильно (ошибиться сложно), то мотор должен вращаться под действием солнечного света или от лампы накаливания. Светодиодные лампы не обеспечивают необходимого уровня потока лучистой энергии. Если вращения нет, то в инструкции есть указание на смену мест установки солнечных элементов одной (любой) из обмоток. Т.е. нужно взять любые 2 противоположные панельки и поменять их местами (просто переклеить не перепаивая). Не знаю для чего это нужно, в этом вижу смысл, если у нас не 2 обмотки, а больше. В нашем случае работать должно в любом состоянии. Лично я не заметил разницы.
Итак, если вращение есть, то запоминаем местоположение каждого солнечного элемента, убираем 2-х сторонний скотч, надеваем на ось с обоих концов прозрачные шестигранные ограничители и к ним приклеиваем панели. Я использовал цианокрилатный клей. А на противоположный конец от шарика оси надеваем пропеллер
8. Также необходимо не забыть приклеить ножки на нижнюю часть деревянной подставки
Испытания:
Аккуратно устанавливаем ротор на своё место, желательно под прямыми солнечными лучами. Если ротор сам не начинает крутиться, то слегка помогаем пальцем.
В комплекте имеются шарики и циллиндрик. При большом биении ротора можно с помощью этих шариков попытаться уравновесить его, в моем случае этого не понадобилось.
Еще несколько фото работающего мотора:Прошу обратить внимание на изменяющиеся геометрические размеры ротора и пропеллера, выглядит забавно 🙂
Видеоверсия:
На выбор 2 ролика: 1 — короткий с музыкой, 2 — длинный с пояснениями
Заключение:
Двигатель работает. Процесс сборки не занимает много времени, но требует аккуратности.
Из минусов: цена. На мой взгляд стоимость набора завышена как минимум в 2 раза. Но это самый дешевый вариант, который я нашел на Али.
Однако я уже купил и магниты и солнечные модули, хочу попробовать сделать нечто подобное с помощью 3D принтера. Если получится, сделаю подробный обзор с предоставлением моделей и ссылок на запчасти.
Мендосинский мотор — устройство и принцип работы, особенности использования
Мендосинский мотор (мендосинский бесколлекторный магнитно-левитационный солнечный мотор) назван в честь округа Мендосино, что на побережье штата Калифорния, США. Здесь живет изобретатель Ларри Спринг, который 4 июля 1994 года изобрел данный мотор. Эта модель долгое время стояла на подоконнике магазинчика Ларри, и через некоторое время она стала настоящей достопримечательностью округа, ведь ротор вращался и вращался, будучи подвешен буквально в воздухе.
Мотор Спринга, как и любой другой мотор, состоит из ротора и статора. Однако мендосинский мотор — это не совсем обычный мотор. Статор мендосинского мотора — это подставка с постоянным магнитом и с магнитной опорой, а ротор — диэлектрический каркас с набором солнечных батарей, установленных поверх катушек, намотанных на левитирующий над магнитными подставками ротор.
Фотоны солнечного света активируют солнечные батареи, которые в свою очередь рождают электрический ток. Ток проходит через катушки, намотанные на ротор, и возникающие магнитные поля катушек, взаимодействуя с магнитным полем постоянного магнита (статора), приводят ротор во вращение.
Выражаясь более точно, сила Ампера со стороны магнитного поля постоянного магнита — выталкивает проводники катушек, по которым течет ток. А поскольку катушки получают питание по очереди, то и выталкиваются они по очереди.
Таким образом, мендосинский мотор можно классифицировать как бесколлекторный магнитно-левитационный солнечный мотор малой мощности — разновидность бесколлекторного электродвигателя с магнитным статором и с обмотками возбуждения ротора, питаемыми энергией солнца.
Маленькая модель преобразует всего пару ватт мощности, и для промышленных целей этого, конечно, не достаточно, но в качестве наглядного макета — вполне пойдет.
Ротор, насаженный на металлический вал, имеет квадратное сечение, благодаря чему с четырех сторон ротора уютно размещены солнечные батареи. Ротор располагается горизонтально, а на концах вала установлены постоянные кольцевые магниты. Именно благодаря этим магнитам по бокам ротор и левитирует, сводя трение практически к нулю.
Магниты на концах вала ротора зависают над магнитными подставками, удерживая ротор в подвешенном состоянии. Магнит, расположенный непосредственно под ротором, необходим для создания магнитного поля статора, от которого мог бы отталкиваться ротор для вращения.
Когда на одну из сторон ротора падает солнечный свет, одна из солнечных батарей, установленных на роторе, генерирует электрический ток, который направляется в обмотку ротора, расположенную около магнита статора. Ток, устремляющийся в обмотку, создает магнитное поле соответствующего полюса ротора, и ротор отталкивается этой обмоткой от постоянного магнита статора.
Таким образом ротор вращается — каждая обмотка поочередно получает питание и отталкивается: следующий солнечный элемент попадает под свет, генерируется ток, возбуждается обмотка, — ротор вращается дальше. Пока на ротор падает достаточно солнечного света, мотор будет вращаться. Это своего рода аналог коммутатора коллекторного двигателя, только «световой».
Что касается подвески ротора, то она выполнена на постоянных магнитах для того, чтобы свести трение к минимуму, ведь мощность мотора крайне мала, чтобы преодолевать сколь-нибудь значительное трение, поэтому трение оставлено лишь о воздух. Но с одной из сторон ось ротора все же подпирается стенкой для придания ротору дополнительной устойчивости, для создания условия устойчивого равновесия.
В таком состоянии мотор может работать месяцами и годами, при условии что на него падает хотя бы немного света.
Так делают мендосинские моторы разные любители. В оригинальной же модели Ларри Спринга ось с двух сторон подпиралась стеклами за заостренные пятки.
Постановка задачи
На днях я увидел на просторах интернета крайне любопытную вещь: мендосинский двигатель. Ротор на подшипниках крайне низкого трения: оригинальный имел стеклянный цилиндр, подвешенный на двух иголках, современные имеют магнитный подвес оси. Двигатель бесколлекторный, на роторе подвешены солнечные батареи, которые выдают напряжение на катушки, намотанные на роторе. Ротор проворачивается в фиксированном магнитном поле статора, солнечная батарея уходит от направленного света, на её место приходит другая. Крайне элегантное решение, которое вполне под силу сделать дома каждому.
Вот на этом видео крайне подробно описан (на русском языке) принцип работы:
Но ещё больше самого двигателя мне показалась любопытной следующая вещь. В описании этого видео Дмитрий Коржевский написал следующую вещь: «Боковую опору заменить магнитом НЕВОЗМОЖНО. Не задавайте больше этот вопрос!»
Отмазка: я ни разу не физик, могу сильно ошибаться, поправки приветствуются.
О, это интересно. Давайте ещё раз посмотрим, как работает магнитный подвес ротора. Если мы поставим два магнита, то изолиния потенциала выглядит следующим образом в зависимости от расстояния между двумя магнитами:
То есть, мы ставим два фиксированных магнита на статоре. Магнит на оси ротора не захочет сдвинуться вбок, т.к. изолиния потенциала имеет некий локальный минимум. Он захочет выскочить вдоль оси ротора. Делаем две таких системы, получаем ось ротора, которая зафиксирована магнитным полем в радиальном направлении, но при этом нестабильна в продольном. Упираем ось в стеклянную стеночку и вуаля, получили подшипник слабого трения.
Но стеклянная стеночка — это как-то… неэлегантно, что ли? Вполне логично желание получить полностью парящий в воздухе ротор, безо всяких костылей. И явно Дмитрия затюкали этим вопросом, да так, что он был вынужден написать невозможность подобного прямо в описании видео. И ведь Дмитрий Коржевский не один такой.
Давайте посмотрим сюда, цитирую:
What would happen if the base magnets were spaced and oriented like in this drawing? Would it give it stability in the axial plane, and do away with the mirror requirement?
On a Mendocino Motor why does one side float free while the other has a tip to a wall? I know the question might sound trivial but I have worked up the idea why not use the same magnets used to levitate as a counter force on both sides of the shaft? I attached a very rough jpg of what I mean. the green magnets at the end of the shafts is what im referring to. is there some theory or law preventing this?
То есть, люди по всему миру хотят избавиться от механической поддержки оси. Я в школе учился плохо и мне невозможность создания полностью магнитного подвеса без костылей тоже ни разу не очевидна. При случае я за чашкой чая задал своему начальнику, учёному с мировым именем (не физику, прикладному математику), этот вопрос: «А почему, собственно невозможно?» И знаете, ему это тоже не было очевидно!
На вышеозначенных форумах никто толком не объяснил, почему это невозможно. В лучшем случае цитировали какую-то теорему Ирншоу, которая не слишком-то удобоварима. Итак, она гласит следующее: «Всякая равновесная конфигурация точечных зарядов неустойчива, если на них кроме кулоновских сил притяжения и отталкивания ничто не действует.» Вам ясно? Мне нет. Положим, я могу смириться с тем, что мы говорим про заряженные частицы, а не про магниты. Но дальше?
Первая иллюстрация
Когда мне что-то неясно, я рисую картинку. Для простоты она будет в двумерном пространстве. Давайте представим четыре закреплённых единичных заряда по углам квадрата и свободный заряд в центре квадрата. Примерно так:
Неужели свободный заряд не находится в состоянии устойчивого равновесиия? Ведь куда бы он ни двинулся, он приближается к одному из фиксированных зарядов, увеличивая силу отталкивания! Давайте попробуем нарисовать карту потенциальной энергии свободного заряда. Я в школе учился плохо, физику прогуливал, поэтому будем черпать знания из википедии. Итак, если мы имеем в пространстве только один закреплённый заряд, то он создаёт во всём пространстве электростатический потенциал.
Формула электростатического потенциала (кулоновского потенциала) точечного заряда в вакууме:
Во всех умозрительных опытах все коэффициенты у меня равны либо нулю, либо единице. Поэтому заряд q единичный, неясный k тоже единица. То есть, один закреплённый заряд создаёт потенциал, измеряемый по формуле 1/r, где r — это расстояние до заряда.
Потенциальная энергия свободного единичного заряда в поле нашего закреплённого заряда также равна 1/r. (Вообще говоря, энергия равна k*q1*q2/r, но коэффициенты выбираем так, чтобы было удобно считать). Для нескольких зарядов все потенциалы просто складываются.
Давайте рисовать карту потенциальной энергии нашего свободного заряда, я это делаю при помощи sage:
Вот карта, я выколол точки, где потенциальная энергия уходит в бесконечность:
По центру квадрата чётко виден локальный минимум энергии. Куда бы ни двинулась частица из центра, энергия будет увеличиваться, поэтому от небольших возмущений она явно захочет вернуться назад в центр, это точка устойчивого равновесия. Неужели Ирншоу соврал? Нет, он не соврал. Проблема в том, что я плохо нарисовал картинку. И многие ошибаются ровно так же, как и я. Остановитесь сейчас, подумайте, где я ошибся?
В данном случае ошибка в том, что в двумерном пространстве закреплённый заряд создаёт потенциал, измеряемый по формуле -ln r, где r — это расстояние до заряда, а вовсе не 1/r. Давайте на некоторое время вы мне поверите на слово и разрешите неясным образом изменить кулоновскую формулу, тогда корректный код будет выглядеть вот так:
Вот картинка с картой потенциальной энергии:
Обратите внимание, что локальных минимумов на карте нет. Центр квадрата — седловая точка, то есть, точка неустойчивого равновесия. Как только свободный заряд сдвинется хоть на микрон от центра квадрата, он обязательно скатится и вылетит из квадрата, ускоряясь и ускоряясь.
Секунду, что всё же произошло с формулой потенциала?
Когда я получил явное противоречие с теоремой Ирншоу, я понял, что где-то прокололся и стал искать ошибку. Ошибку искать лучше всего последовательно с самого начала. Я тяжко вздохнул и пошёл читать, что такое уравнения Максвелла. В школе я учился не то, что бы очень плохо, оценки у меня были отличными. Только знаний вынес явно не по всем предметам. Например, уравнения Максвелла мне разве что в кошмарах снились после школы, а в университете и далее с ними сталкиваться просто не приходилось.
А оказалось, что там всё крайне просто, особенно если мы интересуемся только электростатикой! Уравнений Максвелла четыре по количеству следующих законов:
1. Закон Гаусса, он нам пригодится. Пока оставим всякие дивергенции, «на пальцах» это просто закон сохранения: энергия из ниоткуда не берётся и в никуда не уходит.
2. Закон Гаусса для магнитного поля — те же яйца, вид сбоку. Да и магнитным полем я пока не интересуюсь, т.к. разговор идёт от заряженных частицах, пропускаем.
3. Закон Фарадея: если мы двигаем магнитами, то они порождают электрическое поле, это интересно, подробнее поглядим потом.
4. Закон Ампера: если мы двигаем электрическим полем, то порождаем магнитное. На фиг, неинтересно.
Итак, эти четыре закона связывают между собой два векторных поля E и B, электрическое поле и магнитное. Эти векторные поля — это функции, которые имеют четыре аргумента (x,y,z,t), и каждой четвёрке аргументов сопоставляют один трёхмерный вектор. Магнитное нам не очень интересно в данном случае, рассмотрим поле E(x,y,z,t). Причём не забываем, что мы интересуемся электростатикой, поэтому E постоянно во времени. Очень удобно рассматривать это векторное поле как некоторую реку, где каждой в каждой точке реки мы говорим, куда и с какой скоростью течёт вода.
Закон Фарадея говорит о том, что в случае постоянное во времени поле E (мы же говорим про электростатику) не имеет вихрей.
Как связан электростатический потенциал с электрическим полем? Очень просто: если поле E безвихревое (наш случай), то возможно создать такой ландшафт u, что покрыв его метровым слоем воды (на всех высотах!) и «отпустив» эту воду, скорость и направление течения воды породит поле E. Если умными словами, то можно найти такую скалярную функцию u, что её градиент равен полю E.
Закон Гаусса говорит следующее: возьмём маленькую область пространства. Если мы в неё не поместили заряда специально, то количество
«воды», которое затекает в эту область, равно количеству, которое вытекает. Если хочется выпендриться, то можно сказать, что дивергенция поля E равна нулю.
Напоминаю, что поле E — это производная скалярной функции u. Если её дивергенция равна нулю, то это означает, что лапласиан функции u равен нулю. Лапласиан — это умное слово для обозначения «кривизны» функции. В случае функции одной переменной лапласиан — это просто вторая производная. Вторая производная равна нулю только у постоянной или линейной функции (логично, кривизна равна нулю). В случае функции двух переменных лапласиан — это сумма двух частных производных. Если он равен нулю, то кривизна в одном направлении обязана быть аннулирована кривизной в другом направлении. То есть, чипсы разрешены:
А вот локальных минимумов (максимумов тоже) функция с нулевым лапласианом не имеет. То есть, чипсы разрешены, а холмы нет:
Представьте, что мы обмакнём проволочное колечко (хорошо изогнутое) в мыльную воду. Тогда мыльная плёнка образует поверхность с нулевым лапласианом:
Это будет так называемая минимальная поверхность. Мыльная плёнка старается уменьшить свою площадь. Логично, что если бы на ней был некий локальный максимум, то сгладив его, мы получили бы плёнку меньшей площади. Поэтому их и нет. Итак, электростатический потенциал — это своего рода минимальная поверхность, локальных максимумов (в местах, куда мы специально заряд не помещали) не имеет.
Функция 1/r имеет нулевой лапласиан в трёхмерном пространстве, а вот в двумерном нет! Если мы хотим рисовать двумерные примеры, то нам нужно решить задачу Дирихле, я о ней уже говорил в одной из своих предыдущих статей. Для 2D это будет функция -ln r.
Update: хороший комментарий chersanya, проясняющий суть магии.
Теорема Ирншоу и её следствия
Итак, возвращаясь к нашему примеру с одной свободной заряженной частицей. Потенциал электростатического поля не имеет локальных минимумов, и, как следствие, потенциальная энергия одной частицы локальных минимумов не имеет. Поэтому одна частица не может находиться в состоянии устойчивого равновесия в постоянном поле. Поздравляю вас, мы только что доказали теорему Ирншоу. Но вот как быть с более сложными системами? Как применить эту теорему к ним?
Вот очередной пример, предложенный моим начальником, который должен был опровергнуть теорему Ирншоу. Давайте зафиксируем два заряда и создадим подвижное тело, состоящее из невесомой нерастяжимой палки с зарядами на обоих концах:
Интуитивно, если мы слегка сдвинем палку влево (вправо), то один из концов приблизится к фиксированным зарядам, и они его оттолкнут, вернув палку в изначальное положение. Где же подвох? Давайте нарисуем электрстатический потенциал двух фиксированных зарядов:
Как нарисовать потенциальную энергию нашей заряженной по концам палки? Палка имеет три степени свободы (две на перемещение и одна на вращение), поэтому график будет четырёхмерным. Давайте попробуем проигнорировать вращение и разрешим палке только параллельно перемещаться. Зафиксируем точку на палке, например, её центр, будем рисовать карту потенциальной энергии палки для положения её центра. Тогда общая потенциальная энергия палки — это сумма потенциальных энергий зарядов на конце:
Итак, энергия палки имеет четыре пика (каждый из двух концов палки попадает на каждый из двух зарядов). Как и предполагалось, палка не захочет двигаться по горизонтали. Она убежит по вертикали!
Это логично, ведь из чего мы получили энергию? Мы сложили потенциальные энергии каждого заряда. Мы знаем, что потенциальная энергия каждого заряда — это функция с нулевым лапласианом. Их сумма тоже будет иметь нулевой лапласиан. То есть, потенциальная энергия любого (не только нашей палки!) заряженного тела не может иметь минимумов в постоянном электрическом поле!
Выводы
Ментальное изображение магнитных и электрических полей у людей, плотно не работавших с физикой, обманчиво. Мозг нас обманывает, рисуя картины минимумов энергии. К сожалению, это не так, и действительно создать мендосинский двигатель без опоры представляется затруднительным.
Какие могут быть лазейки? Теорема Ирншоу (если мы сделаем усилие и вообще применим её к магнитам) применима только системам неподвижных постоянных магнитов.
1. Мы можем попытаться создать динамическое магнитное поле
2. Диамагнетизм и всякие сверхпроводники также не входят в рамки теоремы Ирншоу
3. Подвижные вообще и вращающиеся в частности тела также не рассмотрены, наиболее известный пример левитрон
Так что, не всё ещё потеряно. Да, использование любой из этих вещей убьёт начисто лаконичность мендосинского двигателя, но магия свободно парящих в воздухе вещей перекроет всё!
Update:
Именно теорема Ирншоу показала невозможность существования твёрдой материи, таким образом отвергнув существовавшую модель строения атома. В итоге была построена планетарная модель атома.