Как решить систему методом обратной матрицы в excel

Как решить систему методом обратной матрицы в excel

Введем данные значения в ячейки А2:С4 – матрица А и ячейки D2:D4 – матрица В.

Система уравнений в Excel

Решение системы уравнений методом обратной матрицы

Найдем матрицу, обратную матрице А. Для этого в ячейку А9 введем формулу =МОБР(A2:C4). После этого выделим диапазон А9:С11, начиная с ячейки, содержащей формулу. Нажмем клавишу F2, а затем нажмем клавиши CTRL+SHIFT+ENTER. Формула вставится как формула массива. =МОБР(A2:C4).
Найдем произведение матриц A-1 * b. В ячейки F9:F11 введем формулу: =МУМНОЖ(A9:C11;D2:D4) как формулу массива. Получим в ячейках F9:F11 корни уравнения:

Пример решения системы уравнений методом обратной матрицы в EXCEL

Решение системы уравнений методом Крамера

Решим систему методом Крамера, для этого найдем определитель матрицы.
Найдем определители матриц, полученных заменой одного столбца на столбец b.

В ячейку В16 введем формулу =МОПРЕД(D15:F17),

В ячейку В17 введем формулу =МОПРЕД(D19:F21).

В ячейку В18 введем формулу =МОПРЕД(D23:F25).

Найдем корни уравнения, для этого в ячейку В21 введем: =B16/$B$15, в ячейку В22 введем: = =B17/$B$15, в ячейку В23 введем: ==B18/$B$15.

Решение Системы Линейных Алгебраических Уравнений (СЛАУ) методом обратной матрицы в EXCEL

history 12 ноября 2015 г.
    Группы статей

  • Системы линейных уравнений

Решим Систему Линейных Алгебраических Уравнений (СЛАУ) методом обратной матрицы в MS EXCEL. В этой статье нет теории, объяснено только как выполнить расчеты, используя MS EXCEL.

Решим систему из 3-х линейных алгебраических уравнений с помощью обратной матрицы (матричным методом).

Запишем в ячейки основную матрицу системы и столбец свободных членов.

Систему n линейных алгебраических уравнений с n неизвестными можно решать матричным методом только тогда, когда определитель основной матрицы системы отличен от нуля (в противном случае мы имеем линейно зависимые уравнения и соответственно решение систем не единственное). В нашем случае определитель =12.

Для этого выделите ячейки A18:C20 , а в Строке формул введите =МОБР(A11:C13) , затем нажмите CTRL+SHIFT+ENTER .

Решение системы уравнений получим умножением обратной матрицы и столбца свободных членов. Перемножить матрицы можно с помощью формулы массива =МУМНОЖ() .

Для этого выделите ячейки F18:F20 , а в Строке формул введите =МУМНОЖ(A18:C20;F11:F13) , затем нажмите CTRL+SHIFT+ENTER .

В файле примера также приведено решение системы 4-х и 5-и уравнений.

Ссылка на основную публикацию