Спектрофотометр в чем измеряется
Перейти к содержимому

Спектрофотометр в чем измеряется

Спектрофотометр. Виды и работа. Применение и особенности

Спектрофотометр – это электронный оптический прибор для измерения цвета твердых поверхностей и жидких веществ путем их спектрального анализа. Устройство является более точным и универсальным в применении чем колориметр, поскольку не просто сравнивает цвета для определения их схожести, а дает конкретные параметры спектра, то есть полное название. При подборе цветов оперировать такими данными гораздо удобней, чем просто сравнивая эталон и образец, постоянно корректируя оттенок последнего под необходимые параметры.

Как работает спектрофотометр

Прибор направляет на измеряемый предмет или вещество пучок света, который отражается с поверхности либо пропускается сквозь нее (у жидкостей и пленок).

Принцип его работы позволяет проводить анализ различных поверхностей и веществ:
  • Твердые плоские предметы.
  • Жидкости.
  • Гранулы.
  • Порошки.
  • Пленки.

Спектрофотометр оснащается встроенной лампой освещения, которая излучает свет с установленными параметрами яркости и температуры. Свет отражается от анализируемой поверхности и попадает на фоточувствительный элемент. Тот воспринимает длину отраженных лучей. Матрица прибора проводит анализ исходных данных, в результате которого электронная часть выдает информацию о характеристиках отраженных и поглощенных лучей. В результате эти данные переводятся в коэффициент отражения либо пропускания. Коэффициент у каждого цвета уникален, поэтому зная его можно точно определить оттенок.

Виды спектрофотометров по источнику света и площади измерения
Разные спектрофотометры работают от разных источниках света. Определить какой именно установлен на том или ином устройстве можно по буквенной маркировке:
  • А – электрическая лампочка со световой температурой 2856К.
  • С – не прямые солнечные лучи со световой температурой 6774К.
  • D – обычное дневное освещение со световой температурой 5000К.
  • D65 – дневное освещение со световой температурой 6500К.

Кроме источника света при анализе спектра цвета предмета или вещества важна и его площадь измерения. Этот показатель отвечает за величину области, которая поддается сканированию. Чем она больше, тем точнее результат, поскольку берутся данные с большего количества точек, и выводится средний показатель. Устройства с малой площадью измерения являются тоже точными, но только при анализе ровных однородных по цвету поверхностей. Если же нужно определить цвет порошка, гранул, природного камня и прочих сложных поверхностей, то нужна большая площадь измерения.

Стационарные и мобильные приборы
Спектрофотометры отличаются между собой по габаритам, точности и удобству использования. Они бывают:
  • Стационарные.
  • Мобильные.

Стационарный спектрофотометр является на порядок точнее. Он используется для лабораторного анализа спектра, также применяется на производствах. Такие устройства имеют крупную измерительную головку, но для них характерны большие габариты, поэтому их сложно транспортировать. Их питание осуществляется от электрической сети, поэтому такие спектрометры не могут использоваться как аппараты для полевых исследований. Данные устройства подразумевают необходимость использования для анализа малого образца. Они совершенно не подходят, к примеру, для определения цвета краски на детали кузова автомобиля, так как ее просто не получится приложить к устройству.

Statsionarnye spektrofotometry

Мобильные или портативные приборы отличаются малым весом. Они питаются от аккумулятора или батареек. Благодаря этому их можно использовать в любом месте, вне зависимости от наличия там электросети. Результаты измерения устройства выводятся сразу в реальном времени на его ЖК-дисплей. Кроме этого данные приборы обладают собственной внутренней памятью, поэтому результаты замеров не нужно отдельно выписывать сразу же после исследования. Портативные устройства просто прикладываются сканирующей головкой к поверхности, цвет которой нужно определить. Это позволяет их применять для анализа крупных объектов.

Mobilnye spektrofotometry

Перед использованием прибора любого типа для достижения максимальной точности необходимо провести очистку сканируемой поверхности. Наличие пыли или грязных разводов существенно снизит точность конечного результата. Также нужно отметить, что поскольку мобильное устройство часто применяется на улице, то следует учитывать, что точность измерения во многом зависит от окружающей температуры. Если она больше +30°С, то измерения нужно отложить, пока поверхность образца не остынет.

Геометрия измерения спектрофотометром

Очень важным параметром прибора, влияющим на его точность, является геометрия измерения. Она состоит из двух значений. Первое указывает на то как осуществляется освещение образца, а второй как тот наблюдается.

Спектрофотометр может работать по следующим геометриям измерений:
  • 45/0 – подразумевает освещение образца одним или несколькими пучками света, оси которых направлены относительно нормали образца под углом 45°. При этом нормаль наблюдения относительно поверхности осуществляется под углом 10°.
  • 0/45 – предусматривает освещение образца под углом 10°, и проведение наблюдения под углом 45°.
  • D/0 – для освещения образца применяется диффузно интегрирующий источник, что позволяет добиться разностороннего падения лучей, при этом наблюдение выполняется под углом 10°.
  • 0/D – пучок света направляется на образец под углом 10°, при этом отраженные волны собираются интегрирующей сферой.

Точность измерения напрямую зависит от применяемой геометрии освещения. В связи с этим в современных спектрофотометрах используются только схемы 45/0 и D/0. Геометрия 45/0 наиболее бюджетная в производстве приборов и позволяет добиться быстрого анализа результатов. Поэтому ее применяют в портативных устройствах.

Spektrofotometr 2

Однако приборы с геометрией 45/0 дают погрешность. Дело в том, что цвет образца воспринимается по-разному, в зависимости от того с какой стороны его анализировать. Особенно это характерно для красок с мелкими частицами, типа металлик. Это заметно даже визуально невооруженным глазом. В связи с этим для более точных измерений применяется спектрофотометр работающий по схеме D/0. Он направляет много пучков света, создавая на поверхности образца световое кольцо. Благодаря этому осуществляется множественный анализ.

Spektrofotometr 3

Существует модификация приборов с интегрирующей сферой, работающей от светодиодного источника света. Она обозначается как D/0:с. Это очень точные устройства, но не применимые для исследования цвета на глянцевых и металлизированных поверхностях.

Обычные приборы D/0 исключают зеркальную составляющую, поскольку они имеют ловушку блеска. Она позволяет компенсировать блики и получить нормальный обзор поверхности для определения ее фактического цвета.

Когда какой прибор использовать

В зависимости от того какую геометрию измерения имеет спектрофотометр, зависит его фактическая себестоимость производства. Самыми дорогими являются устройства, работающие по схеме D/0. Однако их высокая точность не всегда нужна, поэтому существует масса задач, которые можно успешно решать аппаратами других типов. При этом получаемая в результате погрешность во многих ситуациях не является критичной.

Так если нужно проанализировать цвет образца с флуоресцентными свойствами или если он имеет эффект отбеливания, то оптимально применять спектрофотометр работающий по схеме D/0. Этот же прибор будет самым эффективным и для измерения светопропускной способности жидкости или тонкой пленки. Устройства этого типа способны рассчитать рецепт цвета, чтобы потом точно его воссоздать.

Если нужно просто проконтролировать цвет, чтобы убедиться что он соответствует эталону, то достаточно использования прибора работающего с геометрией 45/0. Это, как правило, портативные устройства, которые предусматривают возможность подключения к компьютеру. На последний устанавливается одно из многих доступных программных обеспечений. ПО используя данные от спектрофотометра сравнивает их с базой цветов. Это позволяет проверить идентичность цветов, или даже узнать точное название цвета, в том числе маркировку и бренд краски, которая полностью ему соответствует.

Где применяются спектрофотометры

Это сугубо профессиональный и достаточно дорогостоящий прибор, применение которого для любительских задач совершенно нерентабельно. Его используют на производствах для контроля сырья, чтобы готовая продукция разных партий полностью соответствовала друг другу. Именно благодаря использованию спектрофотометров колоранты, краски, мебель и многие другие товары всегда имеют одинаковый заявленный цвет, даже если относятся к партиям продукции произведенной в разные годы.

Портативный спектрофотометр в основном предназначен для контроля попадания в цвет при выполнении реставрационных работ. Если нужно сделать частичную перекраску поверхности, с целью экономии краски, то используя прибор можно узнать какой тон использовать, чтобы избежать видимого перехода между подкрасами и старым покрытием.

Spektrofotometr 4

Это особенно актуально при покраске поврежденных деталей кузова автомобилей. Специально для этой задачи под многие спектрофотометры разработано программное обеспечение с каталогом красок разных производителей. Благодаря этому проведя сканирование очищенной поверхности кузова автомобиля со старой краской, можно ввести данные спектра в поиск программы. В результате она выдаст список красок с указанием названия бренда и тона, которые дадут такой же цвет. При этом они будут упорядочены по порядку попадания в цвет. Сначала указываются краски полностью соответствующие по тону, потом с погрешностью 1%, 1, 5% и т.д.

Спектрофотометр в чем измеряется

Цвет присутствует повсюду в нашей повседневной жизни. Знаете ли вы, что вы действительно можете измерить цвет?

spectrophotometer — спектрофотометр является важным инструментом для биологов и техников при анализе химических и биологических образцов.

В этом блоге будут рассмотрены некоторые основы спектрофотометрии и различные конфигурации.

Свет и цвет

colorimetric-wave

Проще говоря, цвета зависят от освещения. На самом деле мы не видим цветов, скорее то, что мы видим как цвет, — это эффект света, падающего на объект. Когда белый свет падает на объект, он может отражаться, поглощаться или передаваться. Стекло пропускает большую часть света, который соприкасается с ним, поэтому оно кажется бесцветным. Снег отражает весь свет и кажется белым. Черная ткань поглощает весь свет и поэтому кажется черной. Красный лист бумаги отражает красный свет лучше, чем другие цвета. Большинство объектов кажутся цветными, потому что их химическая структура поглощает определенные длины волн света и отражает другие.

Когда мы обсуждаем свет, мы обычно имеем в виду белый свет. Тонкая линия света называется лучом; луч состоит из множества лучей света. Когда белый свет проходит через призму (треугольный прозрачный объект), цвета, составляющие белый свет, рассеиваются на семь цветовых полос. Эти полосы цвета называются спектром. Семь цветов составляют белый свет: красный, оранжевый, желтый, зеленый, синий, индиго и фиолетовый. В любом спектре цветовые полосы всегда расположены в таком порядке слева направо.

Предположим, мы направляем луч белого света на вещество, которое поглощает синий свет. Поскольку синяя составляющая белого света поглощается веществом, пропускаемый свет в основном желтый, дополняющий синий цвет. Этот желтый свет достигает наших глаз, и мы “видим” вещество как вещество желтого цвета.

Изменение цвета системы, которая подвергается изменению концентрации какого-либо компонента, является основой колориметрического анализа.

colorimetric-analysis

Что такое колориметрия?

Колориметрия — это просто измерение цвета. Колориметрия — это определение концентрации вещества путем измерения относительного поглощения света по отношению к известной концентрации вещества. В визуальной колориметрии в качестве источника света обычно используется естественный или искусственный белый свет, и определения обычно производятся с помощью простого прибора, называемого колориметром или цветовым компаратором. Когда глаз заменяется фотоэлементом, прибор называется фотоэлектрическим колориметром.

Колориметрический анализ основан на принципе, согласно которому многие вещества вступают в реакцию друг с другом и образуют цвет, который может указывать на концентрацию измеряемого вещества. Когда вещество подвергается воздействию луча света с интенсивностью (i₀), часть излучения поглощается молекулами вещества и испускается излучение с интенсивностью (I). Эта разница в интенсивности используется для колориметрического определения.

Количество поглощенного излучения определяется законом Бера-Ламберта:

Ɛ является молярным коэффициентом экстинкции [L/(mol·cm)]

l это длина пути (cm)

C концентрация (mol/liter)

Фотометр против спектрофотометра

Фотометр

Фотометр выделяет определенную длину волны света с помощью фильтров. Колориметр использует фильтры пограничной полосы или какую-либо подобную систему для разделения света на цветовые компоненты, а затем подгоняет их к соответствующим кривым, основанным на человеческом глазу, для получения значений цвета, основанных на том, что видит человеческий глаз. Это идеально подходит для сопоставления зрительной реакции человека, но ничего не говорит вам о данных, невидимых человеческому глазу, таких как всплески излучения в узких точках спектра; это спектральные данные, и для них требуется спектрофотометр.

photometer-benchtop-hi83399-600by800

Спектрофотометр

Спектрофотометры отличаются от фотометров тем, что они позволяют проводить измерения в спектре всех длин волн видимого света, а не только заранее заданных длин волн. Спектрофотометры работают путем выделения света на определенных длинах волн из белого света. Спектрофотометр разбивает свет на спектр, используя цветную решетку или аналогичную систему. Затем массив датчиков считывает каждый участок спектра, получая спектральные данные. Это идеально, если вы анализируете спектральное излучение лампочки, звезды или какого-либо другого источника света, поэтому спектрофотометры часто используются в качестве научных приборов.

HI801_iris_Spectrophotometer

Оптические конфигурации спектрофотометра

Один луч

В обычном однолучевом спектрофотометре холостой образец и образец измеряются последовательно с интервалом в несколько секунд для измерения одной длины волны и до нескольких минут для измерения полного спектра с помощью обычного прибора. Дрейф лампы может привести к значительным ошибкам в течение длительных интервалов времени.

single beam

Два луча

Двойной, или двухлучевой, спектрофотометр был разработан для компенсации этих изменений интенсивности лампы между измерениями на кюветах с эталоном и образцом. В этой конфигурации источник света излучает один световой луч, который разделяется световым прерывателем, создавая два луча одинаковой энергии с одинаковым оптическим путем. Один луч проходит через эталон, в то время как другой луч проходит через образец.

По сравнению с однолучевыми конструкциями двухлучевые приборы содержат больше оптических компонентов, что снижает пропускную способность и чувствительность. Для обеспечения высокой чувствительности может потребоваться длительное время измерения. Кроме того, более сложная механическая конструкция двухлучевого спектрофотометра может привести к снижению надежности.

dual beam

Разделенный луч

Спектрофотометр с разделенным лучом напоминает двухлучевой спектрофотометр, но использует светоделитель вместо прерывателя для одновременной передачи света по траекториям эталона и образца на два отдельных, но идентичных детектора. Эта конфигурация позволяет измерять заготовку и образец одновременно. Конструкция с разделенным лучом механически проще, чем у настоящего двухлучевого прибора, и требует меньшего количества оптических элементов.

Наилучшие варианты использования спектрофотометра

Современные спектрофотометры спроектированы так, чтобы быть одновременно прочными и портативными, обеспечивая гибкость в использовании. В то время как приложения почти бесконечны, некоторые из лучших применений включают:

Элементное определение качества воды

Ферментативный анализ в вине

Анализ свойств удобрений для сельского хозяйства

These are just some of the many potential uses for a spectrophotometer.

Спектрофотометрия в УФ и видимой областях (ОФС.1.2.1.1.0003.15)

Спектроскопические методы анализа основаны на избирательном поглощении электромагнитного излучения анализируемым веществом и служат для исследования строения, идентификации и количественного определения светопоглощающих соединений.

В зависимости or используемой аппаратуры в фармацевтическом анализе различают следующие методы анализа, основанные на поглощении электромагнитного излучения и испускании света:

  • спектрофотометрия в ультрафиолетовой (УФ) и видимой областях;
  • спектрометрия в инфракрасной (ИК) области;
  • атомно-эмиссионная спектрометрия (АЭС);
  • атомно-абсорбционная спектроскопия (ААС);
  • флуоримегрия;
  • спектроскопия ядерного магнитного резонанса (ЯМР);
  • масс-спектрометрия;
  • рамановская спектрометрия;
  • рентгеновская флуоресцентная спектрометрия;
  • рентгеновская порошковая дифрактометрия.

Ряд длин волн, для которых проводятся измерения методами абсорбционной спектрофотометрии, охватывает спектральную область от коротких длин волн в УФ-области до ИК-области. Для удобства отнесений этот спектральный ряд делится на следующие диапазоны длин волн: УФ (от 190 до 380 нм), видимый (от 380 до 780 нм), ИК (от 0,78 до 400 мкм).

СПЕКТРОФОТОМЕТРИЯ В УЛЬТРАФИОЛЕТОВОЙ И ВИДИМОЙ ОБЛАСТЯХ

Уменьшение интенсивности монохроматического излучения, проходящего через гомогенную поглощающую среду, количественно описывается законом Бугера-Ламберта-Бера:

Т – пропускание, отношение интенсивности светового потока, прошедшего через вещество, к интенсивности падающего на вещество светового потока: Т = I/I0;
I – интенсивность прошедшего монохроматического излучения;
I0 – интенсивность падающего монохроматического излучения;
ε – молярный показатель поглощения;
с – молярная концентрация вещества в растворе;
b – длина оптического пути или толщина слоя, в сантиметрах.

Величина log10(1/Т) носит название оптической плотности, обозначается буквой А и является измеряемой величиной. В отсутствии других физико-химических факторов измеренная оптическая плотность (А) пропорциональна концентрации вещества в растворе (с) и толщине слоя (b).

Величина представляет собой удельный показатель поглощения, т.е. оптическую плотность раствора вещества с концентрацией 10 г/л (1 г/100 мл) в кювете с толщиной слоя 1 см. Величиныи ε связаны соотношением:

М.м. – молекулярная масса исследуемого вещества.

Измерение оптической плотности

Если нет других указаний в фармакопейной статье, измерение оптической плотности проводят при указанной длине волны с использованием кювет с толщиной слоя 1 см и при температуре (20 ± 1) °С по сравнению с тем же растворителем или той же смесью растворителей, в которой растворено вещество. При измерении оптической плотности раствора при данной длине волны оптическая плотность кюветы с растворителем, измеренная против воздуха при той же длине волны, не должна превышать 0,9 и, желательно, чтобы она была не менее 0,2.

Спектр поглощения представляют таким образом, чтобы оптическая плотность или ее некоторая функция были приведены по оси ординат, а длина волны или некоторая функция длины волны – по оси абсцисс.

Если в фармакопейной статье для максимума поглощения указывается только одна длина волны, то это означает, что полученное значение максимума не должно отличаться от указанного более чем на ± 2 нм.

Приборы

Спектрофотометры, предназначенные для измерений в ультрафиолетовой и видимой областях спектра, состоят из оптической системы, выделяющей монохроматическое излучение в области от 190 до 800 нм и обеспечивающей его прохождение через образец, и устройства для измерения оптической плотности.

Основными частями этих приборов являются: источник излучения, диспергирующий прибор (призма или решетка), щель для выделения полосы длин волн, кюветы для образцов, детектор излучаемой энергии, встроенные усилители и измерительные приборы.

Проверка шкалы длин волн в ультрафиолетовой и видимой области. Точность калибровки прибора по шкале длин волн в спектральном ряду проверяют по приведенным в табл. 1 спектральным линиям водородной (Hβ) или дейтериевой (Dβ) разрядной лампы, линиям паров ртути (Hg) кварцево-ртутной дуговой лампы, а также по максимумам поглощения раствора гольмия перхлората (Ho) (готовый реактив для калибровки спектрофотометра представляет собой 4 % раствор гольмия оксида в 14,1% растворе хлорной кислоты). Допустимое отклонение составляет ± 1 нм для ультрафиолетовой и ± 3 нм для видимой области.

Таблица 1. Максимумы поглощения для проверки шкалы длин волн

241,15 нм (Но) 404,66 нм (Hg)
253,7 нм (Hg) 435,83 нм (Hg)
287,15 нм (Но) 486,0 нм (Dв)
302,25 нм (Hg) 486,1 нм (Нв)
313,16 нм (Hg) 536,3 нм (Но)
334,15 нм (Hg) 546,07 нм (Hg)
361,5 нм (Но) 576,96 нм (Hg)
З65,48 нм (Hg) 579,07 нм (Hg)

Шкала длин волн может быть калибрована также при помощи подходящих стеклянных фильтров, которые имеют фиксированные полосы поглощения в видимой и ультрафиолетовой областях, а также стандартных стекол, содержащих дидим (смесь празеодима и неодима), и стекол, содержащих гольмий.

Проверка шкалы оптической плотности. Для проверки шкалы оптической плотности используют стандартные неорганические стеклянные фильтры или раствор калия дихромата при длинах волн, указанных в табл. 2, где для каждой длины волны приведено точное значение удельного показателя поглощения и допустимые пределы.

Раствор калия дихромата для проверки шкалы оптической плотности при 235, 257, 313 и 350 нм готовят следующим образом: от 57,0 до 63,0 мг (точная навеска) калия дихромата, предварительно высушенного до постоянной массы при температуре 130 °С, растворяют в 0,005 М растворе серной кислоты и доводят объем раствора тем же растворителем до 1000 мл. Для проверки оптической плотности при 430 нм, растворяют 57,0-63,0 мг (точная навеска) калия дихромата в 0,005 М растворе серной кислоты и доводят объём раствора тем же растворителем до метки.

Таблица 2. Удельный показатель поглощения стандартов при различных длинах волн

Предельный уровень рассеянного света. Рассеянный свет может быть обнаружен при данной длине волны с использованием соответствующих фильтров или растворов: например, оптическая плотность раствора 12 г/л калия хлорида в кювете с толщиной слоя 1 см резко увеличивается между 220 и 200 нм и должна быть больше 2 при 198 нм при использовании воды в качестве раствора сравнения.

Разрешающая способность (для качественного анализа). Если есть указание в фармакопейной статье, определяют разрешающую способность спектрофотометра следующим образом. Записывают спектр 0,02 % (об/об) раствора толуола в гексане. Минимально допустимое значение отношения оптической плотности в максимуме поглощения при 269 нм к оптической плотности в минимуме поглощения при 266 нм указывают в фармакопейной статье.

Ширина спектральной щели (для количественного анализа). В случае использования спектрофотометра с изменяемой шириной спектральной щели при выбранной длине волны возможны погрешности, связанные с шириной этой щели. Для их исключения ширина щели должна быть малой по сравнению с полушириной полосы поглощения (шириной на половине оптической плотности) и в то же время должна быть максимально велика для получения высокого значения интенсивности падающего монохроматического излучения (I0). Таким образом, ширина щели должна быть такой, чтобы дальнейшее ее уменьшение не изменяло величину измеряемой оптической плотности.

Кюветы. Допустимые отклонения в толщине слоя используемых кювет должны быть не более ±0,005 см. Кюветы, предназначенные для испытуемого раствора и раствора сравнения, должны иметь одинаковое пропускание (или оптическую плотность) при заполнении одним и тем же растворителем. В противном случае это различие следует учитывать.

Требования к растворителям. Для определений, производимых в ультрафиолетовой и видимой областях, образец анализируемого вещества растворяют в соответствующем растворителе, который должен быть оптически прозрачным в используемой области длин волн. Для этих областей длин волн пригодны многие растворители, в том числе вода, спирты, хлороформ, низшие углеводороды, эфиры и разбавленные растворы сильных кислот и щелочей.

Идентификация

Абсорбционную спектрофотометрию в ультрафиолетовой и видимой областях спектра применяют для определения подлинности лекарственных средств путем:

  • сравнения спектров поглощения испытуемого раствора и раствора стандартного образца; в указанной области спектра должно наблюдаться совпадение положений максимумов, минимумов, плеч и точек перегиба;
  • указания положений максимумов, минимумов, плеч и точек перегиба спектра поглощения испытуемого раствора; расхождение между наблюдаемыми и указанными длинами волн в максимумах и минимумах поглощения не должно обычно превышать ± 2 нм.

Возможны и другие варианты применения, оговоренные в фармакопейных статьях.

Количественное определение

Определение концентрации веществ спектрофотометрическим методом основано на использовании закона Бугера-Ламберта-Бера:

В ряде случаев, даже при использовании монохроматического излучения могут наблюдаться отклонения от закона Бугера-Ламберта-Бера, обусловленные процессами диссоциации, ассоциации и комплексообразования. Поэтому предварительно следует проверить линейность зависимости оптической плотности раствора от концентрации в аналитической области. При наличии отклонений от линейной зависимости следует пользоваться не формулой (3), а экспериментально найденной зависимостью.

Обычно определение концентрации спектрофотометрическим методом проводят с использованием стандартного образца. Расчет концентрации основан на использовании уравнения:

где:

С и С0 – концентрации испытуемого раствора и раствора стандартного образца, соответственно;

А и А0 – оптические плотности испытуемого раствора и раствора стандартного образца, соответственно.

Концентрации испытуемого и стандартного раствора должны быть близки.

Вначале измеряют оптическую плотность раствора стандартного образца, приготовленного, как указано в фармакопейной статье, затем проводят измерение оптической плотности испытуемого раствора. Второе измерение проводят сразу после первого, с использованием той же кюветы, в тех же экспериментальных условиях.

Метод с использованием стандартного образца является более точным и надежным. Возможность применения значения удельного показателя поглощения в каждом конкретном случае следует обосновывать. Обычно метод с использованием значения удельного показателя поглощения применим при допусках содержания анализируемого вещества не менее ±10 % от номинального содержания.

Многокомпонентный спектрофотометрический анализ

Многокомпонентный спектрофотометрический анализ (анализ смесей) применяют для одновременного количественного определения нескольких компонентов лекарственных средств, каждое из которых подчиняется закону Бугера-Ламберта-Бера.

Количественное определение в многокомпонентном спектрофотометрическом анализе основывается обычно на использовании уравнения:

где:

Аi – оптическая плотность испытуемого раствора при i-ой длине волны;

Еij – показатели поглощения (зависящие от способа выражения концентрации) j-го компонента образца при i-ой аналитической длине волны;

cj – концентрация j-го компонента образца.

Соответствующие методики проведения анализа и расчетные формулы указываются в фармакопейных статьях.

Производная спектрофотометрия

В производной спектрофотометрии исходные спектры поглощения (нулевого порядка) преобразуются в спектры производных первого, второго и более высокого порядков.

Спектр первой производной представляет собой график зависимости градиента кривой поглощения (скорость изменения оптической плотности от длины волны, dA/dλ) от длины волны.

Спектр второй производной представляет собой график зависимости кривизны спектра поглощения (d 2 A/dλ 2 ) от длины волны. Вторая производная при любой длине волны связана с концентрацией следующим соотношением:

Производная спектрофотометрия может быть использована как для целей идентификации веществ, так и для их количественного определения в многокомпонентных смесях, а также в тех случаях, когда имеется фоновое поглощение, вызванное присутствием веществ, содержание которых не регламентируется.

Приборы

Используют спектрофотометры, отвечающие указанным выше требованиям и оснащенные аналоговым резистивно-емкостным дифференцирующим модулем или цифровым дифференциатором, или другими средствами получения производных спектров, в соответствии с инструкцией к прибору. Некоторые методы получения спектров второй производной приводят к смещению длин волн относительно исходного спектра, что следует учитывать там, где это необходимо.

Разрешающая способность

Если указано в фармакопейных статьях, записывают спектр второй производной для раствора 0,2 г/л толуола в метаноле, используя метанол в качестве раствора сравнения. На спектре должен присутствовать небольшой отрицательный экстремум, расположенный между двумя большими отрицательными экстремумами при 261 нм и 268 нм, в соответствии с рис. 1. Если нет других указаний в фармакопейных статьях, отношение А/B должно быть не менее 0,2.

Методика

Процедура анализа аналогична применяемой в обычной спектрофотометрии, но вместо оптических плотностей используют производные. Готовят раствор испытуемого образца, настраивают прибор в соответствии с инструкцией производителя и рассчитывают количество определяемого вещества, как указано в фармакопейной статье.

Спектр второй производной раствора толуола (0,2 г/л) в метаноле

Рисунок 1. Спектр второй производной раствора толуола (0,2 г/л) в метаноле

Четыре задачи измерения цвета: зачем нужны спектрофотометры и колориметры

Сегодня измерение цвета становится всё более важной задачей: контроль за точностью его передачи позволяет улучшать качество выпускаемой продукции, снижать количество ошибок и даже минимизировать затраты. Измерять цвет и сравнивать его с образцом помогают два типа приборов – спектрофотометры и колориметры. И сфера их применения намного шире, чем может показаться на первый взгляд.

В каких направлениях могут использоваться спектрофотометры и колориметры и зачем именно бизнесу количественно определять такой качественный показатель, как цвет – рассказывает руководитель отдела технической поддержки департамента сервисной поддержки и аутсорсинговых решений Konica Minolta Business Solutions Russia Сергей Дручинин.

На зрительное восприятие цвета влияет большое число факторов: окружающая среда, личные особенности человека, в том числе пол и возраст, его цветовые предпочтения. Цвет продукта может выглядеть по-разному при холодном освещении магазина или под тёплым светом домашней лампы; два образца могут выглядеть одинаково при дневном свете и по-разному при искусственном освещении. При этом бизнесу необходимо гарантировать постоянство внешнего вида и цвета продукции. А для этого важно определить его объективные показатели и числовые параметры, которые будут поддаваться контролю. Для контроля цвета могут применяться различные измерительные приборы – в первую очередь спектрофотометры и колориметры.

Основными различиями между спектрофотометром и колориметром является принцип работы. У колориметра он ближе к человеческому глазу – прибор имеет три типа сенсоров: красный, зеленый и синий. Вычисления производятся по результатам измерения интенсивности отраженного света этих цветов, а по их итогам численные значения цвета будут преобразованы в координаты цветового пространства L*a*b.

Спектрофотомер же производит измерения для каждого отдельного цвета видимого спектра, после чего результат измерения цвета преобразуется в спектральную характеристику. Таким образом, результаты одного измерения цвета могут применяться для расчета спектральной характеристики с использованием другого эталонного источника света или быть преобразованы в координаты любого цветового пространства. Благодаря этому спектрофотометры точнее колориметров и обладают более широким спектром функций. Рассмотрим основные сферы применения этих приборов подробнее.

Цвет играет большое значение в пищевой промышленности: в сознании потребителя он неразрывно связан с критериями вкуса и свежести – и среди множества схожих товаров на полке покупатель скорее выберет продукт, который будет наиболее привлекателен внешне. Именно по внешним характеристикам, в том числе и цвету, специалисты могут определить степень готовности и качество продукта. Поэтому эти характеристики стандартизированы и строго контролируются при производстве.

Сравнивать цвет продукции со стандартом приходится при производстве многих продуктов. Например, колориметры применяются для определения цвета помидоров и томатной продукции – скажем, пасты, соков или соусов; а ещё степени прожарки кофейных зёрен или молотого кофе, контроля выпечки хлебобулочных изделий. Также при помощи колориметра производитель может проверять равномерность цвета от партии к партии, что позволяет обеспечивать стабильность качества.

Однако при покупке для потребителя важен внешний вид не только самого продукта, но и его упаковки. Её цвет воспринимается как часть товара: блёклая упаковка или неверная передача оттенка логотипа могут натолкнуть на мысль о подделке. Общепринятые стандарты в области цвета тесно связаны с оценкой качества товара – этот принцип заложен в психологии потребителя.

Контролировать качество при помощи цвета можно и при производстве косметической продукции. Особенно актуальным это становится на этапе производства сырья, в частности пигментов, от которых зависит итоговый цвет изделия. Однако колориметры могут применяться ещё раньше, на этапе исследований – например, для детального сравнения цвета волос до и после окрашивания при тестировании краски.

Или ещё один пример – сравнение цвета образца косметической продукции с её цветом на коже, ведь оттенки будут немного различаться. Один и тот же цвет косметики может быть не одинаковым даже в зависимости от точки обзора, и это также важно учитывать при производстве.

Измерения одного только цвета в косметической промышленности недостаточно: необходима также оценка различных эффектов – например, блеска. Представим матовую и глянцевую помаду: между их визуальным восприятием есть разница, даже если они одного цвета. Для оценки степени блеска используется отдельный класс устройств – блескомеры. Показатель блеска определяется отношением интенсивности отраженного света к излученному и сравнивается с эталонным значением. Угол освещения поверхности выбирается в зависимости от типа покрытия, которое может быть, например, глянцевым или матовым.

Со схожими проблемами сталкиваются автомобильные производители: для привлечения внимания к автомобилям они окрашивают их в специальные цвета с металлическим или перламутровым эффектами. Поверхности с такими эффектами также могут менять цвет в зависимости от угла обзора. В таких случаях производители используют многоугловые (гонио) спектрофотометры.

Использование сложных оттенков становится непростой задачей для автомобилестроения, ведь все поверхности автомобиля должны иметь один цвет, даже если состоят из разных материалов – и кузов, и бампер, и даже корпуса зеркал. Учитывая, что все эти детали производят разные поставщики, которые используют разные методы окраски, контроль цветового соответствия выходит на первый план.

Кроме того, востребованным измерение цвета становится при ремонте автомобилей: покраска деталей требует точного попадания в тон, иначе разница будет заметна даже невооружённым глазом. Использование спектрофотометра особенно необходимо, когда неизвестен код краски, кузов автомобиля перекрашивался ранее или в каталоге цветов сервиса отсутствует требуемый образец.

Область применения спектрофотометрических методов в медицине и фармацевтике довольно широка: на определении оптического поглощения основаны многие методы количественного анализа соединений. Кроме того, измерение цвета может помочь установить зависимость между спектрами поглощений различных соединений и их химическим строением – то есть для проведения не только количественного, но и качественного анализа. Например, спектрофотометры могут применяться для исследований крови – измерения её сатурации (насыщения кислородом) путем измерения поглощения света, прошедшего через пробу в различных спектральных диапазонах. Измерения могут проводиться даже проточно.

Если рассматривать конкретные направления, то измерение цвета в медицине может быть актуальным в стоматологии. Скажем, прежде чем выбрать композитный материал для реконструкции зуба, стоматологу необходимо определить его тон – даже малейшая разница в цвете может со временем стать крайне заметной и неприятной.

Это далеко не полный список направлений, в которых может применяться измерение цвета: спектрофотометры и колориметры используются при производстве бумаги, полимеров и изделий на их основе, изготовлении стройматериалов, при реставрационных работах или капитальном ремонте зданий, на текстильных предприятиях и в полиграфии. Контроль цвета в различных отраслях обеспечивает единство информации о цвете продукции, передаваемой между филиалами или разными производствами; а также позволяет сократить расходы, связанные с неправильным подбором цвета и необходимостью повторного окрашивания. При этом именно измерение цвета позволяет количественно описать то, что, казалось бы, передать невозможно – наши зрительные впечатления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *