Все тела поддаются электризации потому что
Перейти к содержимому

Все тела поддаются электризации потому что

Электризация. Электрический заряд

В основе объяснения явления электризации лежит электронная теория. Теория объясняет электрические свойства тел наличием в них электронов и их движением. Считается что причиной такого явления как «электризация трением» является, что при соприкосновении двух различных тел, часть электронов переходит с одного тела на другое. В результате на поверхности одного тела оказывается положительный заряд (избыток электронов), а на поверхности другого отрицательный заряд (недостаток электронов).

Что известно о таком явлении как электризация трением?

Если потереть друг о друга два разных вещества – стеклянную палочку о шёлк, то они приобретут разный заряд. То же самое произойдёт если потереть сургуч мехом.

Разделение зарядов происходит и без трения. Если в стакан с дистиллированной водой опустить парафиновый шарик на изолированной ручке, то произойдёт разделение зарядов. Вода и парафиновый шарик получат противоположные заряды.

Разделение зарядов имеет место любых двух различных тел: диэлектриков или проводников, твёрдых тел, жидкостей или газов.

Заряды, полученные электризацией трением можно перенести на другие предметы.

Под действием света происходит положительный заряд вещества.

Приведем аргументы против электронной теории.

Во-первых, в веществах не может быть свободных электронов. При взаимодействии протона и электрона всегда выделяется фотон энергии связи. Энергия связи крепко держит протон с электроном вместе даже в простых веществах. А в химических соединениях, которыми в основном и являются диэлектрики, эта связь ещё крепче. Эксперименты по исследованию фотоэффекта показывают, что для того чтобы оторвать электрон от протона нужно затратить фотон равный энергии связи между ними.

Во-вторых, электроны не могут просто взять и перейти от одного атома к другому. Для этого нужно чтобы у принимающего вещества были протоны, к которым эти электроны должны перейти. А у отдающего вещества электрон должен суметь покинуть свой протон.

В-третьих, один протон может быть связан только с одним электроном.

В-четвертых, если электрон оторвать от химического соединения, то это химическое соединение разрушится.

Почему же возникает при трении друг о друга разность потенциалов?

Для объяснения этого явления мне поможет концепция, выдвинутая в статье «Энергия» о квантовой энергетической природе протона и электрона.

В статье «Энергия» было показано, что мир состоит из двух видов энергии – магнитной (протонной) и электронной. Протон и позитрон являются стабильными квантами магнитной (протонной) энергии, а антипротон и электрон – стабильные кванты электронной энергии (статья «Энергия»).

Протоны и электроны могут терять энергию, уменьшаясь в массе. А при недостатке массы забирать энергию своего вида там, где её больше.

Как предполагал Бенджамин Франклин, электрическая энергия представляется в виде «электрической жидкости» которая заключена в самом веществе. Разный уровень «электрической жидкости» в разных веществах создают разницу в энергии этих веществ. По его предположениям движение этой «электрической жидкости» между веществами и приводит к различным электрическим явления.

Каким же образом создаётся эта разница в уровне «электрической жидкости» в веществе?

Наличие стабильных квантов магнитной (протон) и электронных (электрон) видов энергии создают условия для обмена энергией между атомами разных веществ. Разная энергия связи протонов и электронов в атомных ядрах разных химических элементов и химических веществ, создаёт разницу уровня магнитной (протонной) – энергии («электрической жидкости») в веществе.

Бенджамин Франклин условился считать избыток «электрической жидкости» считать плюсом, а её недостаток – минусом. Будем придерживаться той же условности, где имеется избыток магнитной (протонной) энергии – плюс, а там, где недостаток магнитной (протонной) энергии – минус. Именно эта разница энергии протонов в атомных ядрах разных химических элементов и определяет движение этой самой энергии в веществе. Электроны же только создают своей связью с протонами эту разницу в энергии.

Почему же именно протоны являются носителями электрического заряда?

С одной стороны, протоны тяжелее электронов в 1836 раз, и они больше подходят как резервуар энергии. С другой стороны, протоны в атомном ядре находятся в тесном контакте между собой в отличие от электронов, которые в атоме разобщены и каждый электрон находится на своём квантовом уровне у своего протона соответствующей энергии связи, что не даёт им возможности обмениваться энергией между собой.

В молекулярных соединениях участвуют атомы разных химических элементов, которые имеют разную энергию связи с электронами, а значит и разную энергию атомного ядра, приходящуюся на один протон. Это важное обстоятельство, которое влияет на обмен энергией между атомами.

На рисунке 1 представлены два условных однопротонных атома с разной энергией связи протона с электроном. Присутствие нейтрона в атомном ядре вынуждает электрон занимать более высокий энергетический уровень в атоме. Поэтому однопротонные атомы с разным количеством нейтронов имеют разную энергию связи электронов с протонами. Так как нейтроны не участвуют в обмене энергией, и чтобы не загромождать рисунок лишними деталями, они на рисунке не показаны.

Протон можно представить, как сосуд с жидкостью. Размер элементарной частицы определяется по внутреннему квантовому уровню. Чем сильнее связь протона с электроном, тем меньше их масса и больше размер и тем меньше уровень энергии (заряд) Ep1 – сосуд 1 с меньшим уровнем. И чем меньше связь протона с электроном, тем энергия (масса) Ep2 протона больше – сосуд 2.

Каждый однопротонный атом после объединения свободного протона со свободным электроном имеет нейтральный статус. Но относительно друг друга атомы с разной энергией связи имеют разный энергетический потенциал, а значит разный энергетический (электрический) заряд.

Как показано на рисунке 2, при сближении двух атомов с разным энергетическим потенциалом друг с другом, по закону сообщающихся сосудов энергия протона с меньшей энергией связи со своим электроном перетекла к протону, у которого энергия связи со своим электроном больше. Уровень магнитной (протонной) энергии в атоме1 и атоме2 выровнялся. Относительно друг друга эти два атома обрели нейтральный заряд. Но в то же время у атома1 стало больше магнитной (протонной) энергии, чем он должен иметь после соединение свободного протона со свободным электроном, а значит он зарядился положительно, а у атома2 стало меньше магнитной (протонной) энергии, чем должно быть при соединении свободного протона со свободным электроном, и значит он зарядился отрицательно.

При разведении атома1 и атома2, на расстояние, они сохраняют энергетический статус, полученный при контакте друг с другом (рисунок 3). Атом 1 остался заряженным положительно – с избыточным магнитным (протонным) зарядом, а атом 2 заряжен отрицательно – с недостаточным магнитным (протонным) зарядом.

Электрический заряд – это разница уровня магнитной (протонной) энергии между атомами.

На рисунке 4 показаны взаимодействие веществ с разной энергией связи и разным количеством протонов в атомном ядре.

Наиболее тесный контакт между протонами происходит в атомном ядре. И поэтому, несмотря на разную энергию связи протонов с электронами в атоме, масса протонов в атомном ядре одинаковая. Это происходит по той причине, что протоны в атомном ядре имеют наиболее тесный контакт и могут свободно обмениваться энергией. Для электронов это обстоятельство ничего не меняет, так как энергия квантового уровня, на котором находится электрон не изменяется, а энергия (масса) протона определяется по крайнему внутреннему квантовому уровню (статья «Энергия»).

При таком обмене энергией возникает любопытная ситуация. При равенстве масс протонов в атомном ядре, учитывая энергию связи электронов с протонами, один протон становится легче (отрицательно заряженным), чем он должен быть при связи со своим электроном, а другой протон становится тяжелее (положительно заряженным), чем он должен быть при связи со своим электроном. Атомное ядро при этом остаётся нормальным (нейтральным), соответствующим энергии связи всех протонов со своими электронами.

Таким же свойством, как и протоны – обмениваться энергией, обладают и атомные ядра. У разных химических элементов усреднённая масса (энергия) на один протон атомных ядер разная.

При тесном контакте двух веществ, то вещество, у которого энергия связи больше и, соответственно, средняя энергия атомного ядра, приходящаяся на один протон меньше, отбирает часть магнитной (протонной) энергии у атомного ядра вещества, у которого средняя энергия атомного ядра, приходящаяся на один протон больше (Рис. 5). Энергия атомных ядер, приходящаяся на один протон разных веществ, выравнивается и они становятся нейтральными друг к другу, но при этом происходит обмен энергией не между атомами, а между протонами атомных ядер. При разделении этих двух веществ, ядра атомов сохраняют то энергетическое состояние, которое образовалось при тесном контакте (Рис. 6).

Атом2, у которого появился дефицит массы в атомном ядре, становится «отрицательно заряженным». Количество электронов в атоме2 остается неизменным. Атом1, у которого появился избыток массы в атомном ядре, становится «положительно заряженным». Количество электронов в нём также остаётся неизменным.

Для того, чтобы вернуться к своему нормальному (нейтральному) состоянию, атом1 должен отдать лишнюю энергию и для этого ему необходимо войти в тесный контакт с веществом у которого в атомном ядре средняя энергия, приходящаяся на один протон меньше. И наоборот, атом2 должен вернуть недостающую энергию атомному ядру, при этом ему нужно войти в тесный контакт с веществом у которого средняя энергия в атомном ядре, приходящаяся на один протон, больше.

Химические соединения обладают очень большой энергией связи электронов с протонами ядер химических элементов. Наличие в химических соединениях разных ядер с разной энергией, приводит к затруднённой передачи магнитной (протонной) энергии от одного вещества к другому. По этой причине приобретённый заряд энергии сохраняется на наэлектризованном участке диэлектрика.

Рассмотрим электризацию под действием света.

Если взять достаточно чувствительный электроскоп и осветить не заряженную цинковую пластинку светом дугового разряда, то под действием света она зарядится положительно.

Явление заключается в том, что, под действием фотона, протон и связанный с ним электрон восстанавливаются. А электрический заряд связан с энергией протона.

На рисунке 8 показано, что происходит с атомом в опыте с электроскопом показанном на (Рис. 7) на атомном уровне.

В обычных условиях атом является нейтрально заряженным (Рис. 8а).

При взаимодействии атома с фотоном происходит полное или частичное восстановление протона и электрона. Восстановление электрона никак не влияет на заряд системы, т.к. электрический заряд с ним не связан. А полное или частичное восстановление протона и увеличение его энергии, приводит к приобретению системы протон — электрон положительного заряда (Рис. 8b). Даже если под действием фотона электрон переместится на более высокий уровень протона, но не покинет его, это так же приведёт к увеличению электрического заряда атома. Протон показан как положительно заряженный, это только потому что в электрическом поле он ведёт себя как заряженная частица. Свободный протон не может обмениваться магнитной (протонной) энергией так как он является стабильным квантом магнитной (протонной энергии). Так как освобождённый электрон не обладает кинетической энергией, он остаётся рядом со свободным протоном. Затем протон свободный протон снова соединяется со свободным электроном и образуется фотон связи (Рис. 8с). Система протон – электрон приобретает нейтральный заряд. При фотоэффекте электроскоп не может накапливать большой заряд так как возбуждённые атомы снова соединяются со своим электроном и восстанавливают нейтральный статус.

Если электроскоп (рис. 7) наэлектризовать, а затем осветить, то под действием света он разрядится. Это явление на атомном уровне можно объяснить так.

Нейтральный атом (Рис. 9а) заряжается внешним источником магнитной (протонной) энергии (Рис. 9b). У протона в атоме появляется избыточная магнитная (протонная) энергия, а энергетическое состояние электрона не меняется. Если теперь на такой возбуждённый атом попадёт фотон, то электрон восстановится до свободного состояния, а избыточная магнитная (протонная) энергия перейдёт к освободившемуся электрону в виде кинетической энергии. Электрон покинет атом (Рис. 9с). Но свободный электрон далеко не сможет удалится. Полученную кинетическую магнитную (протонную) энергию электрон перенесёт на какое-либо вещество и затем с меньшей кинетической энергией возвратится к своему протону. При соединении свободного протона и электрона выделится фотон энергии связи.

Для разных химических элементов так называемая работа выхода электронов разная: цезий – 1,94эВ для выхода электрона достаточно инфракрасного излучения, а ртуть — 4,52эВ для выхода электрона необходим ультрафиолетовый.

Все тела поддаются электризации потому что

В тепловой машине
Выберите один ответ.
1внутренняя энергия топлива полностью превращается в механическую энергию
2внутренняя энергия топлива частично превращается в механическую энергию
3механическая энергия частично превращается во внутреннюю энергию
4механическая энергия полностью превращается во внутреннюю энергию

Все тела поддаются электризации потому что.
Выберите один ответ.
1только электроны могут переходить к другому телу
2одноимённо заряженные тела отталкиваются
3электроны имеются в любых атомах
4электрон гораздо легче ядра атома

Количество теплоты и напряжение — это
Выберите один ответ.
1физические явления
2физические величины
3единицы измерения
4измерительные приборы

Лампочку и резистор подключили к одинаковым источникам тока. В лампочке сила тока больше, чем в резисторе. Значит.
Выберите один ответ
1сопротивление резистора больше, чем сопротивление лампочки
2нельзя узнать. Сопротивление чего больше: лампочки или резистор
3сопротивление лампочки больше, чем сопротивление резистора
4лампочка и резистор имеют равные сопротивления

Увеличение напряжения, приложенного к металлическому проводнику, приводит к.
Выберите один ответ.
1уменьшению сопротивления проводника
2уменьшению в нём силы тока
3увеличению в нём силы тока
4увеличению сопротивления проводника
=============
Чайная ложка, опущенная в стакан с водой, кажется надломленной. Это происходит из-за.
Выберите один ответ.
1отражения света
2преломления света
3поглощения света
4прямолинейного распространения света

Энергию через вакуум можно передать
Выберите один ответ.
1при теплообмене излучением
2при теплообмене теплопроводностью
3при любом способе теплообмена
4при теплообмене конвекцией

После того, как было установлено разделение тел на проводники и непроводники, а опыты с электростатическими машинами получили широчайшее распространение, была попытка «накопить» электрические заряды в каком-то стеклянном сосуде, который мог их хранить.
Зная, что стекло не проводит электричества, голландский профессор из города Лейден Мусхенбрук (в 1745 г. ) взял стеклянную банку, наполненную водой, опустил в неё медную проволоку, висевшую на кондукторе электрической машины, и, взяв банку в правую руку, попросил своего помощника вращать шар машины. При этом он правильно предположил, что заряды. Поступавшие с кондуктора, будут накапливаться в стеклянной банке.
После того, как в банке накопилось достаточное количество зарядов, он решил левой рукой отсоединить медную проволоку. При этом он ощутил сильный удар.
Так была изобретена лейденская банка, а вскоре и первый простейший конденсатор.
При проведении исследований с банкой было установлено, что количество электричества, собираемое в банке, пропорционально размеру облаток.
Вопрос: конденсатор — это устройство для.
Выберите один ответ.
1создания электрического тока
2накопления электрической энергии
3преобразования переменного тока в постоянный ток
4увеличения количества электричества

И опять вспомним лейденскую банку. В опыте Мусхенбрука стеклянную банку нельзя заменить
Выберите один ответ.
1фарфоровым сосудом
2пластмассовым сосудом
3медным сосудом
4деревянным сосудом
===============
=Опыт Мусхенбрука был повторен аббатом Нолле. Он образовал цепь из 180 гвардейцев, взявшихся за руки, причём первый держал банку в руке, а последний прикасался к проволоке, извлекая искру.
От этой цепи солдат и произошёл термин «электрическая цепь». Какое соединение гвардейцев было использовано в опыте?
Выберите один ответ.
1круговое
2смешанное
3последовательное
4параллельное

В тепловой машине

1внутренняя энергия топлива полностью превращается в механическую энергию

Все тела поддаются электризации потому что.
3электроны имеются в любых атомах

Количество теплоты и напряжение — это
2физические величины

Лампочку и резистор подключили к одинаковым источникам тока. В лампочке сила тока больше, чем в резисторе. Значит.
1сопротивление резистора больше, чем сопротивление лампочки

Увеличение напряжения, приложенного к металлическому проводнику,приводит к.
3увеличению в нём силы тока

Чайная ложка, опущенная в стакан с водой, кажется надломленной. Это происходит из-за.
2преломления света
Энергию через вакуум можно передать
1при теплообмене излучением

Вопрос: конденсатор — это устройство для.
Выберите один ответ.
2накопления электрической энергии
И опять вспомним лейденскую банку. В опыте Мусхенбрука стеклянную банку нельзя заменить
Выберите один ответ.
3медным сосудом
=Опыт Мусхенбрука был повторен аббатом Нолле. какое соединение гвардейцев было использовано в опыте?
3последовательное

Конспект урока по физике «Электризация» (8 класс)

Явления, связанные с электричеством, довольно распространены в природе. Одним из самых наблюдаемых явлений является электризация тел. Так или иначе с электризацией приходилось сталкиваться каждому человеку. Иногда мы не замечаем статического электричества вокруг нас, а иногда его проявление ярко выражено и довольно ощутимо.

Например, владельцы автотранспорта, при определённых стечениях обстоятельств, замечали, как их машина вдруг начинала «бить током». Обычно это происходит при выходе из салона автомобиля. Ночью даже можно заметить искрение между кузовом и рукой, прикасающейся к нему. Объясняется это электризацией, о которой поговорим в данной статье.

Определение

В физике электризацией называют процесс, при котором происходит перераспределения зарядов, на поверхностях разнородных тел. При этом на телах скапливаются заряженные частицы противоположных знаков. Наэлектризованные тела могут передавать часть накопленных заряженных частиц другим предметам или окружающей среде, контактирующей с ними.

Заряженное тело передаёт заряды при непосредственном контакте с ним нейтральных или противоположно заряженных предметов, либо через проводник. По мере перераспределения взаимодействие электрических зарядов уравновешивается, и процесс перетекания прекращается.

Важно помнить, что при электризации тел новые электрические частицы не возникают, а лишь перераспределяются уже существующие. При электризации действует закон сохранения заряда, согласно которому алгебраическая сумма отрицательных и положительных зарядов всегда равна нулю. Другими словами – количество отрицательных зарядов переданных другому телу при электризации равняется количеству оставшихся заряженных протонов противоположного знака.

Известно, что носителем элементарного отрицательного заряда является электрон. Протоны же обладают положительными знаками, но эти частицы прочно связаны ядерными силами и не могут свободно перемещаться при электризации (за исключением кратковременного высвобождения протонов в процессе разрушения атомных ядер, например, в различных ускорителях). В целом атом, обычно, электрически нейтрален. Его нейтральность может нарушить электризация.

Однако, отдельные электроны из облака, окружающего многопротонные ядра, могут покидать свои отдалённые орбиты и свободно перемещаться между атомов. В таких случаях образуются ионы (иногда называемые дырками), имеющие положительные заряды. См. схему на рис. 1.

Два рода зарядов

Рис. 1. Два рода зарядов

В твёрдых телах ионы связаны атомными силами и, в отличие от электронов, не могут изменить своё расположение. Поэтому только электроны являются переносчиками заряда в твёрдых телах. Для наглядности мы будем считать ионы просто заряженными частицами (абстрактными точечными зарядами), которые ведут себя так же, как и частицы с противоположным знаком – электроны.

Модель атома

Рис. 2. Модель атома

Физические тела в естественных условиях электрически нейтральные. Это значит, что их взаимодействия уравновешены, то есть, количество ионов заряженных положительно равно количеству отрицательно заряженных частиц. Однако, электризация тела нарушает это равновесие. В таких случаях электризация является причиной изменения баланса кулоновских сил.

Два вида зарядов

Выяснили, что существуют два рода зарядов. Их условно назвали положительными и отрицательными. Одни тела при электризации получают положительный заряд, а другие – отрицательный (рис. 2).

Положительные заряды обозначают «+», а отрицательные – знаком «-».

Договорились считать возникающие заряды:

  • положительными – на кусочке стекла, после того, как его потерли о шелк.
  • отрицательными – на кусочке эбонита, после того, как его потерли о шерсть.

Рис. 2. На кусочке стекла натертого шелком, возникает положительный заряд, а эбонит, натертый шерстью, заряжается отрицательным зарядом

Примечание: Заряды, имеющие одинаковые знаки называют одноименными, а если знаки различаются – разноименными.

Условия возникновения электризации тел

Прежде чем перейти к определению условий электризации тел, заострим ваше внимание на взаимодействии точечных зарядов. На рисунке 3 изображена схема такого взаимодействия.

Взаимодействие заряженных частиц

Рис. 3. Взаимодействие заряженных частиц

На рисунке видно, что одноимённые точечные заряды отталкиваются, тогда как разноимённые – притягиваются. В 1785 г. силы этих взаимодействий исследовал французский физик О. Кулон. Знаменитый закон Кулона гласит: два неподвижных точечных заряда q1 и q2, расстояние между которыми равно r, действуют друг на друга с силой:

F = (k*q1*q2)/r2

Коэффициент k зависит от выбора системы измерений и свойств среды.

Исходя из того, что на точечные заряды действуют кулоновские силы, имеющие обратно пропорциональную зависимость от квадрата расстояния между ними, проявление этих сил может наблюдаться только на очень небольших расстояниях. Практически, эти взаимодействия проявляются на уровне атомных измерений.

Таким образом, для того чтобы электризация тела произошла, необходимо максимально приблизить его к другому заряженному телу, то есть, прикоснуться к нему. Тогда под действием кулоновских сил часть заряженных частиц переместится на поверхность заряжаемого предмета.

Строго говоря, при электризации перемещаются только электроны, которые распределяются по поверхности заряжаемого тела. Избыток электронов образует определённый отрицательный заряд. Создание положительного заряда на поверхности реципиента, электроны с которого перетекли на заряжаемый объект, возложено на ионы. При этом модули величин зарядов на каждой из поверхностей равны, но знаки их противоположны.

Электризация нейтральных тел из разнородных веществ возможна только в том случае, если у одного из них электронные связи с ядром очень слабые, а у другого, наоборот – очень сильные. На практике это означает, что в веществах, у которых электроны вращаются на удалённых орбитах, часть электронов теряют свои связи с ядрами и слабо взаимодействуют с атомами. Поэтому, при электризации (тесном контакте с веществами), у которых проявляются более сильные электронные связи с ядрами, происходит перетекание свободных электронов. Таким образом, наличие слабых и сильных электронных связей является главным условием электризации тел.

Поскольку в кислотных и щелочных электролитах могут перемещаться и ионы, то электризация жидкости возможна путём перераспределения собственных ионов, как это имеет место при электролизе.

Электризация тел при соприкосновении. Взаимодействие заряженных тел

Наверное, все замечали, что шерстяные вещи, такие, как свитер, например, иногда приобретают способность притягивать к себе волосы или маленькие кусочки бумаги. Чаще всего это случается после соприкосновения с синтетическим материалом, который используют для внутренней стороны зимних курток. То же самое происходит и с волосами, когда мы снимаем шапку. Подобными свойствами обладают и другие вещества, такие, как стекло, эбонит, мех и т.д.

Такие явления люди начали называть электрическими, а тела — наэлектризованными

Наэлектризованным телом называется то тело, которое обладает электрическим зарядом.

Опыты показывают, что при соприкосновении, заряд частично передаётся от одного тела к другому. Однако, также было замечено, что наэлектризованные тела не только притягиваются, но и отталкиваются друг от друга в определённых случаях. Это можно объяснить тем, что существуют заряды разного рода и, соответственно, они по-разному взаимодействуют с одним и тем же телом. После тщательно проведённых исследований, выяснялось, что существует заряды двух родов, которые условились называть
положительными
и
отрицательными
.

Было установлено, что заряды одинакового рода отталкиваются, а заряды разного рода притягиваются.

Два тела отталкиваются друг от друга. Что можно о них сказать?

Поскольку отталкиваются заряды одинакового рода, можно сделать вывод, что либо оба обладают положительными зарядами, либо оба тела обладают отрицательными зарядами.

К телу поочерёдно поднесли две палочки из разного материала. В одном случае тело отталкивало палочку, а в другом — притягивало. Какой из этого можно сделать вывод?

Палочки продемонстрировали взаимодействие разного рода с одним и тем же телом. Следовательно, палочки имеют заряды разного рода.

Проводя опыт, два ученика использовали по два заряженных шарика. В обоих случаях шарики оттолкнулись. После этого ученики выбрали три из этих четырёх шариков случайным образом. Могут ли все три шарика иметь разные заряды? Могут ли все три шарика иметь одинаковые заряды? Может ли случится так, что какие-то два из этих шариков начнут притягиваться?

Заметим сразу, что существует всего два рода зарядов, поэтому три шарика никак не могут иметь разные заряды. Итак, мы знаем, что каждая из пар шариков отталкивалась, т.е. в каждой паре шарики были одинаково заряжены. Значит, есть вероятность, что они все были положительно заряжены или все были отрицательно заряжены. Поэтому, три случайно выбранных шарика могли иметь одинаковый заряд. Но, ведь, могло случиться и так, что у одного ученика было два положительно заряженных шарика, а у другого — два отрицательно заряженных шарика. В этом случае, какие бы шарики они ни выбрали, один из них имел бы заряд, противоположный двум другим. Поэтому, в этом случае, они бы начали притягиваться.

Способы электризации тел

Существует несколько способов электризации, которые условно можно разделить на две группы:

  1. Механическое воздействие:
      электризация соприкосновением;
  2. электризация трением;
  3. электризация при ударе.
  4. Влияние внешних сил:
      электрическое поле;
  5. воздействие света (фотоэффект);
  6. влияние тепла (термопары);
  7. химические реакции;
  8. давление (пьезоэффект).


Рис. 4. Способы электризации
Наиболее распространённым способом электризации тел в природе является трение. Чаще всего происходит трение воздуха при контакте его с твёрдыми или жидкими веществами. В частности, в результате такой электризации происходят грозовые разряды.

Электризация трением нам известна ещё со школьной скамьи. Мы могли наблюдать наэлектризованные трением небольшие эбонитовые палочки. Отрицательный заряд потёртых об шерсть палочек определяется избытком электронов. Шерстяная ткань при этом заряжается положительным электричеством.

Подобный опыт можно провести со стеклянными палочками, но натирать их необходимо шёлком или синтетическими тканями. При этом, в результате трения стеклянные наэлектризованные палочки заряжаются положительно, а ткань – отрицательно. В остальном между стеклянным электричеством и зарядом эбонита различий нет.

Чтобы наэлектризовать проводник (например, металлический стержень), необходимо:

  1. Изолировать металлический предмет.
  2. Прикоснуться к нему положительно заряженным телом, например стеклянной палочкой.
  3. Отвести часть заряда на землю (кратковременно заземлить один конец стержня).
  4. Убрать заряженную палочку.

При этом заряд на стержне равномерно распределится по его поверхности. Если металлический предмет неправильной формы, заряды распределятся неравномерно – концентрация электронов будет больше на выпуклостях и меньше на впадинах. При разделении тел происходит перераспределение заряженных частиц.

Объяснение электризации

В § 8-а мы рассмотрели строение атома (положительно заряженное ядро и электронные оболочки) и строение металлов (положительно заряженные ионы и электронный газ). Это позволит нам объяснить явление электризации. Сделаем это.

При трении тел друг о друга «трутся» именно электронные оболочки атомов, из которых тела состоят. А так как электроны слабо связаны с ядрами атомов, то электроны могут отделяться от «своих» атомов и переходить на другое тело. В результате на нём возникает избыток электронов (отрицательный заряд), а на первом теле – недостаток электронов (положительный заряд).

Итак, электризация трением

объясняется переходом части электронов от одного тела к другому, в результате чего тела заряжаются разноимённо. Поэтому тела, наэлектризованные трением друг о друга, всегда притягиваются (см. § 8-б). Но, кроме электризации трением, существует электризация индукцией (лат. «индукцио» – наведение). Рассмотрим её на опыте:

В начале опыта имеются два металлических шара, которые касаются друг друга (а). К одному из них подносят, не касаясь его, заряженную стеклянную палочку (б), после чего второй шар отодвигают (в). Теперь палочку можно убрать, – шары будут разноимённо заряжены (г).

Объясним этот опыт с точки зрения электронно-ионной теории.

Сначала металлические шары не были заряжены. Это значит, что электронный газ присутствовал в шарах в равных количествах (а). Поскольку палочка стеклянная, мы считаем её заряд положительным (см. § 8-б). Она притягивает отрицательно заряженные частицы – электроны. В результате электронный газ «перетекает» в левую часть левого шара, и в этом месте образуется избыток отрицательного заряда (б).

Все положительные ионы металла прочно связаны друг с другом (они и есть металл), поэтому никуда не «перетекают». Значит, во всех остальных частях шаров возникает недостаток электронов, то есть положительный заряд. И если в этот момент, не убирая палочку, раздвинуть шары (в) и лишь затем убрать её, шары останутся разноимённо заряженными (г).

Итак, электризация индукцией

объясняется перераспределением электронного газа между телами (или частями тела), в результате чего тела (или части тела) заряжаются разноимённо. Однако возникает вопрос: все ли тела поддаются электризации индукцией? Можно проделать опыты и убедиться, что пластмассовые, деревянные или резиновые шары можно легко наэлектризовать трением, но невозможно индукцией. Объясним это.

Электроны в резине, древесине и во всех пластмассах не являются свободными, то есть не образуют электронного газа, который может перетекать в другие тела. Поэтому для электризации тел из этих веществ необходимо прибегнуть к их трению, способствующему отделению электронов от «своих» атомов и переходу на другое тело.

Итак, по электрическим свойствам все вещества можно разделить на две группы. Диэлектрики

– вещества, не имеющие свободных заряженных частиц
и потому не проводящие заряд от одного тела к другому. Проводники

вещества со свободными заряженными частицами, которые могут перемещаться, перенося заряд в другие части тела или к другим телам. Это иллюстрирует рисунок с электроскопами, пластмассовой линейкой и металлической проволокой (см. выше).

Свойства наэлектризованных тел

  • Притягивание (отталкивание) мелких предметов – признак наэлектризованности. Два тела, заряженных одноимённо, противодействуют (отталкиваются), а разнознаковые – притягиваются. На этом принципе основана работа электроскопа – прибора для измерения величины заряда (см. рис. 5).


Рис. 5. Электроскоп

  • Избыток зарядов нарушает равновесие во взаимодействии элементарных частиц. Поэтому каждое заряженное тело стремится избавиться от своего заряда. Часто такое избавление сопровождается молниеносным разрядом.

Электризация трением

Вадим Прибытков, физик-теоретик, постоянный автор Терры Инкогнита.

Понимание атома в качестве классической системы Резерфорда-Бора дает возможность для объяснения широкого круга природных явлений, возникающих в ходе трения материальных компонентов. К ним, в частности, относится и такое явление, как электризация трением янтаря, стекла, тканей, бумаги и других изоляторов. С этого явления начинаются почти все книги по электричеству, однако его объяснение обычно обходится. Почему?

А ведь с электрических свойств янтаря началось само электричество.

Этот вопрос очень интересует Китайгородского. Он понимает, что при трении возникают свободные заряды-электроны и констатирует: «В общих чертах картина более или менее ясна, но не только. Видимо, то мизерное количество свободных электронов, которое имеется у изолятора, связано с его молекулярными разными силами у разных диэлектриков. Поэтому если привести в тесное соприкосновение два тела, то электроны перейдут с одного из них на другое. Произойдет электризация. Однако «тесное соприкосновение»—это приведение поверхностей на расстояние, равное межатомному. Поскольку атомогладких поверхностей в природе не существует, трение помогает ликвидировать всякого рода выступы и увеличивает площадь, так сказать, истинного соприкосновения.

Переход электронов от одного тела к другому имеет место для любой пары тел-металлов, полупроводников и изоляторов.

Наэлектризовать же удается только изоляторы, ибо лишь в этих телах возникшие заряды остаются в тех местах, куда они перебрались от одного тела к другому.

Я не могу сказать, чтобы эта теория оставляла чувство глубокого удовлетворения. Неясно, чем хороши—эбонит, стекло, кошачий мех. Можно задать кучу вопросов, на которые нет вразумительного ответа». (А.И. Китайгородский, Электроны, М., с.54).

Частично Китайгородский объяснил сущность явления правильно, однако в его трактовке имеются существенные пробелы и основной—в отсутствия анализа взаимодействия электромагнитных квантов с электронами вещества. Дело здесь не только в «тесном соприкосновении», на что напирает Китайгородский, а именно в трении, которое он не знает, как использовать.

Трение между двумя диэлектриками, при этом они совершенно не обязательно должны быть разными веществами, могут быть и одинаковыми, например, два листа бумаги, приводит к соударению электронов, перераспределению между ними электромагнитной энергии, к отрыву ряда электронов от атомов и их перемещению.

На поверхности диэлектриков образуются зоны с преобладанием разных зарядов, что при взаимном соприкосновении ведет к их притяжению или отталкиванию. Кроме того, свободные электроны переходят при этом с одной части поверхности на другую.

Перейдя с одного диэлектрика на другой, электроны локализуются на нем, потому что диэлектрик не является проводником. Аналогичную природу имеют электрические разряды в атмосфере, возникающие за счет трения молекул и атомов газа и паров воды. То, что речь идет о соударении электронов подтверждается электризацией бумаги на пишущей машинке и даже под воздействием шариковой ручки.

Вот и все объяснение. Оно простое, наглядное, убедительное и раскрывает сущность явления. Электромагнитная энергия управляет электронами и играет решающую роль в их движении.

Применение на практике

  • очистка воздуха с помощью электростатических фильтров;
  • электростатическая окраска металлических поверхностей;
  • производство синтетического меха, путём притягивания наэлектризованного ворса к тканевой основе, и др.

Вредное воздействие:

  • влияние статических разрядов на чувствительные электронные изделия;
  • воспламенение паров ГСМ от разрядов статического электричества.

Способы борьбы: заземление ёмкостей с горючим, работа в антистатической одежде, заземление инструментов и т.п.

Электризация тел, взаимодействие зарядов

Независимо от того, принципу работает тот или иной источник электрической энергии, в каждом из них происходит процесс электризации физических тел , т. е. разделение электрических зарядов, имеющихся в источнике электрической энергии, и сосредоточение их на определенных местах, например на электродах или зажимах источника. В результате этого процесса на одном на зажимов источника электрической энергии (катоде) получается избыток отрицательных зарядов (электронов), а на другом зажиме (аноде) — недостаток электронов, т. е. первый из них заряжается отрицательным, а второй — положительным электричеством.

После открытия электрона, элементарной частицы, обладающей минимальным зарядом, после того, как было наконец объяснено строение атома, большинство физических явлений, связанных с электричеством, также стали объяснимы.

Вещественная материя, образующая тела, в целом оказывалась электрически нейтральной, ибо составляющие тела молекулы и атомы нейтральны в обычных условиях, и тела в итоге зарядом не обладают. Но если такое нейтральное тело потереть о другое тело, то часть электронов покинет свои атомы, и перейдет с одного тела на другое. Длина путей, пройденных этими электронами при таком перемещении, не более расстояния между соседними атомами.

Однако если после трения тела разъединить, раздвинуть, то оба тела окажутся заряженными. Тело, на которое перешли электроны, станет отрицательно заряженным, а то, которое эти электроны отдало — приобретет положительный заряд, станет положительно заряженным. Это и есть электризация.

Электризация тел

Допустим что в каком-нибудь физическом теле, например в стекле, удалось изъять из значительного числа атомов часть их электронов. Это значит, что стекло, потеряв часть своих электронов, окажется заряженным положительным электричеством, так как в нем положительные заряды получили перевес над отрицательными.

Изъятые из стекла электроны исчезнуть не могут и должны быть где-то размешены. Допустим, что после того как электроны били изъяты из стекла, они оказались размещенными на металлическом шарике. Тогда очевидно, что металлический шарик, получивший лишние электроны, зарядился отрицательным электричеством, так как в нем отрицательные заряды получили перевес над положительными.

Наэлектризовать физическое тело — значит создать в нем избыток или недостаток электронов, т.е. нарушить в нем равновесие двух противоположностей, а именно положительных и отрицательных зарядов.

Наэликтризовать два физических тела одновременно и совместно разноменными электрическими зарядами — значит изьять из одного тела электроны и передать их другому телу.

Если где-либо в природе образовался положительный электрический заряд, то оновременно с ним неизбежно должен возникнуть такой же по абсолютной величине отрицательный заряд, так как всякий избыток электронов в любом физическом теле возникает за счет недостатка их в каком-нибудь другом физическом теле.

Разноименные электрические заряды выступают в электрических явлениях как неизменно сопутствующие друг другу противоположности, единство и взаимодействие которых сотавляет внутреннее содержание электрических явлений в веществах.

Что такое электризация тел

Нейтральные тела электризуются тогда, когда они отдают или принимают электроны, в любом случае они приобретают электрический заряд, и перестают быть нейтральными. Здесь не возникают ниоткуда электрические заряды, заряды только разделяются, поскольку электроны уже были в телах, и просто поменяли свое местоположение, электроны переместились с одного электризуемого тела на другое электризуемое тело.

Знак электрического заряда, получающегося при трении тел зависит от природы этих тел, от состояния их поверхностей и от ряда других причин. Поэтому не исключена возможность, что одно и то же физическое тело может в одном случае зарядиться положительным, a в другом — отрицательным электричеством, например, металлы при трении их о стекло и шерсть электризуются отрицательно, а при трении о каучук — положительно.

Уместным будет вопрос: почему через диэлектрики электрический заряд не проходит, а через металлы проходит? Все дело в том, что в диэлектриках все электроны связаны с ядрами своих атомов, они просто не имеют возможности к свободному перемещению по объему всего тела.

А вот в металлах ситуация иная. Связи электронов в атомах металлов гораздо слабее, чем в диэлектриках, и некоторые электроны легко покидают свои атомы, и свободно перемещаются по объему всего тела, это так называемые свободные электроны, которые и обеспечивают перенос заряда в проводниках.

Разделение зарядов происходит, тем не менее, и при трении металлических тел, и при трении диэлектриков. Но в демонстрациях используют именно диэлектрики: эбонит, янтарь, стекло. К этому прибегают по той простой причине, что поскольку в диэлектриках заряды по объему не перемещаются, то они и остаются на тех же местах на поверхностях тел, где и возникли.

Статическое электричество

А если трением, скажем, о мех, наэлектризовать кусок металла, то заряд лишь успев переместиться к его поверхности, мгновенно стечет на тело экспериментатора, и демонстрации, такой как с диэлектриками, не получится. Но если кусок металла будет иметь изоляцию от рук экспериментатора, то он на металле останется.

Если заряд тел в процессе электризации лишь разделяется, то как ведет себя общий их заряд? Несложные эксперименты дают ответ на этот вопрос. Взяв электрометр с укрепленным на его стержне металлическим диском, кладут на диск кусок шерстяной ткани, размером с этот диск. Сверху на диск из ткани кладут еще один такой же проводящий диск, как на стержне электрометра, но оснащенный диэлектрической рукояткой.

Держась за рукоятку, экспериментатор несколько раз двигает верхний диск, трет его об упомянутый тканевый диск, лежащий на диске стержня электрометра, затем убирает его в сторону от электрометра. Стрелка электрометра отклоняется в момент, когда диск убирают, и остается в таком положении. Это свидетельствует о том, что на шерстяной ткани и на диске, закрепленном на стержне электрометра, появился электрический заряд.

После этого диск с рукояткой приводят в соприкосновение со вторым электрометром, но без закрепленного на нем диска, и наблюдают, что его стрелка отклоняется почти на такой же угол, что и стрелка первого электрометра.

Эксперимент показывает, что оба диска при электризации получили равные по модулю заряды. Но каковы знаки этих зарядов? Чтобы ответить на данный вопрос, электрометры соединяют проводником. Стрелки электрометров тут же вернутся к нулевому положению каждая, в котором и были до начала эксперимента. Заряд нейтрализовался, а значит заряды дисков были равны по модулю, но противоположны по знаку, и в сумме дали ноль, как до начала эксперимента.

Подобные эксперименты указывают на то, что при электризации сохраняется суммарный заряд тел, то есть если в сумме был ноль до электризации, то в сумме будет ноль и после электризации . Но почему так получается? Если натереть о сукно эбонитовую палку, она зарядится отрицательно, а сукно положительно, и это известный факт. На эбоните, при трении о шерсть образуется избыток электронов, а на сукне, соответственно, недостаток.

Заряды будут равны по модулю, ведь сколько электронов перешло с сукна на эбонит, столько отрицательного заряда получил эбонит, и столько же положительного заряда образовалось на сукне, так как ушедшие с сукна электроны — это положительный заряд сукна. И избыток электронов на эбоните в точности равен недостатку электронов на сукне. Заряды противоположны по знаку, но равны по модулю. Очевидно, полный заряд при электризации сохраняется, он в сумме равен нулю.

Мало того, даже если до электризации заряды обоих тел отличались от нуля, то в сумме полный заряд все равно сохраняется тем же, что и был до электризации. Обозначив заряды тел до их взаимодействия как q1 и q2, а заряды после взаимодействия как q1′ и q2′, то справедливым будет следующее равенство:

Это говорит о том, что при любых взаимодействиях тел полный заряд неизменно сохраняется. Это один из фундаментальных законов природы, закон сохранения электрического заряда. Бенджамин Франклин открыл его в 1750 году, и ввел понятия «положительный заряд» и «отрицательный заряд». Франклин и предложил обозначать разноименные заряды знаками «-» и «+».

В электронике правила Кирхгофа для токов прямо следуют из закона сохранения электрического заряда. Объединение проводников и радиоэлектронных компонентов представляется в виде незамкнутой системы. Суммарный приток зарядов в данную систему равен суммарному выходу зарядов из этой системы. В правилах Кирхгофа предполагается, что электронная система не может значительно изменять свой суммарный заряд.

Справедливости ради отметим, что наилучшей экспериментальной проверкой закона сохранения электрического заряда является поиск таких распадов элементарных частиц, которые были бы разрешены в случае нестрогого сохранения заряда. Такие распады никогда на практике не наблюдались.

Другие способы электризации физических тел:

1. Если цинковую пластину погрузить в раствор серной кислоты H2SO4, то она частично в нем растворится. Часть атомов цинковой пластины, оставив по два своих электрона на цинковой пластине перейдет в раствор серией кислоты в виде двухзарядных положительных ионов цинка. В результате цинковая пластина зарядится отрицательным электричеством (избыток электронов), а раствор серной кислоты — положительным (избыток положительных ионов цинка). Это имение электризации цинка в растворе серной кислоты использовано в гальваническом элементе как основной процесс возникновении электрической энергии.

2. Если на поверхности таких металлов, как цинк, цезий и некоторые другие, падают лучи света, то с этих поверхностей выделяются свободные электроны в окружающую среду. В результате металл заряжается положительным электричеством, а окружающее его пространство — отрицательным. Испускание электронов освещенными поверхностями некоторых металлов называется фотоэффектом, нашедшим себе применение в фотоэлементах.

3. Если металлическое тело нагреть до состояния белого каления, то с его поверхности будут вылетать свободные электроны в окружающее пространство. В результате этого металл, потерявший электроны зарядится положительным электричеством, а окружающая среда — отрицательным.

4. Если спаять концы двух разнородных проволок, например висмутовой и медной, и место их спая нагреть, то свободные электроны частично перейдут из медной проволоки на висмутовую. В результате медная проволока зарядится положительным электричеством, а висмутовая — отрицательным. Явление электризации двух физических тел при поглощении ими тепловой энергии используется в термоэлементах.

Явления, связанные с взаимодействием наэлектризованных тел, называются электрическими явлениями.

Взаимодействие, между наэлектризованными телами определяется так называемыми электрическими силами, которые отличаются от сил другой природы тем, что они обусловливают взаимное отталкивание и притяжение заряженных тел независимо от скорости их движения.

Этим взаимодействие между заряженными телами отличается, например, от гравитационного, которое характеризуется только притяжением тел, или от сил магнитного происхождения, зависящих от относительной скорости движения зарядов, обусловливающих магнитные явления.

Электротехника в основном изучает законы внешнего проявления свойств наэлектризованных тел — законы электромагнитных полей.

Надеемся, что эта краткая статья дала вам общее представление о том, что такое электризация тел, и теперь вы знаете, как экспериментально проверить закон сохранения электрического заряда при помощи простого эксперимента.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *