Защита квартиры или частного дома от импульсных перенапряжений
С началом грозы принято отключать дорогостоящие бытовые приборы из розетки, а ethernet кабели от компьютеров. Это нужно, чтобы защитить их от неожиданного удара молнии в ЛЭП и выхода из строя из-за перенапряжения. Но есть способ гораздо удобнее — установить на ввод в квартиру устройство защиты от импульсных перенапряжений.
Причины и последствия импульсных перенапряжений сети
Импульсные перенапряжения представляют угрозу для бытовых электроприборов. Причины данного явления делятся на 2 категории:
- Атмосферные перенапряжения (молнии). Разряд попадает в линию электропередач. Затем высокий потенциал следует до розеток потребителей и выводит домашнюю электронику из строя.
- Техногенные перенапряжения. Неисправность контура молниезащиты. Пробой изоляции между сетями высокого и низкого напряжения.
Независимо от причины, в квартирных розетках формируется разность потенциалов в несколько тысяч вольт. Импульс длится доли секунды. Но этого достаточно чтобы повредить чувствительные электронные платы, микросхемы и процессоры.
Для чего нужно УЗИП
Задача УЗИП состоит в защите электроприборов от перенапряжения. Устройство оберегает бытовую сеть от скачков тока в следующих случаях:
- неполадки на трансформаторной подстанции и замыкания ВВ проводов на НВ линию;
- прямое попадание грозового разряда в ЛЭП;
- разряд молнии вблизи воздушных линий электроснабжения или жилых зданий.
Строение и принцип работы УЗИП
Принцип работы УЗИП основан на зависимости его сопротивления от приложенного к контактам напряжения. Например, если вольтаж в сети равен типичным 220 В, то сопротивление устройства составляет порядка 1-100 Мом. Если напряжение возрастает до критического уровня, то УЗИП резко снижает сопротивление до единиц ом и шунтирует квартиру от чрезмерно высоких токов.
Внутри устройства имеется полупроводниковый элемент — варистор. Именно он за несколько микросекунд сбрасывает сопротивление до минимальных значений.
Дополнительная информация. Варистор — это круглая, светло-синяя или черная радиодеталь с двумя ножками. Ее диаметр составляет от 7 до 30 мм. Варистор часто встречается в бытовой технике. Он включается между фазным и нулевым проводами электроприбора или впаивается в его плату. В случае с домашней техникой варистор также служит для защиты от перенапряжения, только не всей квартиры, а конкретного бытового прибора, в котором он установлен.
Виды УЗИП
Существующие УЗИП отличаются по быстроте срабатывания. Различия объясняются неодинаковыми конструкциями и принципами работы приборов. Поэтому принято выделять 3 вида устройств молниезащиты:
- Искровые промежутки (разрядники). Представляют собой воздушный зазор между электродами.
- Варисторные ограничители перенапряжения (ОПН). Полупроводниковые устройства. Резко снижают сопротивления при возрастании напряжения. Встречаются в УЗИП, устанавливаемых в квартирные щитки, на платах бытовой техники и на опорах ЛЭП.
- Комбинированные устройства. Сочетают в себе оба из перечисленных типов устройств.
Искровые промежутки (разрядники)
Наиболее старый и простой тип защиты от перенапряжения. Как правило, разрядники используются в трансформаторных подстанциях и распределительных устройствах. На таких объектах возможны резкие скачки напряжения при коммутационных процессах.
Имеется 2 электрода. Один подключается к заземлению. Второй к защищаемой линии. Пока разность потенциалов между электродами находится в пределах нормы, разрядник обладает большим сопротивлением воздуха. Как только напряжение между электродами превышает заданный уровень, происходит пробой воздушного промежутка (пролетает искра). Разрядник на доли секунды сбрасывает сопротивление.
Напряжение срабатывания разрядника регулируется расстоянием между электродами. Чем оно больше, тем выше вольтаж, при котором произойдет пробой воздушного промежутка.
Важно! Если долго проходить в помещении в синтетической куртке, а потом прикоснуться к чему-то металлическому, то между пальцем и железным предметом пролетит искра. Произойдет пробой воздушного промежутка между заряженной от трения курткой и железным предметом. Разрядники работают по аналогичному принципу.
Варисторные ограничители перенапряжения
Низковольтный вариант данного устройства применяется в квартирных электрощитах. Для этого на корпусе предусмотрено стандартное крепление под DIN-рейку. Прибор работает с напряжениями 220/380 В и предохраняет от перенапряжения отдельную квартиру или трехфазного потребителя.
Высоковольтный вариант устанавливается на линии 10 кВ и выше. Обладает сравнительно большими размерами и мощным керамическим корпусом белого или коричневого цвета. Данный ограничитель импульсных перенапряжений еще называют вентильным разрядником (не путать с искровым промежутком).
Комбинированные устройства
Комбинированные УЗИП сочетают достоинства от вышеперечисленных защитных устройств. Основные из них таковы:
- Низкое напряжение срабатывания варисторных ОПН. Как следствие, высокая чувствительность к самым незначительным превышениям напряжения.
- Большая рассеиваемая мощность искровых разрядников. Некоторые модели способны пропускать токи в десятки килоампер.
Классы УЗИП
Различные модели УЗИП отличаются по типу защищаемого потребителя, месту установки и техническим требованиям. Поэтому их принято разделять на 3 класса.
Класс УЗИП | Назначение устройства | Технические требования | Предельный импульсный ток, кА |
---|---|---|---|
1-й (B) | Защита от прямых ударов молнии, бросков напряжения при КЗ. | Необходима защита от прямого прикосновения человека к частям устройства. Отсутствиериска возгорания УЗИП при его неисправности или КЗ в системе электроснабжения. | От 0,5 до 50 кА при импульсном токе в течение 350 мкС. |
2-й (C) | Для защиты ЛЭП и подстанций от перенапряжений при переключениях. Как дополнительные мерызащиты при ударе молнии. | Аналогичные1 классу. Защита от прямого прикосновения. Отсутствие риска возгорания при КЗв сети или неисправности защитного устройства. | 5 кА при импульсе в 20 мкС. |
3-й (D) | Для гашения остаточных сетевых помех и скачков напряжения. | Защита от низковольтного перенапряжения между фазой и нулем. От прямого прикосновения ивозгорания. | До 1,5 кА при 20 мкС |
Маркировка защитного устройства
Для правильного выбора и установки устройства необходимо ознакомиться с его маркировкой. Она представлена в буквенно-цифровом виде и находится на корпусе УЗИП. Расшифровка обозначений приведена ниже.
- L/N — винтовые клеммы для подключения кабелей защищаемой сети;
- символ «земля» — клемма для подключения нулевого защитного проводника;
- зеленый флажок на корпусе — указывает на исправность прибора;
- Un — номинальное рабочее напряжение защищаемой сети;
- Umax — предельное допустимое напряжение;
- 50 Гц — частота тока;
- In — номинал разрядного тока;
- Imax — предельный разрядный ток, который способны выдержать устройство;
- Uр — напряжение срабатывания УЗИП.
Схемы подключения
Для подключения защитного устройства недостаточно ознакомления с его характеристиками. Дополнительно следует учесть и параметры питающей сети. В странах СНГ наиболее распространены такие ее виды:
- однофазная, TN-S;
- однофазная, TN-C;
- трехфазная, TN-S;
- трехфазная, TN-C;
УЗИП с однофазным питанием и системе TN-S
На картинке ниже представлена схема подключения. УЗИП включается после вводного автоматического выключателя. Как фазный, так и нулевой провод, на защитное устройство поступает с автомата. Заземляющий же проводник идет с PE клеммника.
УЗИП с однофазным питанием по системе TN-C
Применяется однополюсной прибор. Заземляющий проводник отсутствует. Поэтому устройство защиты от перенапряжений подключается между фазным и нулевым. При критическом скачке напряжения в L проводе лишний ток, минуя квартиру, потечет в N провод.
УЗИП с трехфазным питанием и по системе TN-S
Устройство защиты устанавливается после вводного автомата. Если поставить его после счетчика, то в случае удара молнии дорогой прибор учета выйдет из строя. Все 3 фазы поступают на УЗИП в соответствии с маркировкой его клемм. При таком подключении стабильность напряжения контролируется не только между фазой и землей, но и между отдельными фазами.
УЗИП с трехфазным питанием по системе TN-C
В трехфазной сети желательно использовать модульное устройство защиты на 3 полюса. Но при необходимости допустимо воспользоваться и 3 однофазными УЗИП. Независимо от комплектации уровень напряжения будет контролироваться между всеми фазными проводниками и нулем.
Автоматы или предохранители перед УЗИП
На вводе в любую квартиру в обязательном порядке монтируется устройство защиты от КЗ или перегрузки по току. Раньше применялись пробки (плавкие вставки). Сейчас в ходу автоматические выключатели.
УЗИП монтируется после этих устройств. При превышении напряжения оно замыкает свои контакты. Далее возникает огромный ток короткого замыкания. Если перед УЗИП стоит плавкая вставка, то она перегорит. Ее необходимо будет заменить новой. Если автоматический выключатель, то он сработает, и его достаточно будет просто включить.
В контексте ОИН специалисты рекомендуют именно плавки вставки. Объясняется это простотой их устройства и меньшими рисками перекрытия высоким напряжениям. То есть если под превышенным потенциалом окажется автомат, то есть риск, что внутри него образуется дуга, и он не выполнит защитную функцию. С плавким предохранителем такая опасность минимальна. Однако они обладают меньшей быстротой действия чем автоматы.
Важно! Не следует ремонтировать пробки и изготавливать так называемые «жучки». Это быстро, дешево и просто, но периодически приводит к серьезным последствиям. В идеале лучше иметь пробки на запас или установить автоматические выключатели.
Ошибки монтажа УЗИП
При правильной установке защитное устройство гарантирует безопасность бытовых электроприборов. Распространенные примеры ошибок при монтаже УЗИП следующие:
- Монтаж УЗИП в щиток с неисправным заземлением. Для работы устройство требует надежной земли. Поэтому перед установкой необходимо убедиться в исправности заземления.
- Неправильное подключение с нарушением схемы. Корректно подключить УЗИП может только человек, разбирающийся в электрике. В случае затруднений следует обратиться к типовым схемам в технической документации на устройство.
- Применение защитного аппарата, не подходящего по классу. При ударе молнии такое устройство в лучшем случае выйдет из строя. В худшем оно пропустит высокое напряжение в квартирную электрическую сеть.
В подавляющем большинстве случаев УЗИП защитит ваш дом от импульсных перенапряжений. Они возникают в результате ударов молнии вблизи ЛЭП или аварий на трансформаторных подстанциях. Подобные вещи невозможно предсказать заранее, поэтому защита от перенапряжений пойдет на пользу любому электрощиту.
Независимо от того, приобретается УЗИП для частного дома или квартиры, следует обратить внимание на его класс. Другие важные параметры — это минимальное напряжение срабатывания, предельный импульсный ток КЗ и количество защищаемых фаз. Не менее значимо правильно выбрать схему подключения прибора к сети.
УЗИП — защита от импульсных перенапряжений для частного дома.
Изначально вся молниезащита и защита от перенапряжений, возникающих при грозе, ориентировалась на такие величины, как киловольты и даже десятки и сотни киловольт.
Оборудование такого класса защищается высоковольтными разрядниками РВО, РВС, РДИП, РМК и т.п.
УЗИП – это устройство, которое защищает оборудование и эл.приборы в сети 220-380В от импульсных перенапряжений.
При этом не путайте импульсное перенапряжение, просто с повышенным, которое возникает при аварийных ситуациях – обрыве ноля или попадании фазы на нулевой проводник.
Импульсное длится не более 1 миллисекунды.
Никакое реле напряжения за это время отработать не успевает.
Помимо аббревиатуры УЗИП можно встретить и другие распространенные названия. Например, ОПС – ограничитель перенапряжения сети или ОИН – ограничитель импульсных напряжений.
Несмотря на разные названия, функциональное назначение у всех этих устройств одинаковая. Они должны выполнять две главные задачи:
- защищать оборудование от последствий удара молнии
Причем не обязательно от прямого попадания, но и от возникающих “наводок” и импульсных разрядов при грозе.
От них выйти из строя могут не только работающие приборы, но и “спящие”.
То есть те, которые просто воткнуты в розетку – TV, холодильники, зарядки.
- защищать от перенапряжений при коммутациях
Как сами понимаете, говорить об актуальности монтажа УЗИП в этом случае нужно не только для частных домов, но и для квартир в многоэтажках. Данная коммутация будет сопровождаться кратковременным импульсом, который спалит вам электронные компоненты телевизора, стиральной машинки или компьютера.
От всего от этого ни УЗО, ни диффавтоматы, ни реле напряжения не помогут.
А вот УЗИП реально спасет дорогостоящие приборы. Иногда такие импульсы не приводят к капитальной поломке, зато сопровождаются “зависанием” системы, потерей памяти и т.п. А это опять дополнительные расходы на ремонт, наладку и обслуживание.
Если взять все домашние электроприборы и разбить их на категории электрической стойкости к импульсам напряжения, то получится следующая табличка:
Вот базовые технические характеристики, на которые следует обращать внимание при выборе УЗИП. Они обычно прописаны на корпусе устройства.
- номинальное и максимальное напряжение сети
Это напряжение, при котором устройство будет нормально работать не срабатывая. При его превышении УЗИП становится активным.
- номинальный и максимальный разрядный ток
Это ток, который УЗИП может пропустить через себя несколько раз без последствий и риска выхода их строя.
- уровень защитного напряжения или классификационное напряжение
Максимальное U на клеммах устройства, когда варистор начинает открываться при протекании через него определенного тока.
- класс устройства
Все УЗИП подразделяются на три класса или три типа. Эти классы подсказывают в каких местах нужно ставить, то или иное устройство.
Этот тип рассчитан на пиковое значение тока с фронтом 10/350мс.
Что это означает? Это значит, что рост тока до максимального значения происходит в течение 10мс. Далее его значение падает на 50% через 350мс.
Такое наблюдается именно при прямом ударе молнии. Это очень малое время воздействия, на которое остальные защитные аппараты зачастую не успевают среагировать. А при достаточном импульсном токе, просто выходят из строя, никак не защищая подключенное оборудование.
А вот УЗИП при максимальных величинах данного параметра гарантированно защитит цепь хотя бы один раз.
УЗИП 1 класса устанавливаются непосредственно на вводных щитовых промышленных и административных зданий.
Тип 1 используется при наличии системы молниезащиты – молниеотвод, металлическая сетка на здании.
Кстати, устройства класса 1 соответствующей конструкции, при воздушном вводе проводом СИП и наличии хорошего контура заземления, можно легко установить непосредственно на опоре через специальные прокалывающие зажимы и арматуру.
Они рассчитаны на пиковое значение тока с фронтом 8/20мс. То есть, максимум тока достигается за 8мс, а спадает он наполовину за 20мс.
Автоматы, УЗО, реле опять же пропускают такой импульс, не успевая среагировать вовремя.
УЗИП 2 класса должны монтироваться в вводных распредустройствах многоквартирных жилых зданий или в уличных ВРУ частных коттеджей и домов.
При воздушном вводе в здание это условие прямо регламентируется правилами ПУЭ.
Получается, что УЗИП Т-2 должны использоваться практически всегда.
Третий класс часто встраивают в сетевые фильтры и удлинители.
Эта защита нужна очень чувствительному электронному оборудованию. Например, дорогостоящим медицинским приборам, компьютерам и т.п.
Третий класс применяют только как дополнительную защиту к Т-2, и он имеет более низкую разрядную способность.
Тип Т-3 обязательно устанавливается, если приборы расположены далее 30 метров от вводного УЗИП Т-2.
Обратите внимание, что для обеспечения селективности защиты, нельзя устанавливать УЗИП разных классов параллельно один за другим в одном месте. Иначе максимальный ток молнии изначально пойдет совсем не через то устройство и элементарно сожгет его.
Чтобы этого не произошло, между УЗИП разного класса должен быть развязывающий элемент – индуктивность. Роль этой индуктивности выполняет обычный кабель или провод.
Рекомендуемое расстояние между разными УЗИП – не менее 10 метров.
Как работает УЗИП? Очень просто. При кратковременном превышении напряжения от заданного значения, происходит резкое падение сопротивления варистора, встроенного в корпус.
Вот наглядная схема принципа работы такого прибора. Через автомат 220В подключена однофазная нагрузка. В этой же цепочке присутствует УЗИП.
Один его контакт сидит на фазе, другой на заземлении. Подключение в цепь параллельное!
При этом всегда обращайте внимание на длину проводников, которыми подключено УЗИП. Они играют существенную роль.
Для эффективной защиты приходится уменьшать расстояние по кабелю. Поэтому общая длина всей цепочки, через которую подключается УЗИП (провод на фазу + провод до заземления) не должна превышать 50см!
А сечение самого кабеля для типа-2 должно быть от 4мм2 и выше, для класса 1 от 16мм2 и выше. Более подробно о всех нюансах подключения и ошибках при выборе правильной схемы читайте в отдельной статье.
Но вернемся к принципу работы. При нормальном однофазном напряжении в пределах 220В, встроенный варистор имеет большое сопротивление. Соответственно ток через него не течет.
Если же происходит кратковременный импульс, во много раз превышающий пороговое напряжение, варистор резко меняет внутреннее сопротивление, вплоть до нулевых значений.
Вследствие чего фаза через него спокойно устремляется на заземляющий контур. И все перенапряжение, грубо говоря, сливается в землю.
Как только импульс проходит, варистор автоматически возвращается в нормальное (закрытое) состояние.
При достаточно длительном воздействии импульса создается искусственное короткое замыкание, на которое срабатывает автомат, отключая всю цепочку.
Все будет зависеть от величины импульса, его продолжительности, грозового разряда и силы тока.
Остаточное напряжение, которое все равно в некоторой степени доходит до эл.приборов в этот кратковременный промежуток времени, получается сглаженным до безопасной величины и не оказывает негативных последствий.
Есть модели УЗИП моноблочные, а есть картриджные, со съемным варисторным блоком.
При его выходе из строя вам не придется менять целиком все устройство, достаточно будет заменить один элемент. Это все равно что поменять сгоревший предохранитель.
Как узнать, что УЗИП вышло из строя? По цветному индикатору на передней панели.
Он должен поменять свою раскраску с зеленого на красный.
Обязательным условием установки УЗИП является наличие аппарата защиты перед ним – автомата или предохранителя.
В любом автоматическом выключателе есть катушка, обладающая индуктивностью. А вы эту самую катушку, состоящую из множества витков, устанавливаете последовательно в цепь с УЗИП. Помните, что мы ранее говорили про максимальные расстояния проводников для подключения устройства?
Так вот, выставив перед УЗИП автомат, у вас получится ситуация, когда ток молнии, помимо самого ОПС, вынужден будет пройти через всю катушку, образуя на ней дополнительное напряжение. Иногда эта величина может доходить до 100кВ!
Поэтому и ставят перед УЗИП предохранители с плавкой вставкой, длина которой всего пару сантиметров.
Кстати, есть модели УЗИП, в которых плавкая вставка встроена в корпус устройства.
Только не путайте назначение всех этих предохранителей или автоматов. Они не нужны для защиты самого ОПС. Их обязанность — отсоединить после срабатывания поврежденный элемент цепи.
УЗИП выполнив свою главную задачу, остается фактически “закороченным”, и подать напряжение на все остальное оборудование с короткозамкнутым элементом внутри цепи вы не сможете.
При этом у данной защиты, когда она стоит непосредственно перед самим аппаратом, а не на главном вводе, есть один существенный недостаток. Дело в том, что большинство молний многокомпонентные и их разряд вызывает не один импульс, а несколько.
Причем импульсы эти достигают устройства одномоментно. Представьте себе такую картину – пришла первая волна максимальной величины и заставила не просто сработать УЗИП, но и вывела из работы сменный модуль (выпал красный индикатор) с аппаратом защиты до него.
И тут же за первым импульсом накатывает второй (всего через 60-80мс), а защиты то уже нет! Поэтому иногда лучше защиту в виде автоматов или предохранителей размещать на главном вводе. Она после первого срабатывания будет гасить всю сеть 220В.
УЗИП чаще всего выходят из строя (срабатывают без возможности восстановления параметров варистора) по двум причинам:
Что такое ограничители импульсных перенапряжений
В промышленных и бытовых электрических сетях устанавливается оборудование, которое работает в заданных пределах силы тока и напряжения. Однако на питающих трансформаторных подстанциях, мощных силовых электродвигателях приходится периодически менять режимы работы. Переходной процесс характеризуется резким импульсным повышением электрических параметров сети. Наиболее опасными являются атмосферные разряды в виде молний, где импульсный скачок перенапряжения достигает критической величины способной вывести из строя электрическое оборудование. Для предотвращения таких аварийных ситуаций используется ограничитель импульсных напряжений.
Принцип работы
В импульсных переходных процессах изменение напряжения происходит значительно быстрее, чем силы тока. Поэтому классические всем известные защитные автоматы по току здесь будут неэффективны. Наличие в составе ограничителя с полупроводниковым элементом, имеющим нелинейную вольтамперную характеристику, обеспечивает приборы электрической сети защитой от высокого импульса напряжения.
Как видно из графика, при номинальном значении напряжения сопротивление полупроводника (его называют варистором) достаточно большое и ток, проходящий через него практически нулевой (зона 1). При действии на варистор высоковольтных импульсов (зона 2) сопротивление его резко уменьшается, приближаясь к почти нулевому значению (зона 3). В таком варианте варистор ограничителя будет выступать в качестве шунтирующего соединения воспринимающего на себя всю токовую нагрузку, которая направляется на заземляющий контур.
Конструкция
Кроме основного элемента — варистора с нелинейными характеристиками, ограничитель перенапряжения отличает специальный корпус из фарфора или полимера. Сам варистор изготавливается в большинстве случаев из вилитовых дисков (из особого керамического состава с основой в виде оксидов цинка со специальными добавками). Диски покрываются изолирующей обмазкой и устанавливаются в корпусе.
В зависимости от условий эксплуатации ограничители перенапряжения могут иметь различные исполнения.
- Для установки на линиях электропередач и защиты оборудования на промышленных объектах.
- Защита от пиковых импульсов бытового оборудования дома или квартиры обеспечивается компактными, с привлекательным дизайном устройствами.
На изображении цифрами обозначены следующие конструктивные элементы:
- 1 — корпус;
- 2 — предохранитель, срабатывающий после прохождения импульса напряжения, с параметрами силы тока короткого замыкания;
- 3 — варисторный модуль, легко сменяемый без отключения базового элемента;
- 4 — индикатор, показывающий текущий ресурс работы устройства;
- 5 — насечки на контактных зажимах, увеличивающие плотность и площадь соприкосновения с целью предотвращения оплавления проводов в результате нагрева.
Технические характеристики
Помимо конструктивного исполнения не менее важным фактором при выборе необходимого ограничителя (импульсных) перенапряжений (ОПН) служат его следующие основные технические параметры.
- Максимальное рабочее напряжение, которое действует на ОПН неограниченно долго, не нарушая его работоспособности.
- Максимальное напряжение, действующее на ОПН в течение заданного производителем времени не вызывая в нем никаких повреждений.
- При приложении к концам ОПН рабочего напряжения измеряется ток, проходящий через изоляцию. Этот параметр называется током утечки. Величина его в исправном состоянии ограничителя стремится к нулю.
- Разрядный ток — его величина определяет принадлежность ограничителя перенапряжения в защите от различных факторов вызывающих скачок напряжения: грозовые, электромагнитные, коммутационные.
- Способность выдерживать работу в аварийном режиме сохраняя целостность всех конструктивных элементов.
Классификация ограничителей (импульсных) перенапряжений определяется государственными стандартами. В нормативных документах обозначаются основные требования к устройствам защиты в зависимости от характера источника. Различаются следующие группы защиты от перенапряжения:
- от замыканий на высокой стороне низковольтных сетей;
- от воздействия грозовых разрядов и скачков напряжений, вызванных переключением промышленных электроустановок;
- от возможных перенапряжений, вызванных электромагнитными факторами.
В зависимости от принадлежности к конкретному виду решаемого вопроса ограничители импульсных перенапряжений могут отличаться друг от друга такими параметрами.
- Класс напряжения. Ограничители защищают цепи рабочее напряжение которых варьируется от меньше, чем 1 кВольт до значительно больших значений. Существуют, например, ОПН на классы напряжения 0.38 кВольт и 0.66 кВольт, ОПН на классы напряжения 3, 6, 10 кВольт и другие.
- Материал изоляционной рубашки. Наибольшее распространение получили фарфор и полимеры.
Керамические ОПН обладают хорошей устойчивостью к солнечному свету, имеют достаточную механическую прочность, что расширяет возможности эксплуатации в разных условиях. Ограничивают применение лишь большие весовые характеристики и характер распространения осколков при разрыве с точки зрения безопасности.
Полимерные ОПН успешно конкурируют с фарфоровыми. При многократно меньших весовых характеристиках и практически безопасным в случае разрушения избыточным давлением, они нисколько не уступают по диэлектрическим свойствам. К недостаткам относится способность к покрытию поверхности пылью, что повышает ток утечки и вызывает пробой изоляции. В эксплуатации они больше подвержены влиянию солнечной радиации и колебаниям температур внешней среды, чем фарфоровые ограничители (импульсных) перенапряжений.
- Класс защищенности. От герметичного изготовления корпуса ОПН зависит возможность его установки на открытом воздухе или внутри помещения, что собственно определяет этот показатель.
- Одноколонковые ОПН. Состоят из одного модульного блока варисторов с различным набором дисков из защитного полупроводникового элемента, рассчитанных на все классы напряжений.
- Многоколонковые ОПН. Состоят из нескольких модульных блоков. Отличаются большей надежностью, чем одноколонковые конструкции.
Что означает аббревиатура УЗИП
УЗИП расшифровывается, как устройство защиты от импульсных перенапряжений. В перечень входящих в УЗИП приборов кроме ограничителей перенапряжения входят уже устаревающие вентильные и искровые разрядники. Последние применяются в сетях высокого напряжения (ЛЭП).
Применение в качестве материала варисторов полупроводников, позволило сделать габариты УЗИП настолько компактными, что стало возможным применение в качестве защиты от импульса напряжения в частных домах и квартирах.
Как подключить УЗИПы в домашних условиях
Правила устройства энергоустановок регламентируют обязательную установку УЗИП в домах, где электроснабжение производится проводами воздушных линий и с относительно длительным периодом наличия гроз. На рынке присутствует большое количество моделей УЗИП таких, например, как ограничители импульсных напряжений ОИН 1, ОПС 1, ОПН — РВ и много других, габариты которых позволяют разместить их во вводном щитке электроснабжения частного дома.
Электроснабжение дома может быть организовано по однофазной или трехфазной схемах. Различными могут быть и организация системы заземления домашней электросети.
На представленном ниже изображении — схема подключения УЗИП в однофазную электрическую схему. Система заземления с двумя нулевыми проводами: один выступает в качестве нейтрального проводника соединенного с землей, а второй используется как защитный провод.
- фаза — обозначена черным проводом;
- нулевой — обозначен синим проводом;
- зеленый — защитный заземляющий провод.
На следующем изображении представлена схема подключения УЗИП в трехфазную электрическую схему. Конструкция устройства защиты и счетчика выполнены для трехфазной сети. Заземление оборудовано по тому же принципу, что и в примере с подключением в однофазную цепь.
- черный провод — первая из трех фаз;
- красный провод — вторая из трех фаз;
- коричневый — третья фаза;
- синий — нулевой заземляющий провод;
- зеленый — защитный провод заземления.
Рекомендации по монтажу
Если следовать рекомендациям по установке и подключению ограничителя импульсных перенапряжений, устройство будет гарантировать безопасную работу бытового оборудования.
- Важно иметь очень надежное заземление. Защита с ненадежным контуром заземления даже при не очень большом скачке импульса напряжения приведет к аварийной ситуации в виде сгоревших электроприборов и самого щитка.
- Необходимо соблюдать соответствие класса защищенности УЗИП с местом установки щитка. Если щиток находится на улице, а устройство предназначено для работы в помещении то в лучшем случае оно выйдет из строя, в худшем нанесет вред домашней электросети.
- Для обеспечение надежной защиты в некоторых случаях требуется установка УЗИП разных классов защищенности.
- Не всякое защитное устройство подходит к конкретному виду заземления домашней электросети. Следует внимательно изучить техническую документацию приобретаемого устройства, чтобы не выбрасывать на ветер деньги на достаточно дорогое устройство.
- Важно правильно подключить схему, без нарушений. В случае отсутствия навыков электрика не стоит браться за работу. Квалифицированный специалист выполнит ее правильно, без особых затруднений.
Удары молнии, обрывы линий электропередач или аварии на трансформаторных подстанциях предсказать невозможно. Установка ОПН защитит от непредвиденных неприятностей.
Защита от гнева богов. Устройства защиты от импульсных перенапряжений
Продолжаем тему электроликбеза про устройства защиты, и этот пост — знакомство с устройствами защиты от импульсных перенапряжений (УЗИП). Это устройства для вашего электрощита, призванные бороться с кратковременными всплесками напряжения, например из-за грозы. Текст рассчитан для нетехнарей, так что добро пожаловать) Видеоверсия в конце.
Начнем с того, что знают сегодня даже дети — молния представляет собой разряд электричества, иногда ударяет в рукотворные объекты и способна испортить технику. Хоть это предложение и звучит по детски, но человечеству понадобились века, для понимания таких простых и очевидных сегодня вещей. Знание о природе и характеристиках разряда не далось человечеству без жертв, помянем Георга Вильгельма Рихмана.
Первыми регулярный ущерб, от удара молниями, стали испытывать связисты — телеграфные линии, растянутые по полям на столбах, регулярно приносили к дорогому и нежному оборудованию станций кратковременные всплески высокого напряжения. Причем не только от ударов молнии в сами провода, но даже от ударов молний неподалеку от линий! И уже тогда пришлось изобретать способы защиты оборудования от этих всплесков. Когда, спустя десятилетия свои провода стали растягивать на столбах уже энергетики, для только появившегося электрического освещения, некоторые наработки телеграфистов пригодились.
Статистика ударов молний, ломавших телеграф в Бельгии по месяцам и времени суток. Вырезка из журнала Electrical Review за 1885 год.
Стоит сказать, что для современной техники молния уже не является чем то запредельно мощным и умопомрачительным. Если взять все эти миллионы вольт и сотни тысяч ампер, умножить на время — мы получим энергию разряда, а это всего порядка 1 ГДж энергии. Если перевести в привычные кВт*ч, то это всего 277 кВт*ч, можно даже посчитать стоимость одного разряда молнии. Проблема лишь в том, что это количество энергии выделяется за доли секунды, что порождает проблемы, с которыми и борются разными техническими приемами.
Что происходит при ударе молнии в линию электропередач? Энергия молнии растекается по проводникам в поисках пути ухода в землю. Это вызывает рост напряжения до огромных величин, из-за чего изоляция не выдерживает, и ее пробивает. В тех местах, где протекал разряд, повреждения оставляет как нагрев, так и электромагнитные силы. И про электромагнитные силы хочу отметить особо: из-за очень большой скорости нарастания тока при ударе молнии, даже разряд в непосредственной близости, наводит токи в окружающих проводниках. Поэтому даже, если молния ударила в молниеотвод на крыше и ушла по металлоконструкциям в землю, на проводах внутри здания могут появиться всплески напряжения опасной величины. Поэтому защита строится не только от прямых попаданий молнией, но и от различных наведенных ею явлений.
Вопрос защиты от атмосферного электричества и от импульсных перенапряжений достаточно обширен, поэтому пост рассчитан дать лишь крайне поверхностное представление и не претендует на полноту. Для более полного и глубокого изучения темы в конце есть ссылки на дополнительные материалы. Если сформулировать кратко физический смысл устройств защиты — их задача сбросить в заземление всю энергию, наведенную в линиях молнией, не допуская чрезмерного роста напряжения. Эти устройства назвали УЗИП — устройства защиты от импульсных перенапряжений.
▍Акт первый. Приманиваем молнию и отправляем ее в землю.
Про громоотводы (они же молниеотводы, и они же молниеприёмники) наверняка слышали и видели все:
Молниеотвод на куполе деревянной церкви. Источник.
Это не обязательно торчащий в небо шпиль, у линий электропередач он выполнен в виде грозозащитного троса, который выше всех и не имеет изоляторов:
Пара грозозащитных тросов над ЛЭП. Источник.
Принцип простой — это проводник, электрически соединенный с землей, и размещенный как можно выше. Если на данном участке создадутся условия для удара молнией, то наиболее вероятно (но не 100% гарантированно!) разряд произойдет именно в заземленный проводник, а не в окружающие объекты. Сечение проводника выбирается достаточным, чтобы провести разряд к заземлению без повреждений. Громоотвод выполняет собой роль «зонтика» принимая всю стихию на себя. Аналогия с зонтиком становится еще более явной, если посмотреть на формулы расчета радиуса защищаемой громоотводом площади — она тем больше, чем выше громоотвод. Стоит отметить, что существует несколько методик определения защищаемой молниеотводом области, и даже среди специалистов по молниезащиты нет единогласного мнения, какая методика точнее. Например фото из энциклопедии Британника показывает два подхода к расчету защищаемой области — конус по высоте молниеотвода и метод катящейся сферы.
Защищаемые молниеотводом области. Источник.
Громоотвод оказался чертовски важен для использования в деревянных домах. Если раньше удар молнии в крышу мог устроить пожар (энергия разряда на пути в землю частично превращалась в тепло, поджигавшее все вокруг), то перенаправление разряда по металлическому штырю в землю спасало от таких страшных последствий. И если присмотреться — то все современные здания и строения имеют на крыше громоотвод. А особо важные объекты вообще могут иметь довольно сложные конструкции громоотводов. В тех местах, где надлежащее заземление сделать трудно (на скале, песках) молниезащита становится совсем нетривиальной задачей. Так выглядят громоотводы на газовой станции в Нигерии:
Разработчики решили, что молниеотводы такой формы работают лучше. Источник
Но, если бы способ работал без нареканий, то текст бы оборвался на этом месте. Он и обрывался, до появления чувствительной и нежной аппаратуры.
▍Акт второй. Минимолнии.
Не все высоко поднятые проводники могут быть заземлены, для успешного перенаправления энергии разряда в землю. Например антенны — она должна быть высоко и заземлять ее нельзя, иначе она перестанет принимать сигналы. А можно ли сделать устройство, которое бы соединяло бы например антенну с землей только в момент удара молнии, и при этом не оказывала влияния в остальное время?
Можно, и устройство это называется искровой разрядник. Вот пример разрядника для электрооборудования конца 19 века:
Идея защиты проста — между защищаемым проводником и заземлением в разряднике создается минимально допустимый зазор так, чтобы при нормальной работе напряжение не превышало напряжение пробоя зазора. Если в защищаемой линии по какой то причине напряжение возрастет (из-за удара молнии или из-за всплесков от работы электрооборудования) то в зазоре происходит электрический пробой — зажигается электрическая дуга, которая из-за ионизации газа неплохо проводит ток. Именно эта дуга обеспечивает временное электрическое соединение с землей, и гаснет, если напряжение понизилось ниже напряжения гашения дуги.
Но есть две проблемы. Первая — малопредсказуемое напряжение пробоя разрядника — изменение температуры, влажности воздуха — и напряжение изменилось. Немного коррозии — напряжение изменилось. Кривые ручки регулировщика — очень сильно изменилось. Второй недостаток — более фундаментальный — напряжение при котором происходит пробой, и напряжение, при котором дуга гаснет отличаются. Причем напряжение зажигания дуги еще зависит от скорости нарастания напряжения. График на картинке как раз показывает «горб» — пока разрядник не сработал напряжение успевает вырасти, затем зажигается дуга и напряжение падает. Пунктиром показан график напряжения при защите варистором.
Картинка взята отсюда.
Если первый недостаток получилось побороть, заключив разрядник в герметичную колбу, заполненную заранее приготовленной смесью газов, то со вторым ничего поделать не получилось. Да, разными ухищрениями можно уменьшить разницу между напряжением пробоя и напряжением, когда дуга гаснет, но не радикально. Причем напряжение гашения должно быть ВЫШЕ напряжения источника питания (*с оговорками). Иначе может получиться неприятная ситуация, когда разряд молнии пробил разрядник и ушел в землю, но дуге погаснуть уже не даст генератор, питающий линию. И дуга в разряднике будет гореть пока кто-то из них не сломается. Вот пример разрядника РБ-5, отечественного производства из аппаратуры связи — колба герметична и заполнена инертным газом:
В принципе, до широкого распространения полупроводниковых приборов (где-то до середины 60х) защита в виде разрядников всех устраивала. При должном запасе прочности изоляции, кратковременный всплеск напряжения на пару кВ (пока не сработает разрядник) большинство аппаратуры могло вынести. Но потом в широкий обиход вошли полупроводниковые устройства, для которых даже небольшое кратковременное повышение напряжения означало смерть.
Разрядники применяются до сих пор и очень широко. Причем разрядники выпускаются огромным ассортиментом на все случаи жизни, от маленьких для защиты линий связи до огромных для зашиты линий электропередач. Вот например как выглядит разрядники в плате мини-АТС (цилиндрические с брендом производителя EPCOS), для защиты от импульсов высокого напряжения, которые могут оказаться в телефонной линии:
▍Акт третий. Полупроводники защищают полупроводники.
На замену разрядникам в деле защиты линий (причем не только линий электропередач, но и например линий связи, но пост в основном посвящен линиям электропередач напряжением 220-230В) пришли варисторы. Это особый тип резисторов, сопротивление которых зависит от приложенного напряжения. Вот так выглядит их Вольт-амперная характеристика, которая показывает связь тока через прибор и приложенного напряжения:
То есть они ведут себя примерно как разрядники. Если напряжение ниже порогового — то их сопротивление велико, есть только мизерный ток утечки. Если напряжение превышает пороговое, то варистор довольно сильно меняет свое сопротивление, начиная хорошо проводить ток. Но, в отличии от разрядника, возвращается в исходное состояние с высоким сопротивлением, стоит лишь напряжению опуститься ниже порогового. В итоге напряжение на контактах варистора получается относительно стабильным, повышение напряжения он скомпенсирует увеличением тока через себя, что не даст напряжению расти.
Чисто технически, варистор представляет собой таблетку спеченной керамики из вещества, которое обладает свойством полупроводника, например гранул оксида цинка в матрице из смеси оксидов металлов, поэтому его и называют MOV — Metal Oxide Varistor. Гранулы создают огромное количество pn переходов, проводящих ток в одном направлении. Но так как их образуется много и в случайном порядке, для выпрямления тока они бесполезны. Но свойство устраивать электрический пробой при превышении определенного напряжения (а электрический пробой pn перехода обратим), оказалось очень кстати. Регулируя толщину таблетки, можно добиться достаточно стабильного порогового напряжения при производстве. А увеличивая объем шайбы, можно увеличить максимальную энергию импульса, который способен поглотить варистор.
Варистор получился не идеальным, поэтому он не заменил, а лишь дополнил разрядники. За огромный плюс — отсутствие разницы между напряжением пробоя и напряжением восстановления, варисторам прощают токи утечки, ограниченный ресурс (после некоторого количества срабатываний может потерять характеристики), большой габарит при скромных допустимых энергиях разряда. Включенный в линию варистор будет гасить всплески напряжения примерно таким образом:
Так как варистор может со временем прийти в негодность, и например начать проводить ток, когда не требуется, устраивая короткое замыкание, необходимо предусматривать защиту от короткого замыкания. Большие могучие варисторы на DIN рейку, для защиты силовых линий, часто содержат в себе встроенную защиту. Вот например так выглядит начинка варистора в щиток от IEK:
Видно саму таблетку варистора (синего цвета). К ней присоединены электроды и подпружиненный флажок опирается на электрод, припаянный легкоплавким припоем… Если варистор нагревается свыше разумного (не важно, от пришедшего импульса с молнии, или по причине деградации) то припой плавится, электрод отсоединяется, разрывая цепь, и пружина опускает флажок, показывает неисправность варистора. Если защиты не предусмотреть, неконтролируемый нагрев варистора может устроить пожарчик.
Варисторы небольших размеров можно встретить во множестве электронных устройств, для защиты от случайно пришедших по сети всплесков высокого напряжения. В большинстве удлинителей, именующих себя «сетевыми фильтрами» вся фильтрация сводится к наличию пары варисторов внутри. Вот на фото можно разглядеть варисторы (синего цвета) в разных удлинителях:
▍Акт четвертый. Защита для самых нежных.
Этот раздел я включил полноты ради.
Помимо варисторов и разрядников есть еще устройства защиты — полупроводниковые супрессоры (TVS-transient voltage suppressor), они же TVS-диоды, они же полупроводниковые ограничители напряжения. Это специально спроектированные диоды, которые работают на обратной ветви вольт-амперной характеристики (да, той самой, где происходит обратимый электрический пробой у варисторов). Физически они выполняют ту же самую функцию, что и остальные устройства защиты — не проводят ток, если напряжение в норме и начинают проводить ток, если напряжение почему-то превысило допустимое значение, тем самым выполняя роль ограничителя. На фото довольно крупный экземпляр, они бывают совсем миниатюрные:
Фото из каталога моей любимой Промэлектроники. TVS-диоды бывают как в выводных корпусах, так и в корпусах для поверхностного монтажа. Бывают сборки с несколькими TVS диодыми для защиты групп линий.
Полупроводниковые ограничители напряжения почти прекрасны всем, кроме одного — величина энергии импульса, который они способны ограничить, поглотив излишки, очень мала. Создание на их базе защиты, способной хоть как то сравниться по характеристикам с разрядниками или варисторами будет слишком дорогой. Поэтому они нашли применение там, где нужна компактная защита самой нежной и чувствительной электроники от небольших по мощности всплесков, например от статического электричества. Будьте уверены — в вашем телефоне все контакты, что ведут внутрь (USB, наушники) защищены маленькими TVS диодами, которые не позволят напряжению на этих контактах повыситься выше 5 В, даже если вы случайно «щелкните» по ним электричеством снимая свитер.
Если хочется узнать поподробнее про полупроводниковые ограничители напряжения, это можно сделать тут, и тут. Но, если вы не разработчик электроники, то врядли вы будете как-то взаимодействовать с этими устройствами защиты.
▍Акт пятый. Концепция зональной защиты.
А можно поставить в электрощиток на вводе в дом универсальное устройство защиты от импульсных перенапряжений, и не знать проблем? К сожалению — нет. Хотя бы потому что даже если вы подавили все нежелательные всплески на входе в дом, можно повторно словить их проводкой внутри здания, например когда ток разряда молнии будет следовать от громоотвода в землю где-то за стенкой — электромагнитное поле столь мощное, что в любом проводнике наведет импульс тока. Или например, что в сеть импульс повторно проникнет через телефонный аппарат, придя по телефонной линии. Поэтому процесс построения защиты усложняется — нужно анализировать все пути проникновения электромагнитного импульса от молнии внутрь защищаемого объекта.
Чтобы не ставить на каждое устройство полный комплект устройств для защиты от прямого попадания молнией (было бы слишком дорого), придумали концепцию зональной защиты, и соответствующих классов устройств. Объект, электрическая начинка которого защищается от повреждения молнией, разделяется на зоны, согласно степени воздействия молнией. Все линии (силовые, связи), переходящие из зоны в зону, на границе зон оснащаются устройствами защиты. Проще понять это на абстрактном примере дома:
Картинка взята из руководства OBO Betterman. Lightning protection guide
(LPZ — lightning protection zone — зона защиты от молнии)
Зона 0а — это зона, куда непосредственно может ударить молния. В проводнике может оказаться полный ток молнии
Зона 0b — это зона, куда молния напрямую уже не ударит, но в проводнике может оказаться частичный ток молнии — как из-за электромагнитного поля, так и просто из-за пробоя изоляции.
Зона 1 — Это зона, где может появиться наведенный молнией ток.
Зона 2,3,4 и т.д. — зона, где наведенный молнией ток ослаблен и меньше, чем в вышестоящей зоне. Зон может быть сколь угодно много, как в матрешке.
То есть понятно — при переходе из зоны в зону, электромагнитный импульс молнии ослабевает, в том числе из-за устройств защиты на границах зон, и за счет экранирования и ослабления в пространстве. Например бетонная стенка с заземленной арматурой внутри может служить таким экраном. Зоны обычно разделяются по естественным препятствиям — стена, корпус шкафа, корпус прибора и т.д.
И вот для удобства, устройства защиты разделили на классы. И когда понятно деление на зоны — достаточно взять из каталога устройство соответствующего класса.
Класс I (B)- это устройства способные выдержать частичный ток молнии (зона 0), и предназначены для установки на вводном щите. (где зона 0 переходит в зону 1)
Класс II (С)- это устройства способные выдержать меньший ток, чем устройство класса I, но они дешевле и напряжение, до которого они срежут импульс меньше. Предназначены для установки на распределительном щите. (Как раз где зона 1 переходит в зону 2)
Класс III- (D)Это устройства способные выдержать импульс еще меньшей величины, чем класс II, но зато срезающие импульс почти полностью. И предназначены для установки уже на щит конечного потребителя. Многие грамотно спроектированные устройства имеют подобную защиту уже внутри себя.
Почему бы не ставить везде устройства защиты класса I? А просто потому что установка устройства класса I там, где с лихвой хватит класса III, например у конечного потребителя — неоправданный перерасход бюджета. Это как строить полностью укомплектованную пожарную часть там, где достаточно поставить огнетушитель. Кроме того, чем брутальнее и мощнее устройство защиты, тем больше величина напряжения импульса, который просачивается через нее в потребителя. (тем выше напряжение ограничения, см картинку выше)
Картинка из руководства Шнайдер электрик
Но если хочется всё и сразу, существуют комбинированные устройства, например Класс I+II которые соответствуют параметрам сразу нескольких классов, но за такую универсальность производитель попросит дополнительных денег.
▍Акт шестой. Стандартная молния.
Каждый удар молнии уникален по своим характеристикам. Но устройства защиты нужно как то тестировать, сравнивать, разрабатывать, поэтому пришлось договариваться о некоторых характеристиках электромагнитного импульса, который наводит молния. Поэтому на лицевой панели устройств защиты, а также в документации можно увидеть: (поглядите маркировку на распиленном УЗИПе от IEK на фото выше)
- Пиковое значение тока, который проходит через прибор без его повреждения, в тысячах ампер (кА). Например 50 кА — означает, что пиковый ток в импульсе достигает 50 000 Ампер.
- Запись о длительности импульса, в микросекундах. Она указывается через дробь. Например 10/350 означает, что импульс нарастает до максимального значения тока за 10 микросекунд, а потом плавно спадает до нуля за 350 микросекунд. Или например 8/20. (10/350 — длинный и мощный импульс, характерный для прямого попадания разрядом, а 8/20 — короткий, более характерный наведенному от молнии неподалеку)
- Рабочее напряжение. Это нормальное напряжение в линии, к которой подключается защита.
- Напряжение ограничения, в вольтах. Это величина остаточного напряжения импульса на клеммах устройства (позже укажу почему это важно), до которого устройство защиты сможет его уменьшить.
- Класс устройства (см. часть про зональную концепцию).
Стоит отметить, что даже многолетняя собранная статистика не исключает, что конкретно вы не согрешили настолько, что по вам ударит аномально мощная молния, но вероятность этого весьма низкая. (Например МЭК 62305-1 считает, что даже по самым отъявленным грешникам молнии с зарядом более 300 Кл выпускаются менее чем в 1% случаев.)
Вот прекрасная в своей наглядности иллюстрация из руководства OBO BETTERMANN, где иллюстрируется статистика разрядов молний по току, и как разные уровни защит от молний (LPL) их покрывают:
Так как процесс предсказания тока у молнии, которая ударит в объект в будущем сродни процессу предсказания курса биткоина (то есть гадание), и придумали разные уровни защит от молний, и картинка выше наглядно показывает как они соотносятся. Необходимый уровень защиты выбирается согласно оценке рисков ущерба от попадания молнии.
▍Акт седьмой. Портим всё забыв про мелочи.
Описанное выше актуально для сферического коня в вакууме. В реальной жизни есть огромное количество тонкостей, которые опускаются для упрощения, но рано или поздно дадут о себе знать. Вот примеры некоторых из них:
1. Собственная индуктивность и сопротивление проводников.
Отрезок провода длинной 1 метр обладает индуктивностью примерно 1 мкГ и ненулевым сопротивлением. А значит при высоких темпах нарастания тока (а для молний они как раз характерны) лишний запас провода может свести смысл защиты к нулю. Многие производители в своих руководствах явно указывают, что длина проводников от линии к клеммам устройства защиты должны быть максимально короткой, и в сумме не превышать 0,5 м. Вот наглядная картинка из руководства OBO BETTERMANN, как лишние 2 метра провода повлияли на защиту. Если УЗИП (оранжевый) срезает пришедший импульс до величины 1,5 кВ, то на проводниках падает дополнительно 2 кВ, и в итоге в нагрузку придет импульс напряжением 3,5 кВ.
Весьма изящным способом уменьшить влияние проводников является подключение вот таким образом:
Некоторые производители, для удобства монтажа вообще предусматривают двойные клеммы, например как на этом устройстве (отечественное кстати):
2. Сопротивление играет роль.
При токе разряда молнии в 50 кА, на проводнике с сопротивлением в 0,1 Ом при протекании тока создастся разница напряжения в 5 кВ. Поэтому УЗИП следует подключать максимально толстым проводником, не менее 6 мм2, даже если сама по себе линия 2,5 или даже 1,5 мм2. Если вы подключили УЗИП V-образно как на фото выше, то толстым у вас останется только заземляющий проводник.
3. Устройства защиты без согласования бесполезно соединять параллельно.
Может закрасться мысль, что если параллельно поставить несколько устройств защиты, то мы получим Мегазащиту. Но это так не работает. Когда по линии прилетит импульс — то первым сработает кто-то один, и примет на себя весь удар. Чтобы каскад из защит работал согласованно, и по мере необходимости в дело поглощения импульса подключались все более и более мощные устройства, они должны согласоваться специальными дросселями. Но так как расчет такого каскада задача непростая, то и устройства согласования в каталогах производителей УЗИП найти крайне трудно. Производитель стал выпускать комбинированные устройства согласуя их внутри сам. То есть вместо установки рядом УЗИП II и УЗИП III класса нужно взять готовое устройство II+III класса.
4. Ставим автомат вместо предохранителя.
Если вы внимательно прочитаете документацию на устройства защиты от импульсных перенапряжений, то многие производители требуют установку предохранителей для защиты от короткого замыкания — если устройство выйдет из строя, оно может устроить короткое замыкание защищаемой линии на землю. И при таком сценарии лучше, если сгорит предохранитель и отключит устройство защиты от линии, чем это сделает вводной автомат обесточив нагрузку. Но см. п.1 — глупо сначала добиваться минимальной индуктивности проводников, чтобы затем воткнуть автоматический выключатель, внутри которого электромагнитный расцепитель в виде катушки индуктивности. В итоге автоматический выключатель будет работать как дополнительные виртуальные несколько метров провода (см п1) увеличивая напряжение импульса, дошедшего в нагрузку. И именно поэтому крайне желательно использовать именно предохранители. (это еще если не брать во внимание, что есть опасность что импульс тока в 10-50-100 кА вызовет спекание контактов в автомате)
5. УЗИП на базе варисторов имеют ток утечки.
Он небольшой, но при этом не нулевой. И тут здравый смысл отходит на второй план перед электросетевой компанией, которая имеет свое мнение на то, где должно быть установлено УЗИП. Так что может получиться так, что УЗИП вы поставите после счетчика. Но так как счетчик — собственность электросетевой компании, можете делать кулфейс когда после грозы сгорит счетчик и вам придут его менять.
6. Отсутствие контроля.
Представьте, что вы оснастили УЗИПами электрощит, который питает метеостанцию в безлюдном месте. Рядом прошла гроза, УЗИПы выполнили свою функцию, спасли начинку станции от повреждения, но погибли сами — их отключила защита. И получается ситуация, когда станция нормально работает, но при этом не имеет защиты, и следующая гроза может вывести ее из строя. Именно от таких неприятных ситуаций, существуют УЗИП с контактами, которые размыкаются/замыкаются, когда защита выходит из строя (например на фото УЗП-220 это контакты 4 и 5). В таком случае умерший УЗИП может подать сигнал в систему диспетчеризации, что пора высылать монтажника для замены защиты.
▍Акт восьмой. Практический.
Дочитавший до этого места наверняка уже задался вопросом — а зачем мне надо УЗИП и как его включать? Переходим к конкретике.
Если вы живете в частном доме и электричество в дом поступает по воздушной линии электропередач, то вам требуется УЗИП, причем класса I. (В некоторых случаях может хватить и II класса, но тут уже очень много «но») Если вы живете в многоквартирном доме, все инженерные системы которого в порядке, то в УЗИП не является устройством первой необходимости, но хуже не сделает. Типовая схема использования УЗИПов выглядит вот так (опять взял картинку из руководства OBO BETTERMANN:
Ввод слева. УЗИПы класса I располагаются сразу после вводного автомата (ну или после электросчетчика, если электросетевая компания желает) по одному на каждую фазу. Видно повторное заземление (5) и TN-C превращается в TN-C-S. Без заземления УЗИП не работает — куда ему отводить энергию импульса, кроме как в землю?
Внутри здания на промежуточном щите, например этажном, используются УЗИП класса II, которые подавят то, что смогло пройти через УЗИПы на вводе. Обратите внимание — между N и PE стоит УЗИП специально для этого предназначенный, так как в норме напряжение между N и PE невелико.
Ну и наконец рядом с потребителем ставится УЗИП класс III. У хорошо спроектированных устройств внутри уже предусмотрена производителем защита от перенапряжений.
▍Резюме:
- Электронная техника у вас дома уязвима перед электромагнитными импульсами, которые может принести разряд молнии, даже неподалеку.
- Для защиты от этих импульсов (а также от импульсов, возникающих при коммутации индуктивных нагрузок) придумали УЗИП — устройства защиты от импульсных перенапряжений. УЗИП может содержать внутри себя как разрядник, так и варистор, все зависит от характеристик, которые должен обеспечивать УЗИП.
- УЗИП выпускают разных классов, от I до III. Для установки на вводной щит дома подходят устройства I класса. Но существуют также устройства, способные обеспечить защиту, соответствующую нескольким классам.
- Весь защитный эффект от УЗИП можно свести на нет некорректным подключением.
- УЗИП может выйти из строя, и при отсутствии регулярного осмотра это останется незамеченным.
Видео версия поста, не слово в слово, но близко к тексту, для тех кто любит слушать и смотреть:
▍Что еще почитать для углубления знаний:
1. Прежде всего нормативная документация. Говорим Окей, гугл, «Устройство молниезащиты зданий, сооружений и промышленных коммуникаций: Сборник документов. Серия 17. Выпуск 27» и внимательно изучаем, в сборнике собраны нормативные документы: Инструкция по устройству молниезащиты зданий и сооружений (РД 34.21.122-87) и Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций (СО 153-34.21.122-2003) а также отдельно гуглим и смотрим ГОСТ Р МЭК 62305. Он состоит из большого количества частей, но ни один блогер в интернете не может быть выше нормативных требований.
2. Есть прекрасный сайт https://zandz.com Ребята не только записали вебинары с приглашенными специалистами сферы, но и сделали их стенограммы, так что можно быстро прочитать вместо просмотра видео. Все это великолепие они выложили бесплатно, но потребуется регистрация. Респект. Видеозаписи вебинаров у них на ютуб канале лежат и доступны без регистрации, например вебинары проф. Базеляна (https://www.youtube.com/watch?v=R-KbjRb4Yuw&list=PLjJ4-onvu94qpAA_zsCLkrTzJMBLXU0ns)
3. Неплохая статья на хабрахабре https://habr.com/ru/post/188972/
4. Многие производители выпускают руководства по проектированию — такая завуалированная реклама, где простым языком объясняются основы и заодно приводится выдержки из каталога оборудования, которое решает проблему. На русском языке есть прекрасное руководство от шнайдер электрик (https://www.se.com/ru/ru/download/document/MKP-CAT-ELGUIDE-19/), нас интересует раздел J, посвященный защите от перенапряжений. В нем все довольно просто, наглядно и точно.
5. Если вы владеете английским языком, то фирмы, производящие все для молниезащиты, выпустили замечательные руководства. Конечно с перекосом в свою продукцию, но как видите некоторые иллюстрации я позаимствовал у них. Это OBO BETTRMAN lightning protection guide, Dehn lightning protection guide.
Также хочу выразить благодарность Павлу, Денису, Евгению и Виктору за рецензирование черновика статьи.
Другие статьи цикла: Про предохранители, про автоматические выключатели, про УЗО, про выбор автоматического выключателя, про устройства защиты.