Однофакторный дисперсионный анализ в excel как сделать
Перейти к содержимому

Однофакторный дисперсионный анализ в excel как сделать

Однофакторный дисперсионный анализ в MS Excel

Для рассмотрения однофакторного дисперсионного анализа в MS Excel решим следующий пример.

Пример 3.2.В таблице 3 приведены данные по объемам работ, выполненных на посадке декоративных кустарников за смену для четырех бригад.

Номер бригады Объем выполненной работы Групповое среднее Выборочная смещенная дисперсия
140, 144, 142, 145 142,75 3,688
150, 149, 152, 152 150,75 1,688
148, 149, 146, 147 147,50 1,25
150, 155, 154, 152 152,75 3,688

Проверить гипотезу дисперсионного анализа H0 о равенстве средних: m1 = m2 = m3 = m4.

Решение. Для проверки гипотезы H0 вычислим суммы Q1 и Q2 .

Общее выборочное среднее равно

Вычислим статистику Фишера:

По таблицам распределения Фишера для a = 0,05 и степеней свободы k1 =3, k2 = 12 найдем критическое значение Fкр =3,49. Так как F> Fкр, то гипотезу H0 отклоняем, т.е. считаем, что объем ежедневной выработки зависит от работающей бригады. Оценим степень этой зависимости с помощью коэффициента детерминации. Для этого вычислим Q :

Контроль: Q = Q1+Q2 = 228,688 + 41,25 = 269,9 – верно!

По формуле (48) получим: , это означает, что 84,7% общей вариации (изменчивости) ежесменного объема выработки связано с работающей бригадой.

В MS Excel для проведения однофакторного дисперсионного анализа использует­ся процедура Однофакторный дисперсионный анализ.

Для проведения дисперсионного анализа необходимо:

•ввести данные в таблицу, так чтобы в каждом столбце оказались данные, соот­ветствующие одному значению исследуемого фактора, а столбцы располагались в порядке возрастания (убывания) величины исследуемого фактора,

•выполнить команду Сервис > Анализ данных;

•в появившемся диалоговом окне Анализ данныхв списке Инструментыанализа выбрать процедуру Однофакторный дисперсионный анализ, указав курсором мыши и щелкнув левой кнопкой мыши. Затем нажать кнопку ОК;

•в появившемся диалоговом окне задать Входной интервал, то есть ввести ссылку на диапазон анализируемых данных, содержащий все столбцы данных. Для этого следует навести указатель мыши на верхнюю левую ячейку диапазона данных, нажать левую кнопку мыши и, не отпуская ее, протянуть указатель мыши к нижней правой ячейке, содержащей анализируемые данные, затем отпустить левую кнопку мыши;

•в разделе Группировка переключатель установить в положение по столбцам;

•указать Выходной диапазон, то есть ввести ссылку на ячейки, в которые будут выведены результаты анализа. Для этого следует поставить переключатель в положение Выходной интервал (навести указатель мыши и щелкнуть левой кноп­кой), далее навести указатель мыши на правое поле ввода Выходной интервал и щелкнуть левой кнопкой мыши, затем указатель мыши навести на левую верх­нюю ячейку выходного диапазона и щелкнуть левой кнопкой мыши. Размер выходного диапазона будет определен автоматически, и на экран будет выведе­но сообщение в случае возможного наложения выходного диапазона на исход­ные данные.

•нажать кнопку ОК.

Результаты анализа. Выходной диапазон будет включать в себя результаты дис­персионного анализа: средние, дисперсии, критерий Фишера и другие показатели.

Однофакторный дисперсионный анализ
ИТОГИ
Группы Счет Сумма Среднее Дисперсия
Строка 1 142,75 4,916667
Строка 2 150,75 2,25
Строка 3 147,5 1,666667
Строка 4 152,75 4,916667
Дисперсионный анализ
Источник вариации SS df MS F P-Значение F критическое
Между группами 228,6875 76,22917 22,17576 3,48104E-05 3,490294821
Внутри групп 41,25 3,4375
Итого 269,9375

Как видно из таблицы, общая сумма квадратов SS (Q) = 269,938 разбита на компоненты: Q1= 228,688, обусловленную различием средних значений между группами и Q2= 41,25, обусловленную внутригрупповой изменчивостью

где Q— общая сумма квадратов отклонений наблюдений от общего среднего, Q1— сумма квадратов отклонений выборочных средних от общего среднего, Q2— сумма квадратов отклонений наблюдений от групповых средних.

Заметим, что MS в этой таблице есть средний квадрат, равный SS, деленная на число степеней свободы (df).

MS1 = Q1/ df1 = 228,688 / 3 = 76,229

MS2 = Q2/ df2 = 41,25 / 12 = 3,438

F = MS1 / MS2 = 76,229 / 3,438 = 22,176

Внутригрупповая изменчивость (SS) обычно называется остаточной компонентой или дисперсией ошибки. Это означает, что обычно при проведении эксперимента она не может быть предсказана или объяснена. С другой стороны, SS эффект (или компоненту дисперсии между группами) можно объяснить различием между средними значениями в группах. Иными словами, принадлежность к некоторой группе объясняет межгрупповую изменчивость, т.к. нам известно, что эти группы обладают разными средними значениями.
Интерпретация результатов. Влияние исследуемого фактора определяется по величине значимости критерия Фишера, которая находится в таблице Дисперси­онный анализ на пересечении строки Между группами и столбца Р-Значение. В случаях, когда Р-Значение

Выводы:Подводя итоги, можно сказать, что целью дисперсионного анализа является проверка статистической значимости различия между средними (для групп или переменных). Эта проверка проводится с помощью разбиения суммы квадратов на компоненты, т.е. с помощью разбиения общей дисперсии (вариации) на части, одна из которых обусловлена случайной ошибкой (то есть внутригрупповой изменчивостью), а вторая связана с различием средних значений. Последняя компонента дисперсии затем используется для анализа статистической значимости различия между средними значениями. Если это различие значимо, нулевая гипотеза отвергается и принимается альтернативная гипотеза о существовании различия между средними.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Однофакторный дисперсионный анализ в Excel

Однофакторный дисперсионный анализ изучает влияния одного фактора на анализируемый признак.

В таблицы приведены статистические данные по количеству изготовленных деталей на заводе каждым мастером в течение каждой недели.

Необходимо выяснить зависимость количества изготовленных деталей от производительности мастера. Уровень значимости равен α=0.05.

таблица задача однофакторный дисперсионный анализ

№ п/п Номер недели Количество изготовленных деталей
Первым мастером Вторым мастером Третьим мастером Четвертым мастером Пятым мастером
1. Первая неделя 260 253 258 257 251
2. Вторая неделя 257 255 255 252 250
3. Третья неделя 259 250 254 253 255
4. Четвёртая неделя 254 254 260 257 251

Переходим на вкладку Данные -> Анализ данных. Выбираем однофакторный дисперсионный анализ и жмём Ок.

анализ данных excel однофакторный дисперсионный анализ

Появляется окно, здесь во входном интервале выбираем диапазон данный в нашей таблицы в нашем случае это диапазон ячеек $C$3:$G$6, альфа ставим 0,05 (обычно в Excel данная величина стоит по умолчанию) и в выходном интервале указываем произвольную ячейку на листе Excel, где желаете, чтобы отобразился результат, далее Ок.

однофакторный дисперсионный анализ

В результате получим решение в виде таблицы.

однофакторный дисперсионный анализ решение

Однофакторный дисперсионный анализ
ИТОГИ
Группы Счет Сумма Среднее Дисперсия
Столбец 1 4 1030 257,5 7
Столбец 2 4 1012 253 4,666666667
Столбец 3 4 1027 256,75 7,583333333
Столбец 4 4 1019 254,75 6,916666667
Столбец 5 4 1007 251,75 4,916666667
Дисперсионный анализ
Источник вариации SS df MS F P-Значение F критическое
Между группами 94,5 4 23,625 3,800268097 0,025089214 3,055568276
Внутри групп 93,25 15 6,21666667
Итого 187,75 19

Из таблицы значения F-критерия равно Fнабл=3.8, а Fкрит=3, правосторонний интервал (3; +∞) Fнабл>Fкрит, отсюда следует, что Fнабл лежит в этом интервале, следовательно, нулевую гипотезу H0 о равенстве групповых матожиданий — отвергаем, следовательно фактор — количества изготовленных деталей зависит от признака — производительности мастера.

Найдём выборочный коэффициент детерминации:

Этот показатель говорит о том, что около половины еженедельного количества изготовленных деталей мастерами связано с номером недели.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *