От чего зависит длина волны на которую приходится максимум излучения
В декабре 2000 года мировая научная общественность отмечала столетний юбилей возникновения новой науки – квантовой физики и открытия новой фундаментальной физической константы – постоянной Планка. Заслуга в этом принадлежит выдающемуся немецкому физику Максу Планку. Ему удалось решить проблему спектрального распределения света, излучаемого нагретыми телами, перед которой классическая физика оказалась бессильной. Планк первым высказал гипотезу о квантовании энергии осциллятора (колебательной системы), несовместимую с принципами классической физики. Именно эта гипотеза, развитая впоследствии трудами многих выдающихся физиков, дала толчок процессу пересмотра и ломки старых понятий, который завершился созданием квантовой физики.
5.1. Тепловое излучение тел
Испускаемый источником свет уносит с собой энергию. Существует много различных механизмов подвода энергии к источнику света. В тех случаях, когда необходимая энергия сообщается нагреванием, т. е. подводом тепла, излучение называется тепловым или температурным . Этот вид излучения для физиков конца XIX века представлял особый интерес, так как в отличие от всех других видов люминесценции, тепловое излучение может находиться в состоянии термодинамического равновесия с нагретыми телами.
Изучая закономерности теплового излучения тел, физики надеялись установить взаимосвязь между термодинамикой и оптикой.
Если в замкнутую полость с зеркально отражающими стенками поместить несколько тел, нагретых до различной температуры, то, как показывает опыт, такая система с течением времени приходит в состояние теплового равновесия, при котором все тела приобретают одинаковую температуру. Тела обмениваются энергией только путем испускания и поглощения лучистой энергии. В состоянии равновесия процессы испускания и поглощения энергии каждым телом в среднем компенсируют друг друга, и в пространстве между телами плотность энергии излучения достигает определенного значения, зависящего только от установившейся температуры тел. Это излучение, находящееся в термодинамическом равновесии с телами, имеющими определенную температуру, называется равновесным или черным излучением . Плотность энергии равновесного излучения и его спектральный состав зависят только от температуры.
Если через малое отверстие заглянуть внутрь полости, в которой установилось термодинамическое равновесие между излучением и нагретыми телами, то глаз не различит очертаний тел и зафиксирует лишь однородное свечение всей полости в целом.
Пусть одно из тел в полости обладает свойством поглощать всю падающую на его поверхность лучистую энергию любого спектрального состава. Такое тело называют абсолютно черным . При заданной температуре собственное тепловое излучение абсолютно черного тела, находящегося в состоянии теплового равновесия с излучением, должно иметь тот же спектральный состав, что и окружающее это тело равновесное излучение. В противном случае равновесие между абсолютно черным телом и окружающем его излучением не могло бы установиться. Поэтому задача сводится к изучению спектрального состава излучения абсолютно черного тела. Решить эту задачу классическая физика оказалась не в состоянии.
Для установления равновесия в полости необходимо, чтобы каждое тело испускало ровно столько лучистой энергии, сколько оно поглощает. Это одна из важнейших закономерностей теплового излучения. Отсюда следует, что при заданной температуре абсолютно черное тело испускает с поверхности единичной площади в единицу времени больше лучистой энергии, чем любое другое тело.
Абсолютно черных тел в природе не бывает. Хорошей моделью такого тела является небольшое отверстие в замкнутой полости (рис. 5.1.1). Свет, падающий через отверстие внутрь полости, после многочисленных отражений будет практически полностью поглощен стенками, и снаружи отверстие будет казаться совершенно черным. Но если полость нагрета до определенной температуры , и внутри установилось тепловое равновесие, то собственное излучение полости, выходящее через отверстие, будет излучением абсолютно черного тела. Именно таким образом во всех экспериментах по исследованию теплового излучения моделируется абсолютно черное тело.
С увеличением температуры внутри полости будет возрастать энергия выходящего из отверстия излучения и изменяться его спектральный состав.
Распределение энергии по длинам волн в излучении абсолютно черного тела при заданной температуре характеризуется излучательной способностью , равной мощности излучения с единицы поверхности тела в единичном интервале длин волн. Произведение равно мощности излучения, испускаемого единичной площадкой поверхности по всем направлениям в интервале длин волн. Аналогично можно ввести распределение энергии по частотам . Функцию (или ) часто называют спектральной светимостью, а полный поток излучения всех длин волн, равный
называют интегральной светимостью тела.
К концу XIX века излучение абсолютно черного тела было хорошо изучено экспериментально.
В 1879 году Йозеф Стефан на основе анализа экспериментальных данных пришел к заключению, что интегральная светимость абсолютно черного тела пропорциональна четвертой степени абсолютной температуры :
Несколько позднее, в 1884 году, Л. Больцман вывел эту зависимость теоретически, исходя из термодинамических соображений. Этот закон получил название закона Стефана–Больцмана . Числовое значение постоянной , по современным измерениям, составляет
. |
Это соотношение ранее было получено Вином из термодинамики. Оно выражает так называемый закон смещения Вина : длина волны , на которую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре . Значение постоянной Вина
. |
При практически достижимых в лабораторных условиях температурах максимум излучательной способности лежит в инфракрасной области. Только при максимум попадает в видимую область спектра. Максимум энергии излучения Солнца приходится примерно на (зеленая область спектра), что соответствует температуре наружных слоев Солнца около (если рассматривать Солнце как абсолютно черное тело).
Успехи термодинамики, позволившие вывести законы Стефана–Больцмана и Вина теоретически, вселяли надежду, что, исходя из термодинамических соображений, удастся получить всю кривую спектрального распределения излучения черного тела . В 1900 году эту проблему пытался решить знаменитый английский физик Д. Релей, который в основу своих рассуждений положил теорему классической статистической механики о равномерном распределении энергии по степеням свободы в состоянии термодинамического равновесия . Эта теорема была применена Релеем к равновесному излучению в полости. Несколько позже эту идею подробно развил Джинс. Таким путем удалось получить зависимость излучательной способности абсолютно черного тела от длины волны и температуры :
. |
Это соотношение называют формулой Релея–Джинса . Оно согласуется с экспериментальными данными только в области достаточно длинных волн (рис. 5.1.3.). Кроме того, из нее следует абсурдный вывод о том, что интегральная светимость черного тела должна обращаться в бесконечность, а, следовательно, равновесие между нагретым телом и излучением в замкнутой полости может установиться только при абсолютном нуле температуры.
Таким образом, безупречный с точки зрения классической физики вывод приводит к формуле, которая находится в резком противоречии с опытом. Стало ясно, что решить задачу о спектральном распределении излучения абсолютно черного тела в рамках существующих теорий невозможно. Эта задача была успешно решена М. Планком на основе новой идеи, чуждой классической физике.
На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для спектральной светимости абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам , а не по длинам волн .
Здесь – скорость света, – постоянная Планка, – постоянная Больцмана, – абсолютная температура.
Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными. Из формулы Планка можно вывести законы Стефана–Больцмана и Вина. При формула Планка переходит в формулу Релея–Джинса.
Решение проблемы излучения черного тела ознаменовало начало новой эры в физике. Нелегко было примириться с отказом от классических представлений, и сам Планк, совершив великое открытие, в течение нескольких лет безуспешно пытался понять квантование энергии с позиции классической физики.
Законы теплового излучения
Исходя из второго начала термодинамики, Кирхгоф показал, что условие теплового равновесия заключается в следующем: отношение монохроматической интенсивности излучения к поглощательной способности тела не зависит от природы тела; является универсальной (одинаковой для всех тел) функцией длины волны и температуры(универсальная функция Кирхгофа):
Тело, хорошо поглощающее лучи каких-либо длин волн, лучи тех же длин волн будет хорошо излучать; а если данную длину волны не поглощает, то и излучать не будет. Пример: для уменьшения теплоотдачи трубы теплотрассы покрывают фольгой: она не поглощает излучение (хорошо отражает), значит, и излучать энергии будет меньше.
Универсальная функция Кирхгофа не зависит от природы тела и является функцией лишь длины волны и температуры. Для абсолютно черного тела:
Следовательно, есть монохроматическая интенсивность излучения абсолютно черного тела. Её график при различных температурах тела дан на рис.20.2. Для сравнения на рис.20.3 приводится график излучения Солнца. С хорошей степенью точности Солнце можно считать абсолютно чёрным телом. Для тел, не являющихся абсолютно чёрными,
Для многих тел поглощательную способность можно считать не зависящей от длины волны:
Такие тела называются серыми; величина а называется коэффициентом серости (или коэффициентом черноты).
Законы Вина
Эксперименты показали, что с повышением температуры максимум функции смещается в область коротких волн, а интенсивность излучения растет (рис.20.2). Эти закономерности излучения АЧТ описываются законами Вина.
Первый закон Вина (закон смещения Вина). Длина волны , на которую приходится максимум монохроматической интенсивности излучения, обратно пропорциональна абсолютной температуре:
С повышением температуры максимум излучения смещается в коротковолновую область. Железка при нагреве в пламени костра изменяет цвет: сначала тёмно-бордовая, затем красная, оранжевая; — это значит, что в спектре её излучения появляются более короткое волны (большие частоты – см. рис.20.4). Одновременно растёт полный поток излучаемой энергии и максимальное значение .
Второй закон Вина: максимальное значение спектральной плотности энергетической светимости прямо пропорционально пятой степени абсолютной температуры:
От чего зависит длина волны на которую приходится максимум излучения
§ 22. Р асстояния до звёзд. Х арактеристики излучения звёзд
Н аше Солнце справедливо называют типичной звездой, но среди огромного многообразия мира звёзд есть немало таких, которые значительно отличаются от него по физическим характеристикам. Поэтому более полное представление о звёздах даёт такое определение:
звезда — это пространственно обособленный, гравитационно связанный, непрозрачный для излучения космический объект, в котором в значительных масштабах происходили, происходят или будут происходить термоядерные реакции превращения водорода в гелий.
Солнце существует уже несколько миллиардов лет и мало изменилось за это время, поскольку в его недрах всё ещё происходят термоядерные реакции, в результате которых из четырёх протонов (ядер водорода) образуется альфа-частица (ядро гелия, состоящее из двух протонов и двух нейтронов). Более массивные звёзды расходуют запасы водорода значительно быстрее (за десятки миллионов лет). После того как водород израсходован, начинаются реакции между ядрами гелия с образованием устойчивого изотопа углерода-12 и другие реакции, продуктами которых являются кислород и тяжёлые элементы (натрий, сера, магний и т. д.). Таким образом, в недрах звёзд образуются ядра многих химических элементов, вплоть до железа.
У наиболее массивных звёзд прекращение всех возможных термоядерных реакций сопровождается мощным взрывом, который наблюдается как вспышка сверхновой звезды.
Все элементы, которые входят в состав нашей планеты и всего живого на ней, образовались в результате термоядерных реакций, происходивших в звёздах, поэтому звёзды не только самые распространённые во Вселенной объекты, но и самые важные для понимания происходящих в ней явлений и процессов.
Именно термоядерные реакции являются характерной отличительной особенностью звёзд от планет. Поэтому современное определение планеты формулируется так:
планета — небесное тело, обращающееся вокруг звезды или остатка звезды, достаточно массивное, чтобы приобрести сферическую форму под действием собственной гравитации, и своим воздействием удалившее малые тела с орбиты, близкой к собственной, но при этом в её недрах не происходят и никогда не происходили реакции термоядерного синтеза.
1. Годичный параллакс и расстояния до звёзд
М ысли о том, что звёзды — это далёкие солнца, высказывались ещё в глубокой древности. Однако долгое время оставалось неясным, как далеко они находятся от Земли. Ещё Аристотель понимал, что если Земля движется, то, наблюдая положение какой-либо звезды из двух диаметрально противоположных точек земной орбиты, можно заметить, что направление на звезду изменится (рис. 5.12). Это кажущееся (параллактическое) смещение звезды будет служить мерой расстояния до неё: чем оно больше, тем ближе к нам расположена звезда. Но не только самому Аристотелю, но даже значительно позднее Копернику не удалось обнаружить это смещение. Только в конце первой половины XIX в., когда телескопы были оборудованы приспособлениями для точных угловых измерений, удалось измерить такое смещение у ближайших звёзд.
Рис. 5.12. Параллактическое смещение звезды
Рис. 5.13. Годичный параллакс звезды
Годичным параллаксом звезды p называется угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), перпендикулярную направлению на звезду (рис. 5.13) .
Расстояние до звезды
D = ,
где a — большая полуось земной орбиты. Заменив синус малого угла величиной самого угла, выраженной в радианной мере, и приняв a = 1 а. е., получим следующую формулу для вычисления расстояния до звезды в астрономических единицах:
D = .
В 1837 г. впервые были осуществлены надёжные измерения годичного параллакса. Русский астроном Василий Яковлевич Струве (1793—1864) провёл эти измерения для ярчайшей звезды Северного полушария Веги ( α Лиры). Почти одновременно в других странах определили параллаксы ещё двух звёзд, одной из которых была α Центавра. Эта звезда, которая с территории России не видна, оказалась ближайшей к нам. Даже у неё годичный параллакс составил всего 0,75 ʺ . Под таким углом невооружённому глазу видна проволочка толщиной 1 мм с расстояния 280 м. Поэтому неудивительно, что столь малые угловые смещения так долго не могли заметить.
Расстояние до ближайшей звезды, параллакс которой p = 0,75 ʺ , составляет D = = 270 000 а. е. Единицами для измерения столь значительных расстояний являются парсек и световой год.
Парсек — это такое расстояние, на котором параллакс звёзд равен 1 ʺ . Отсюда и название этой единицы: пар — от слова «параллакс», сек — от слова «секунда». Расстояние в парсеках равно обратной величине годичного параллакса. Например, поскольку параллакс α Центавра равен 0,75 ʺ , расстояние до неё равно 1,3 парсека.
Световой год — это такое расстояние, которое свет, распространяясь со скоростью 300 тыс. км/с, проходит за год. От ближайшей звезды свет идёт до Земли свыше четырёх лет, тогда как от Солнца около восьми минут, а от Луны немногим более одной секунды.
1 пк (парсек) = 3,26 светового года = 206 265 а. е. = 3 • 10 13 км.
К настоящему времени с помощью специального спутника «Гиппаркос» измерены годичные параллаксы более 118 тыс. звёзд с точностью 0,001 ʺ .
Таким образом, теперь измерением годичного параллакса можно надёжно определить расстояния до звёзд, удалённых от нас на 1000 пк, или 3000 св. лет. Расстояния до более далёких звёзд определяются другими методами.
2. Видимая и абсолютная звёздные величины. Светимость звёзд
П осле того как астрономы получили возможность определять расстояния до звёзд, выяснилось, что звёзды, находящиеся на одинаковом расстоянии, могут отличаться по видимой яркости (т. е. по блеску). Стало очевидно, что звёзды имеют различную светимость . Солнце кажется самым ярким объектом на небе только потому, что оно находится гораздо ближе всех остальных звёзд.
Светимостью называется полная энергия, излучаемая звездой в единицу времени.
Она выражается в абсолютных единицах (ваттах) или в единицах светимости Солнца.
В астрономии принято сравнивать звёзды по светимости, рассчитывая их блеск (звёздную величину) для одного и того же стандартного расстояния — 10 пк.
Видимая звёздная величина, которую имела бы звезда, если бы находилась от нас на расстоянии D 0 = 10 пк, получила название абсолютной звёздной величины M .
Рассмотрим, как можно определить абсолютную звёздную величину M , зная расстояние до звезды D (или параллакс — p ) и её видимую звёздную величину m . Напомним, что блеск двух источников, звёздные величины которых отличаются на единицу, отличается в 2,512 раза. Для звёзд, звёздные величины которых равны m 1 и m 2 соответственно, отношение их блесков I 1 и I 2 выражается соотношением:
I 1 : I 2 = .
Для видимой и абсолютной звёздных величин одной и той же звезды отношение блесков будет выглядеть так:
где I 0 — блеск этой звезды, если бы она находилась на расстоянии D 0 = 10 пк.
В то же время известно, что блеск звезды меняется обратно пропорционально квадрату расстояния до неё. Поэтому
I : I 0 = : D 2 .
2,512 M – m = : D 2 .
Логарифмируя это выражение, находим
Абсолютная звёздная величина Солнца M ☉ = 5 m . Иначе говоря, с расстояния 10 пк наше Солнце выглядело бы как звезда пятой звёздной величины.
Зная абсолютную звёздную величину звезды M , легко вычислить её светимость L . Считая светимость Солнца L ☉ = 1, получаем:
По светимости (мощности излучения) звёзды значительно отличаются друг от друга: некоторые излучают энергию в сотни тысяч раз больше, чем Солнце, другие — в десятки тысяч раз меньше. Абсолютные звёздные величины звёзд наиболее высокой светимости (гигантов и сверхгигантов) достигают M = –9 m , а звёзды-карлики, обладающие наименьшей светимостью, имеют абсолютную звёздную величину M = +17 m .
3. Спектры, цвет и температура звёзд
В сю информацию о звёздах можно получить только на основе исследования приходящего от них излучения. Наблюдая звёзды, можно заметить, что они имеют различный цвет. Хорошо известно, что цвет любого нагретого тела, в частности звезды, зависит от его температуры. Более полное представление об этой зависимости даёт изучение звёздных спектров. Для большинства звёзд это спектры поглощения, в которых на фоне непрерывного спектра наблюдаются тёмные линии.
Температуру наружных слоёв звезды, от которых приходит излучение, определяют по распределению энергии в непрерывном спектре (рис. 5.14), а также по интенсивности разных спектральных линий. Длина волны, на которую приходится максимум излучения, зависит от температуры излучающего тела. По мере увеличения температуры положение максимума смещается от красного к фиолетовому концу спектра. Количественно эта зависимость выражается законом Ви́на:
λ max = ,
где λ max — длина волны (в см), на которую приходится максимум излучения, а T — абсолютная температура.
Рис. 5.14. Распределение энергии в непрерывном спектре Солнца и чёрного тела при различных температурах
Как оказалось, эта температура для различных типов звёзд заключена в пределах от 2500 до 50 000 К. Изменение температуры меняет состояние атомов и молекул в атмосферах звёзд, что отражается в их спектрах. По ряду характерных особенностей спектров звёзды разделены на спектральные классы, которые обозначены латинскими буквами и расположены в порядке, соответствующем убыванию температуры: O, B, A, F, G, K, M.
У наиболее холодных (красных) звёзд класса M в спектрах наблюдаются линии поглощения некоторых двухатомных молекул (например, оксидов титана, циркония и углерода). Примерами звёзд, температура которых около 3000 К, являются Антарес и Бетельгейзе.
В спектрах жёлтых звёзд класса G с температурой около 6000 К, к которым относится и Солнце, преобладают линии металлов: железа, натрия, кальция и т. д. По температуре, спектру и цвету сходна с Солнцем звезда Капелла.
Для спектров белых звёзд класса A, которые имеют температуру около 10 000 К (Вега, Денеб и Сириус), наиболее характерны линии водорода и множество слабых линий ионизованных металлов. В спектрах наиболее горячих звёзд появляются линии нейтрального и ионизованного гелия.
Различия звёздных спектров объясняются отнюдь не разнообразием их химического состава, а различием температуры и других физических условий в атмосферах звёзд. Изучение спектров показывает, что преобладают в составе звёздных атмосфер (и звёзд в целом) водород и гелий. На долю всех остальных химических элементов приходится не более нескольких процентов.
Измерение положения спектральных линий позволяет не только получить информацию о химическом составе звёзд, но и определить скорость их движения. Если источник излучения (звезда или любой другой объект) приближается к наблюдателю или удаляется от него со скоростью v , то наблюдатель будет регистрировать изменение длины волны принимаемого излучения. В случае уменьшения расстояния между наблюдателем и звездой длина волны уменьшается и соответствующая линия смещается к сине-фиолетовому концу спектра. При удалении звезды длина волны излучения увеличивается, а линия смещается в красную его часть. Это явление получило название эффекта Доплера , согласно которому зависимость разности длин волн от скорости источника по лучу зрения v и скорости света c выражается следующей формулой:
=
,
где λ 0 — длина волны спектральной линии для неподвижного источника, а λ — длина волны в спектре движущегося источника.
Эффект Доплера наблюдается в оптической и других областях спектра и широко используется в астрономии.
4. Диаграмма «спектр — светимость»
П олученные данные о светимости и спектрах звёзд уже в начале XX в. были сопоставлены двумя астрономами — Эйнаром Герцшпрунгом (Голландия) и Генри Расселлом (США) — и представлены в виде диаграммы, которая получила название «диаграмма Герцшпрунга—Расселла». Если по горизонтальной оси отложены спектральные классы (температура) звёзд, а по вертикальной — их светимости (абсолютные звёздные величины), то каждой звезде будет соответствовать определённая точка на этой диаграмме (рис. 5.15). В результате обнаруживается определённая закономерность в расположении звёзд на диаграмме — они не заполняют всё её поле, а образуют несколько групп, названных последовательностями . Наиболее многочисленной (примерно 90% всех звёзд) оказалась главная последовательность , к числу звёзд которой принадлежит наше Солнце (его положение отмечено на диаграмме кружочком). Звёзды этой последовательности отличаются друг от друга по светимости и температуре, и взаимосвязь этих характеристик соблюдается весьма строго: самую высокую светимость имеют наиболее горячие звёзды, а по мере уменьшения температуры светимость падает. Красные звёзды малой светимости получили название красных карликов . Вместе с тем на диаграмме существуют и другие последовательности, где подобная закономерность не соблюдается. Особенно заметно это среди более холодных (красных) звёзд: помимо звёзд, принадлежащих главной последовательности и потому имеющих малую светимость, на диаграмме представлены звёзды высокой светимости, которая практически не меняется при изменении их температуры. Такие звёзды принадлежат двум последовательностям ( гиганты и сверхгиганты ), получившим эти названия вследствие своей светимости, которая значительно превосходит светимость Солнца. Особое место на диаграмме занимают горячие звёзды малой светимости — белые карлики .
Рис. 5.15. Диаграмма «спектр — светимость»
Лишь к концу XX в., когда объём знаний о физических процессах, происходящих в звёздах, существенно увеличился и стали понятными пути их эволюции, удалось найти теоретическое обоснование тем эмпирическим закономерностям, которые отражает диаграмма «спектр — светимость».
П РимеР РешениЯ задаЧи
Какова светимость звезды ξ Скорпиона, если её звёздная величина 3 m , а расстояние до неё 7500 св. лет?
M = m + 5 – 5 lg D , где D = 7500 : 3,26 = 2300 пк.
Отсюда L = 330 000.
Ответ : L = 330 000.
В опросы 1. Как определяют расстояния до звёзд? 2. От чего зависит цвет звезды? 3. В чём главная причина различия спектров звёзд? 4. От чего зависит светимость звезды?
У пражнение 18 1. Во сколько раз Сириус ярче, чем Альдебаран; Солнце ярче, чем Сириус? 2. Одна звезда ярче другой в 16 раз. Чему равна разность их звёздных величин? 3. Параллакс Веги 0,11 ʺ . Сколько времени идёт свет от неё до Земли? 4. Сколько лет надо было бы лететь по направлению к созвездию Лиры со скоростью 30 км/с, чтобы Вега стала вдвое ближе? 5. Во сколько раз звезда 3,4 звёздной величины слабее, чем Сириус, имеющий звёздную величину –1,6? Чему равны абсолютные величины этих звёзд, если расстояние до каждой составляет 3 пк?
Квантовая физика — основные понятия, формулы и определения с примерами
Причиной возникновения квантовой физики является то, что в начале XX века в физике возник кризис — появились проблемы. Существующие классические теории, в том числе теория Максвелла, уже не могли решать научные проблемы физики.
Одна из них — это тепловое излучение. Тела, излучающее тепло, должны отдавать свое тепло окружающим телам и среде и прийти к термодинамическому равновесию, т.е. равенству температур. Это является основным принципом термодинамики. Однако при излучении, например Солнца, с температурой 6000 К, не происходит такого явления. Также энергия излучения одинакова во всех длинах волн и подчиняется закону распределения, независимого от конкретной температуры. Это означает, что доля энергии излучения, соответствующая каждой длине волны, оказывается разной. В этой зависимости основная максимальная энергия излучения зависит от температуры и изменяется по закону смещения Вина:
Здесь:
Закон смещения Вина утверждает, что длина волны , на которую приходится максимум энергии, обратно пропорциональна абсолютной температуре Т излучающего тела:
Например, максимальная энергия излучения Солнца приходится на зеленый свет = 470 нм). Это по закону Вина соответствует Т= 6300 К. Энергетическое распределение этого излучения разработал Релей-Жинс на основе закона классической статистической механики, согласно закону термодинамики — равномерного распределения по степени свободы энергии молекул. Он объяснял распределение существующее только на длинных волнах, а для коротких волн это объяснение противоречило результатам эксперимента.
Еще одна из научных проблем, возникших к началу XX века, — это объяснение линейности спектров излучения газов и паров металла. Открытие явления фотоэффекта, наличия давления света, рассеяния световых лучей на электронах и другие научные проблемы, которые классическая физика, в частности электромагнитная теория Максвелла, также не смогла объяснить.
Для решения этих проблем немецкий ученый М. Планк выдвинул новую противоречивую классической физике идею. Он представил себе, что излучения и поглощения нагретого тела не происходят непрерывно, а происходят отдельными порциями (квантами). Квант — это минимальная порция энергии поглощения или излучения телом.
Согласно теории Планка, энергия кванта прямо пропорциональна частоте света:
здесь: h — постоянная Планка, Планк объяснил, что излучение и поглощение света происходит прерывно, создал закон распределения энергии излучения по длине волны, который и решил накопившиеся научные проблемы.
Он также объяснил (на примере Солнца) условия существования излучающих тел и необязательность термодинамического равновесия.
Фотоэлектрический эффект
Фотоэлектрический эффект (сокращенно — фотоэффект) был открыт в 1887 году Г. Герцом и экспериментально изучен русским ученым А. Столетовым (независимо от Ф. Ленарда).
Внешний фотоэффект — это выход электронов из вещества под воздействием света.
Схема экспериментальной установки, используемой для изучения явления фотоэффекта, приводится на рис. 6.1.
Основа устройства состоит из стеклянного баллона с «окошком», изготовленного из кварца, имеющего два электрода: анод и катод. Внутри стеклянного баллона создастся вакуум, так как в вакууме электроны и другие частицы могут совершать прямолинейные движения.
Чтобы подавать напряжение (от 0 до U) электродам через потенциометр, источник тока соединен через удвоенный ключ К. Удвоенный ключ дает возможность изменять полюс источника тока и замыкать цепь.
Один из электродов — катод (в основном, катод из цезия) через кварцевое «окно» освещается монохроматическими волнами. При постоянной длине волны и постоянном световом потоке измеряется зависимость силы фототока от напряжения, приложенного к аноду.
На рис. 6.2 приводится типичный график зависимости силы фототока от напряжения. График 2 соответствует большему световому потоку, чем график 1. Здесь: — ток насыщения,
— задерживающее напряжение, т.е. при подаче такого отрицательного напряжения фотоэлектроны с начальными скоростями не доходят до анода.
Из графика на рис. 6.2 видно, что при больших положительных значениях напряжения сила тока достигает насыщения. Т.е. все электроны, которые покидают катод, доходят до анода. Когда напряжение доходит до значения , фототок равняется нулю. Измеряя для данного катода значение задерживающего напряжения, можно определить максимальную кинетическую энергию фотоэлектронов:
Ф. Ленард на своих опытах показал, что задерживающий потенциал не зависит от интенсивности (светового потока) падающей волны, а линейно зависит от частоты падающего света (рис. 6.3).
На основе опытов открыли законы фотоэффекта:
- Максимальная кинетическая энергия фотоэлектронов не зависит от светового потока (интенсивности) и линейно зависит от частоты v падающего света (с увеличением v линейно увеличится
).
- Для каждого вещества существует минимальная частота
, при которой происходит фотоэффект. Это называется красной границей фотоэффекта.
- Количество фотоэлектронов, вылетающих из катода за единицу времени, прямо пропорционально падающему на катод световому потоку (интенсивности) и не зависит от частоты.
Явление фотоэффекта — это явление без инерции, в момент приостановки светового потока тут же исчезает фототок, с поступлением света фототок появляется.
Теория фотоэффекта
Теория фотоэффекта обоснована в 1905 году А. Эйнштейном. Он, пользуясь гипотезами М. Планка, пришел к выводу, что электромагнитные волны тоже состоят из отдельных порций -квантов. Они позже начали называться фотонами.
По идее Эйнштейна, при взаимодействии фотона с веществом он свою энергию полностью отдает электрону. По закону сохранения энергии, часть этой энергии расходуется на выход электрона из вещества и остальная часть превращается в кинетическую энергию электрона:
Это называется уравнением Эйнштейна для фотоэффекта.
Здесь А — выполненная работа для выхода электрона из вещества. Если учесть, что максимальная кинетическая энергия электрона равна
уравнение Эйнштейна для фотоэффекта можно записать в следующем виде:
Данное уравнение для фотоэффекта выражает закон сохранения энергии для явления фотоэффекта. Этот закон объясняет факты, касающиеся фотоэффекта:
- максимальная кинетическая энергия фотоэлектронов линейно зависит от частоты и не зависит от интенсивности (светового потока) падающего луча;
- существование красной границы фотоэффекта, т.е.
- фотоэффект происходит без инерции. По уравнению Эйнштейна, количество фотоэлектронов, вылетающих из катода за 1 с, пропорционально количеству фотонов, падающих на эту площадь.
На основании уравнения Эйнштейна следует, что tga угла наклона графика зависимости задерживающего потенциала от частоты равен отношению постоянной Планка на заряд электрона (рис 6.3), т.е.
Это отношение даст возможность определять постоянную Планка экспериментальным путем. Такой эксперимент проведен в 1914 году Р. Милликеном, который определил постоянную Планка. Этот эксперимент позволил найти работу выхода фотоэлектрона:
Здесь: с — скорость света, — длина волны, соответствующая красной границе фотоэффекта.
Для катодов работа выхода измеряется в электрон-вольтах (эВ) Поэтому используется значение постоянной Планка, выраженное в эВ:
Среди щелочных металлов Na, К, Cs, Rb имеют малую работу выхода. Поэтому на практике для покрытия поверхности катода используются оксиды этих металлов и другие соединения. Например: работа выхода катода цезиевым оксидом А = 1,2 эВ, красная граница фотоэффекта, соответствующая этому Это широко используется для регистрации желтого — видимого света.
Внутренний фотоэффект
При облучении полупроводников световым излучением слабо связанные электроны поглощают фотоны и превращаются в свободные электроны. При этом в полупроводниках увеличивается концентрация свободных носителей заряда и электропроводимость полупроводника.
Появление свободных носителей заряда в полупроводниках в результате воздействия излучения называется внутренним фотоэффектом.
Созданная дополнительная электрическая проводимость в полупроводниках в результате воздействия излучения называется фотопроводимостью. Это применяется при производстве фотосопротивления. Фотосопротивление — это сопротивление, которое изменяется под воздействием света. В радиотехнике его называют фоторезистором.
Фотоны
По квантовой теории света, при поглощении и излучении светового излучения веществом свет проявляет себя как поток частиц. Эта частица света называется фотоном, или световым квантом. Энергия фотона равна: Фотон движется в вакууме со скоростью света с. Фотон не обладает массой покоя, т.е.
Используя формулу из теории относительности можно определить массу фотона при движении:
В большинстве случаев энергия фотона выражается не через
частоту, а через циклическую частоту: При этом используют
выражение: читается как «аш с черточкой». Значение
Рассмотрение света как потока частиц — фотонов считается корпускулярной теорией и это нельзя назвать как возврат в механику Ньютона. Ее законы движения подчиняются законам квантовой механики.
К началу XX века стало известно, что природа света имеет две природы. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), при взаимодействии с веществами проявляются его корпускулярные свойства (частицы) (фотоэффект, давление света и т.д.).
Эти свойства стали называть корпускулярно-волновым дуализмом. Позже науке стало известно, что потоки электронов, протонов, нейтронов тоже имеют волновые свойства.
На этой основе получили объяснение процессы излучения и поглощения света веществом, линейных спектров, явления фотоэффекта, давления света и другие.
Импульс фотона и давление света
Из-за того что фотон всегда находится в движении, он имеет импульс:Если учесть вышеприведенное выражение, то импульс фотона равняется
Учитывая формулу энергию и импульс фотона выражаем через
длину волны:
Если на поверхность тела попадает поток фотонов, тогда эти фотоны передают ей импульс и образуется давление света.
Согласно электромагнитной теории Максвелла, когда свет падает на какую-либо поверхность, на нее действует давление. Однако это давление имеет очень маленькое значение. По расчетам Максвелла, солнечный свет, падающий на Землю, создает силу давления 0,48 мкН на абсолютно черной части площадью 1 . Регистрировать такую маленькую силу на открытом земном участке очень сложно.
Первый раз давление света экспериментально измерил русский ученый П.Н. Лебедев в 1900 году. Для этого он изготовил очень легкое устройство. Одну или несколько пар легких крылышек, одно блестящее, а другое затемненное, прикрепили к веревке. Опыт показывает, что блестящее хорошо отражает свет, а затемненное хорошо поглощает.
Систему поместили в сосуд, из которого выкачали воздух. Она представляла собой чувствительные крутильные весы. Поворот системы наблюдается через зеркало и трубку, прикрепленную к веревке. По углу поворота системы определяется сила давления света, действующая на систему.
Результаты Лебедева подтвердили электромагнитную теорию Максвелла. Измеренное давление света имело разницу на 20% от теоретически вычисленного значения давления света. Позже, в 1923 году, в проведенных опытах Герлаха полученный результат по давлению света от теоретических вычислений отличался на 2%.
Формулу давления, оказывающего на поверхность потоком фотонов, можно вывести следующим образом. Сила действия в результате
столкновения фотона с поверхностью равна : Если ударится
N шт. фотонов, тогда
Здесь: — изменение импульса фотона. Оно будет равно А(тс) = 2тс, если поверхность идеально прозрачная, если абсолютно черная, то будет равно
Тогда давление, оказанное на абсолютно черную поверхность,
Если поверхность блестящая, то
Если в учесть, что
Здесь энергия света (волны), падающая за единицу времени на единицу площади, называется интенсивностью света (волны).
Тогда Эта формула Максвелла по определению давления,
оказываемого на поверхность вещества (абсолютна черная поверхность) электромагнитными волнами.
Из приборов, работающих на основе явления фотоэффекта, самое широко применяемое — это фотосопротивление.
Основу фотосопротивления составляет полупроводник, чувствительный к свету, имеющий относительно большую площадь. Его схема и условное обозначение приводится на рис. 6.4. свет
При комнатной температуре сопротивление полупроводника очень большое и через него протекает очень маленький ток. С падением на него света увеличится концентрации свободных носителей заряда, сопротивление уменьшится. Сила тока растет.
Преимущества фотосопротивления: высокая фоточувствительность, долгосрочная эффективная служба, маленький размер, несложная технология изготовления, возможность изготовления из полупроводниковых материалов, работающих на одинаковых длинах волны.
К недостаткам можно отнести: первое — изменение сопротивления линейно не зависит от светового потока, второе — чувствительность к температуре. В том числе имеет большую инертность, появляется ряд проблем при использовании на высоких частотах.
Фотоэлементы, основанные на внутреннем фотоэффекте
Основанные на внутреннем фотоэффекте полупроводниковые фотоэлементы с переходами применяются для превращения световой энергии в электрическую. Полупроводник — кремниевые фотоэлементы, позволяющие превращать солнечную энергию в электрическую, широко применяются и получили название солнечные батареи.
Основу солнечней батареи составляют кремниевые пластинки «-типа, со всех сторон окруженные тонким слоем (1-2 мкм) кремния р-типа (рис. 6.5).
При падении света на поверхность элемента в слое р-типа появляется элект-ронно-дырочная пара, которая, не успевая рекомбинировать, переходит в область перехода. В области р-п перехода происходит разделение зарядов. Под действием созданного поля электроны движутся в сторону области
-типа, а дырки — в сторону
типа. Созданная ЭДС в среднем будет до 0,5 В. Такой элемент с площадью 1
, при подсоединении к потребителю, дает ток до 25 мА.
Чувствительность кремниевых фотоэлементов для зеленых лучей максимальна, т.е. приходится на максимальную часть солнечного света. Поэтому они имеют высокое КПД, обычно 11-12%, а в материалах высокого качества доходит до 21-22%.
Солнечные батареи служат, кроме солнечных электростанций на Земле, на космических кораблях и искусственных спутниках Земли в качестве источника электрической энергии.
Одним из широко применяемых приборов, работа которых основана на внутреннем фотоэффекте, является световой диод (полупроводниковые лазеры). Светодиоды основаны на действии одного или нескольких переходов. Когда через них проходит электрический ток, они излучают свет. В материале этого диода количество и подвижность электронов будет больше, чем дырок. При переходе электронов из области
в область р происходит рекомбинация с дырками. Излишки энергии излучаются в виде световой волны.
В зависимости от типа материала полупроводника цвет излучения будет разный.
Академиком АН Узбекистана М. Саидовым созданы около 10 видов светодиодов и разработаны теория и технология изготовления различных светодиодов.
Если раньше фотоприборы использовались только в кинотехнике и фотоэлектронных умножителях, то сегодня они широко применяются в осветителях, робототехнике, автоматике, фотометрии, приборах ночного видения, солнечных электростанциях и научных исследованиях, проводимых с помощью светового излучения.
В целях широкого использования солнечной энергии в Узбекистане в 1993 году организовали научно-производственного объединения «Физика-Солнца» и проводятся широкомасштабные научно-исследовательские и прикладные работы.
Пример решения задачи
Найдите длину волны света, падающего на поверхность, если работа выхода электрона из металла а кинетическая энергия электрона
Дано: Найти:
Формула:
Решение:
Ответ:
Итоги:
Закон смещения Вина: Длина волны на которую приходится максимум излучения тела, обратно пропорциональна абсолютной температуре
— постоянная Вина.
Квант: Минимальная часть энергии излучения или поглощения телом.
Энергия кванта :Энергия кванта прямо пропорциональна частоте света:
Внешний фотоэффект: Выход электронов из вещества под воздействием света.
Задерживающее напряжение :Отрицательное тормозящее напряжение, при котором фотоны не доходят до анода.
- Максимальная кинетическая энергия фотоэлектронов не зависит от светового потока (интенсивности) и линейно зависит от частоты v падающего луча.
- Для каждого вещества существует минимальная частота
при которой происходит фотоэффект. Это называется красной границей фотоэффекта.
- Количество фотоэлектронов, вылетающих из катода за единицу времени, прямо пропорционально падающему на катод световому потоку (интенсивности) и не зависит от частоты.
Максимальная кинетическая энергия электронов :
Формула Эйнштейна для фотоэффекта :
Красная граница фотоэффекта :Красная граница фотоэффекта Здесь
— частота и длина волны, соответствующие красной границе фотоэффекта.
Внутренний фотоэффект: Увеличение концентрации свободных носителей заряда в полупроводниках под воздействием света.
Фотон :Квант или частица света. Его масса покоя
Энергия фотона: Энергия фотона скорость движения с, импульс
Давление света : — интенсивность света. с
Фотосопротивление -фоторезистор :Резистор, у которого под воздействием света уменьшается сопротивление.
Солнечные батареи: Полупроводниковый фотоэлемент с переходом основан на внутреннем фотоэффекте, который превращает световую энергию в электрическую.
Лекции по предметам:
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.