Трехфазный асинхронный двигатель
Трехфазный асинхронный двигатель с короткозамкнутым ротором
Конструкция асинхронного электродвигателя
Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.
Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.
Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.
Принцип работы. Вращающееся магнитное поле
Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.
Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.
Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.
- где n1 – частота вращения магнитного поля статора, об/мин,
- f1 – частота переменного тока, Гц,
- p – число пар полюсов
Концепция вращающегося магнитного поля
Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени
Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.
Действие вращающегося магнитного поля на замкнутый виток
Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.
Короткозамкнутый ротор асинхронного двигателя
По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.
Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.
Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.
Скольжение асинхронного двигателя. Скорость вращения ротора
Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.
Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2<n1. Частота вращения поля статора относительно ротора определяется частотой скольжения ns=n1-n2. Отставание ротора от вращающегося поля статора характеризуется относительной величиной s, называемой скольжением:
- где s – скольжение асинхронного электродвигателя,
- n1 – частота вращения магнитного поля статора, об/мин,
- n2 – частота вращения ротора, об/мин,
Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор асинхронного электродвигателя никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.
Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0—100%. Если s
0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 — режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.
Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.
Преобразование энергии
Асинхронный двигатель преобразует электрическую энергию подаваемую на обмотки статора, в механическую (вращение вала ротора). Но входная и выходная мощность не равны друг другу так как во время преобразования происходят потери энергии: на трение, нагрев, вихревые токи и потери на гистерезисе. Это энергия рассеивается как тепло. Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения.
Подключение асинхронного двигателя
Трехфазный переменный ток
Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным преимуществом трехфазной системы по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.
Звезда и треугольник
Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).
Фазное напряжение — разница потенциалов между началом и концом одной фазы. Другое определение для соединения «звезда»: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы «треугольник» отсутствует нейтраль).
Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).
Звезда | Треугольник | Обозначение |
---|---|---|
![]() | ![]() | Uл, Uф — линейное и фазовое напряжение, В, |
![]() | ![]() | Iл, Iф — линейный и фазовый ток, А, |
![]() | ![]() | S — полная мощность, Вт |
![]() | ![]() | P — активная мощность, Вт |
S = 1,73∙380∙1 = 658 Вт.
Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:
S = 1,73∙380∙3 = 1975 Вт.
Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.
Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.
Подключение электродвигателя по схеме звезда и треугольник
Обозначение выводов статора трехфазного электродвигателя
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Начало | Конец | |
Открытая схема (число выводов 6) | ||
первая фаза | U1 | U2 |
вторая фаза | V1 | V2 |
третья фаза | W1 | W2 |
Соединение в звезду (число выводов 3 или 4) | ||
первая фаза | U | |
вторая фаза | V | |
третья фаза | W | |
точка звезды (нулевая точка) | N | |
Соединение в треугольник (число выводов 3) | ||
первый вывод | U | |
второй вывод | V | |
третий вывод | W |
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Начало | Конец | |
Открытая схема (число выводов 6) | ||
первая фаза | C1 | C4 |
вторая фаза | C2 | C5 |
третья фаза | C3 | C6 |
Соединение звездой (число выводов 3 или 4) | ||
первая фаза | C1 | |
вторая фаза | C2 | |
третья фаза | C3 | |
нулевая точка | 0 | |
Соединение треугольником (число выводов 3) | ||
первый вывод | C1 | |
второй вывод | C2 | |
третий вывод | C3 |
Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента
Трехфазные асинхронные электродвигатели могут быть подключены к однофазной сети с помощью фазосдвигаюших элементов. При этом электродвигатель будет работать либо в режиме однофазного двигателя с пусковой обмоткой (рисунок а, б, г) либо в режиме конденсаторного двигателя с постоянно включенным рабочим конденсатором (рисунок в, д, е).
Схемы подключения трехфазного асинхронного электродвигателя к однофазной сети
Схемы приведенные на рисунке «а», «б», «д» применяются, когда выведены все шесть концов обмотки. Электродвигатели с соединением обмоток согласно схемам «а», «б», «г» практически равноценны двигателям, которые спроектированы как однофазные электродвигатели с пусковой обмоткой. Номинальная мощность при этом состовляет 40-50% от мощности в трехфазном режиме, а при работе с рабочим конденсатором 75-80%.
Емкость рабочего конденсатора при частоте тока 50 Гц для схем «в», «д», «е» примерно рассчитывается соответственно по формулам:
- ,где Cраб — емкость рабочего конденсатора, мкФ,
- Iном – номинальный (фазный) ток статора трехфазного двигателя, А,
- U1 – напряжение однофазной сети, В.
Управление асинхронным двигателем
- Способы подключения асинхронного электродвигателя к сети питания:
- подключение от устройства плавного пуска
Прямое подключение к сети питания
Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.
С помощью магнитных пускателей можно реализовать схему:
- нереверсивного пуска: пуск и остановка;
- реверсивного пуска: пуск, остановка и реверс.
Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.
Нереверсивная схема
Нереверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитный пускатель
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, SB1 — кнопка остановки, SB2 — кнопка пуска, KM1 — магнитный пускатель, KK1 — тепловое реле, HL1 — сигнальная лампа, M — трехфазный асинхронный двигатель
Реверсивная схема
Реверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитные пускатели
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, KM1, KM2 — магнитные пускатели, KK1 — тепловое реле, M — трехфазный асинхронный двигатель, SB1 — кнопка остановки, SB2 — кнопка пуска «вперед», SB3 — кнопка пуска «назад» (реверс), HL1, HL2 — сигнальные лампы
Недостатком прямой коммутации обмоток асинхронного электродвигателя с сетью является наличие больших пусковых токов, во время запуска электродвигателя.
Плавный пуск асинхронного электродвигателя
В задачах, где не требуется регулировка скорости электродвигателя во время работы для уменьшения пусковых токов используется устройство плавного пуска.
Устройство плавного пуска защищает асинхронный электродвигатель от повреждений вызванных резким увеличением потребляемой энергии во время пуска путем ограничения пусковых токов. Устройство плавного пуска позволяет обеспечить плавный разгон и торможение асинхронного электродвигателя.
Устройство плавного пуска дешевле и компактнее частотного преобразователе. Применяется там, где регулировка скорости вращения и момента требуется только при запуске.
Частотное управление асинхронным электродвигателем
Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.
- Использование частотного преобразователя позволяет:
- уменьшить энергопротребление электродвигателя;
- управлять скоростью вращения электродвигателя (плавный запуск и остановка, регулировка скорости во время работы);
- избежать перегрузок электродвигателя и тем самым увеличить его срок службы.
- В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем: ; .
Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).
Скалярное управление асинхронным двигателем с датчиком скорости
Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.
Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.
Полеориентированное управления асинхронным электродвигателем по датчику положения ротора
Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.
- По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
- полеориентированное управление по датчику;
- полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).
Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.
Трехфазный асинхронный двигатель с фазным ротором
До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.
Конструкция АДФР
Фазный ротор
Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.
Статор АДФР
Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.
Обозначение выводов вторичных обмоток трехфазного АДФР
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Начало | Конец | |
Открытая схема (число выводов 6) | ||
первая фаза | K1 | K2 |
вторая фаза | L1 | L2 |
третья фаза | M1 | M2 |
Соединение в звезду (число выводов 3 или 4) | ||
первая фаза | K | |
вторая фаза | L | |
третья фаза | M | |
точка звезды (нулевая точка) | Q | |
Соединение в треугольник (число выводов 3) | ||
первый вывод | K | |
второй вывод | L | |
третий вывод | M |
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Соединение звездой (число выводов 3 или 4) | ||
первая фаза | Р1 | |
вторая фаза | Р2 | |
третья фаза | Р3 | |
нулевая точка | 0 | |
Соединение треугольником (число выводов 3) | ||
первый вывод | Р1 | |
второй вывод | Р2 | |
третий вывод | Р3 |
Пуск АДФР
Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.
Применяются проволочные и жидкостные реостаты.
Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.
Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов [3].
Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.
При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.
Справочник
Схема обмоток трехфазных электрических двигателей и их соединение на клеммных панелях 11.07.2006 18:57
Электродвигатель состоит из двух частей: вращающегося ротора и неподвижного статора. Ротор располагается внутри статора. Оба элемента имеют токопроводящие обмотки. Статорная обмотка уложена в пазы магнитопровода с соблюдением расстояния в 120 электрических градусов. | ![]() |
Начала и концы обмоток выведены в электрическую распределительную коробку клеммную панель и зафиксированы. К зажимам клеммной панели с внутренней стороны двигателей подводятся выводные провода статорных обмоток. Всего на клеммник может быть выведено 3 или 6 выводов фазных обмоток статора.
Клеммник, его еще называют «борно», — клеммная коробка- чаще всего устанавливается сверху, реже – сбоку. Некоторые клеммники можно разворачивать на 180 градусов, для удобства подводки питающих кабелей.
В клеммной коробке есть входы для подвода питающих кабелей, а сверху она закрыта крышкой, которую для проведения подключения снимают при помощи отвертки.
Внутри клеммной коробки — на клеммных панелях производятся необходимые соединения обмоток.
Фазы статорных обмоток при подключении к питающей сети электродвигателя соединяют по одной из электрических схем – «звезда» Y или «треугольник» Δ .
Оба способы отличаются тем, что у них на каждую фазу двигателя прикладывается напряжение разной величины.
У треугольника линейное напряжение подается на каждую обмотку индивидуально и поэтому ему оказывается меньшее сопротивление. Токи создаются выше по амплитуде.
— имеет больший пусковой ток, большее выделение тепла, нагрев в процессе работы, поэтому ему требуется надежное охлаждение для длительной работы
+ позволяет использовать всю паспортную мощность двигателя
— не позводяет использовать полную мощность
+ имеет меньший пусковой ток, более «мягкий» запуск и плавная работа
позволяет эксплуатировать электродвигатель длительно
Как узнать схему подключения электродвигателя ? Схема подключения конкретного электрического двигателя указывается на бирке и в прилагающейся документации
Напряжение | Схема соединения | Число выводов внутри коробки |
220/380 В | Δ / Y комбинированая | 6 |
380 В | Y звезда | 3 |
380/660 В | Δ / Y комбинированая | 6 |
660 В | Y звезда | 3 |
230/400 В | Δ / Y комбинированая | 6 |
400/690 В | Δ / Y комбинированая | 6 |
Знаком Y обозначают двигатели, где возможность подключения в «треугольник» не предусмотрена. В распределительной коробке таких моделей вместо 6 контактов находятся только три, соединение трех других выполнено под корпусом.
Наличие метки вида Δ/Y указывает на возможность соединения обмоток и «звездой», и «треугольником». То есть, к примеру, напряжение в 220 В подается на «треугольник», 380 В – на «звезду», в противном случае двигатель быстро перегорит. Подключение по комбинированной схеме обычно применяется для двигателей мощностью свыше 5 кВт.
! Более низкие значения напряжения используются при подключении в «треугольник», высокие – исключительно в соединениях статорных обмоток по схеме «звезда».
В паспорте двигателя и на его бирке, обычно указывают все основные рабочие характеристики и величины, среди которых мощность, обороты, частота сети, коэффициент мощности, рабочее напряжение, а также приведены условными рисунками схема соединения обмоток и какая существует возможность ее изменения, для электродвигателей с комбинированной схемой.
фото бирки трехфазного асинхронного односкоростного электродвигателя
с подключением треугольник — звезда
Выводы фазных обмоток асинхронного двигателя выводятся на клеммник или колодку и располагаются таким образом, чтобы соединения звездой или треугольником было удобно выполнить без перекрещивания с помощью специальных перемычек.
alt=»Электродвигатель купить Аросна» width=»129″ height=»93″ />
Клеммные болты панелей и вывода статорных обмоток имеют маркировку в соответствии с ГОСТ. Контакты промаркированы литерой (букеным символом), каждому присвоено цифровое и буквенное обозначение.
Пример : старое обозначение С1, С2, С3 – начала обмоток, С4, С5, С6 – конец обмоток. Сейчас в основном применяется новая маркировка выводов по ГОСТу 26772-85 (26772 (МЭК 60034-8).) : U1, V1, W1 — начала обмоток, U2, V2, W2 – конец обмоток.
ОБМОТКИ ЭЛЕКТРОДВИГАТЕЛЕЙ ПЕРЕМЕННОГО ТОКА:
Обмотка статора электродвигателя | начало | конец | начало | конец | |
Открытая схема обмотки (число выводов 6) | |||||
первая фаза | U1 | U2 | С1 | С4 | |
вторая фаза | V1 | V2 | С2 | С5 | |
третья фаза | W1 | W2 | С3 | С6 | |
Соединение звездой (число выводов 3 или 4) | |||||
первая фаза | U | С1 | |||
вторая фаза | V | С2 | |||
третья фаза | W | С3 | |||
нулевая точка | N | 0 | |||
Соединение треугольником | |||||
первый зажим | U | С1 | — | ||
второй зажим | V | С2 | — | ||
третий зажим | W | С3 | — |
Так же электродвигателях малой мощности обозначают фазы обмоток разноцветными проводами.
При соединении звездой начало первой фазы имеет желтый провод, второй фазы — зеленый, третьей фазы — красный, нулевая точка — черный.
При шести выводах начала фаз обмоток имеют такую же расцветку, как и при соединении звездой, а конец первой фазы — желтый с черным провод, второй фазы — зеленый с черным, третьей фазы — красный с черным. У асинхронных однофазных электродвигателей начало вывода главной обмотки — красный провод, конец — красный с черным. У пусковой обмотки начало вывода — синий провод, конец — синий с черным.
Выводы секционированных обмоток многоскоростных асинхронных двигателей, позволяющих изменять число полюсов, имеют следующие обозначения:
4 | 6 | 8 | 12 |
4С1 | 6С1 | 8С1 | 12С1 |
4С2 | 6С2 | 8С2 | 12С2 |
4С3 | 6С3 | 8С3 | 12С3 |
Схемы обмоток трехфазных двигателей и их соединения на клеммных панелях приводятся на рисунках.
Схемы обмоток односкоростных трехфазных двигателей и их соединения на клеммных панелях с соединением в звезду Y или в треугольник Δ или переключаемых Δ/Y
Если требуется подключение ЗВЕЗДОЙ, тогда объединяют верхний ряд клемм, а к нижнему подводят провода сети ( см рис ). Можно объединять также нижние клеммы, а к верхним подводить провода сети. Соединяя обмотки электродвигателя в ЗВЕЗДУ объединяют Ul, VI, Wl (CI, С2, СЗ), а к остальным выводам подводят провода сети или, наоборот, объединяют U2, V2, W2 (С4, С5, С6), а к Ul, VI, Wl (CI, С2, СЗ) подводят провода сети.
Соединение в ТРЕУГОЛЬНИК получают, объединяя попарно клеммы верхнего и нижнего рядов и подводя к ним провода сети ( см рис) Соединение обмотоки электродвигателя в ТРЕУГОЛЬНИК получают, объединяя U1 и W2, VI и U2, W1 и V2 (С1 и С6, С2 и С4, СЗ и С5).
Как поменять направление вращения электродвигатели при подключении звездой или треугольником ?
! Если нужно поменять направление вращения вала электродвигателя на противоположное, то поменяйте местами две любые фазы сети.
alt=»Электродвигатель купить Аросна» width=»127″ height=»92″ />
При соединении звездой обмоток асинхронного электродвигателя наблюдается более мягкий запуск и плавная его работа, а также возможность кратковременной перегрузки.
При соединении треугольником обмоток асинхронного электродвигателя происходит достижение его максимальной мощности, но во время пуска пусковые токи имеют большое значение. Также по отзывам, что при соединении треугольником двигатель больше нагревается.
Функцию пуска для схем переключения «звезда»-«треугольник» используют только для двигателей с пометкой Δ/Y, в которых реализована возможность обоих вариантов соединения. Запуск двигателя производят при подключении «звездой», чтобы уменьшить пусковой ток. Переключение режимов звезда-треугольник нельзя применять для электродвигателей, изначально имеющих на валу неинерционную нагрузку, такую как вес груза лебедки или сопротивление поршневого компрессора. Переключение звезда треугольник можно применять только для электродвигателей, имеющих на валу свободно вращающуюся нагрузку – вентиляторы, центробежные насосы, валы станков, центрифуг и другого подобного оборудования.
Схемы обмоток односкоростных трехфазных двигателей и их соединения на клеммных панелях с последовательным или параллельным соединением параллельных ветвей фаз звезда — двойная звезда Y/YY
Схемы обмоток двухскоростных трехфазных двигателей и их соединения на клеммных панелях с полюсно-переключаемой по схеме Далендера обмоткой статора или с полюсно-переключаемой обмоткой по принципу амплитудно-фазовой модуляции треугольник — двойная звезда Δ /YY
Схемы обмоток двухскоростных трехфазных двигателей и их соединения на клеммных панелях с полюсно-переключаемой обмоткой по принципу амплитудно-фазовой модуляции тройная звезда-тройная звезда YYY /YYY
Схемы для трехскоростных двигателей с двумя независимыми обмотками с полюсно-переключаемой с соединением треугольник-звезда Δ / Y ; односкоростной с соединением в звезду Y
Для четырехскоростных двигателей с двумя обмотками, каждая из которых полюсно-переключаемая с соединением треугольнки-двойная звезда Δ /YY
Выводы обмоток электродвигателя — схемы соединения
Каждый статор трехфазного электродвигателя имеет три катушечные группы (обмотки) — по одной на каждую фазу, а у каждой катушечной группы имеется по 2 вывода — начало и конец обмотки, т.е. всего 6 выводов которые подписываются следующим образом:
- С1 (U1) — начало первой обмотки, С4 (U2) — конец первой обмотки.
- С2 (V1) — начало второй обмотки, С5 (V2) — конец второй обмотки.
- С3 (W1) — начало третьей обмотки, С6 (W2) — конец третьей обмотки.
Условно на схемах каждая обмотка изображается следующим образом:
Начала и концы обмоток выводятся в клемную коробку электродвигателя в следующем порядке:
В зависимости от соединения этих выводов меняются такие параметры электродвигателя как напряжение питающей сети и номинальный ток статора. О том по какой схеме необходимо подключить обмотки электродвигателя можно узнать из паспортных данных.
Основными схемами соединения обмоток являются треугольник (обозначается — Δ) и звезда (обозначается — Y) их мы и разберем в данной статье.
Примечание: В клемной коробке некоторых электродвигателей можно увидеть только три вывода — это значит, что обмотки двигателя уже соединены внутри его статора. Как правило внутри статора обмотки соединяются при ремонте электродвигателя (в случае если заводские обмотки сгорели). В таких двигателях обмотки, как правило, соединены по схеме «звезда» и рассчитаны на подключение в сеть 380 Вольт. Для подключения такого двигателя необходимо просто подать три фазы на три его вывода.
Схема соединения обмоток электродвигателя по схеме «треугольник»
Что бы соединить обмотки электродвигателя по схеме «треугольник» необходимо: конец первой обмотки (С4/U2) соединить с началом второй (С2/V1) , конец второй (С5/V2) — с началом третьей (С3/W1) , а конец третьей обмотки (С6/W2) — с началом первой (С1/U1).
Условно на схеме это изображается следующим образом:
В клемной коробке электродвигателя соединение обмоток по схеме «треугольник» имеет следующий вид:
A, B, C — точки подключения питающего кабеля.
Схема соединения обмоток электродвигателя по схеме «звезда»
Что бы соединить обмотки электродвигателя по схеме «звезда» необходимо концы обмоток (С4/ U2, С5/V2 и С6/W2) соединить в общую точку, напряжение при этом подается на начала обмоток (С1/U1, С2/V1 и С3/W1).
Условно на схеме это изображается следующим образом:
В клемной коробке электродвигателя соединение обмоток по схеме «звезда» имеет следующий вид:
Определение выводов обмоток
Иногда возникают ситуации когда сняв крышку с клемной коробки электродвигателя можно с ужасом обнаружить следующую картину:
При этом выводы обмоток не подписаны, что же делать? Без паники, этот вопрос вполне решаем.
Первое, что нужно сделать — это разделить выводы по парам, в каждой паре должны быть выводы относящиеся к одной обмотке, сделать это очень просто, нам понадобится тестер или двухполюсный указатель напряжения.
В случае использования тестера устанавливаем его переключатель в положение измерения сопротивления (подчеркнуто красной линией), при использовании двухполюсного указателя напряжения им, перед применением, необходимо коснуться токоведущих частей находящихся под напряжением на 5-10 секунд, для его зарядки и проверки работоспособности.
Далее необходимо взять один любой вывод обмотки, условно примем его за начало первой обмотки и соответственно подписываем его «U1», после касаемся одним щупом тестера или указателя напряжения подписанного нами вывода «U1», а вторым щупом любого другого вывода из оставшихся пяти неподписанных концов. В случае, если коснувшись вторым щупом второго вывода показания тестера не изменились (тестер показывает единицу) или в случае с указателем напряжения — ни одна лампочка не зажглась — оставляем этот конец и касаемся вторым щупом другого вывода из оставшихся четырех концов, перебираем вторым щупом концы до тех пор пока показания тестера не изменятся, либо, в случае с указателем напряжения — до тех пор пока не загорится лампочка «Test». Найдя таким образом второй вывод нашей обмотки принимаем его условно как конец первой обмотки и подписываем его соответственно «U2».
Таким же образом поступаем с оставшимися четырьмя выводами, так же разделив их на пары подписав их соответственно как V1,V2 и W1,W2. Как это делается можно увидеть на видео ниже.
Теперь, когда все выводы разделены по парам, необходимо определить реальные начала и концы обмоток. Сделать это можно двумя методами:
Первый и самый простой метод — метод подбора, может применяться для электродвигателей мощностью до 5 кВт. Для этого берем наши условные концы обмоток (U2,V2 и W2) и соединяем их, а на условные начала (U1,V1 и W1), кратковременно, желательно не более 30 секунд, подаем трехфазное напряжение:
Если двигатель запустился и работает нормально, значит начала и концы обмоток определены верно, если двигатель сильно гудит и не развивает должные обороты, значит где то есть ошибка. В этом случае необходимо всего лишь поменять любые два вывода одной обмотки местами, например U1 c U2 и запустить заново:
Если проблема не устранилась, возвращаем U1 и U2 на свои места и меняем местами следующие два вывода — V1 с V2:
Если двигатель заработал нормально, выводы определены верно, работа закончена, если нет — возвращаем V1 и V2 по своим местам и меняем местами оставшиеся выводы W1 с W2.
Второй способ: Соединяем последовательно вторую и третью обмотки т.е. соединяем вместе конец второй обмотки с началом третьей (выводы V2 с W1),а на первую обмотку к выводам U1 и U2 подаем пониженное переменное напряжение (не более 42 Вольт). При этом на выводах V1 и W2 так же должно появиться напряжение:
Если напряжение не появилось, значит вторая и третья обмотки соединены неверно, фактически оказались соединены вместе два начала (V1 с W1) или два конца (V2 c W2), в данном случае нам просто нужно поменять надписи на второй или на третьей обмотке, например V1 с V2. Затем аналогичным способом проверить первую обмотку, соединив ее последовательно со второй, а на третью подав напряжение. Данный способ представлен на следующем видео:
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Электродвигатели
Обмотка ротора состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами (беличья клетка). Обмотка статора (обмотка возбуждения) питается от сети переменным током – образуется вращающееся магнитное поле, которое индуцирует в обмотках ротора ток. На проводники с током обмотки ротора со стороны магнитного поля обмотки возбуждения действуют электромагнитные силы — образуется вращающий момент, увлекающий ротор за магнитным полем. Частота вращения ротора не может достигнуть частоты вращения магнитного поля статора (поэтому электродвигатель и называется асинхронным), в противном случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю и магнитное поле перестанет индуцировать в обмотке ротора ЭДС и создавать крутящий момент.
Асинхронный двигатель с фазным ротором
Обмотки ротора выводятся на контактные кольца, вращающиеся вместе с валом машины. С помощью металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора включается пускорегулирующий реостат. Увеличивая сопротивление реостата в момент пуска, можно увеличить пусковой момент и снизить пусковой ток.
Синхронные электродвигатели
Обмотка статора (якорная обмотка) питается от сети переменным током – образуется вращающееся магнитное поле. На роторе находится индукторная обмотка, выведенная на контактные кольца. При пуске обмотки ротора закорачиваются накоротко или через реостат, и двигатель разгоняется в асинхронном режиме. После выхода на скорость, близкую к номинальной, индуктор запитывается постоянным током — создаётся постоянное магнитное поле, которое сцепляется с магнитным полем статора и начинает вращаться с ним синхронно (двигатель входит в синхронизм).
Режимы работы асинхронного двигателя
- Двигательный
Электродвигатель преобразует электрическую энергию, потребляемую из сети, в механическую.
Асинхронный двигатель переходит в генераторный режим, если ротор начинает вращаться быстрее магнитного поля – на валу появляется тормозной момент. В этом режиме электродвигатель преобразовывает механическую энергию в электрическую и отдаёт её в сеть.
Асинхронный двигатель переходит в режим электромагнитного тормоза, если ротор и магнитное поле статора вращаются в разные стороны — на валу появляется тормозной момент, но двигатель при этом продолжает потреблять электроэнергию из сети — вся потребляемая энергия идёт на нагрев двигателя.
Способы регулирования скорости вращения асинхронного двигателя
- Реостатное
В цепь ротора (двигателя с фазным ротором) вводятся добавочные сопротивления — механическая характеристика двигателя становится мягче (ухудшается устойчивость работы, увеличивается скольжение), скорость снижается, при этом увеличивается пусковой момент и сохраняется перегрузочная способность.
Недостатки: большие потери на реостате, скорость меняется скачками.
В многоскоростных двигателях, по-разному коммутируя обмотки статора, можно менять число пар полюсов, а значит и скорость вращения вала, т.к. скорость вращения магнитного поля пропорциональна числу пар полюсов. При этом способе сохраняется КПД и жёсткость механических характеристик, но снижается перегрузочная способность (которую можно сохранить, изменяя напряжение).
Недостатки: ступенчатое регулирование, высокая цена, большие габариты.
Для этого способа регулирования применяются преобразователи частоты. Если при изменении частоты сохранять неизменным магнитный поток (а для этого мы должны поддерживать постоянным соотношение U/f), то мы получаем семейство механических характеристик с одинаковой жёсткостью и перегрузочной способностью.
Преимущества: плавность регулирования, отличные экономические характеристики, возможность увеличивать частоту выше 50 Гц (частоты сети).
Как выбрать электродвигатель
Обмотка ротора
- Короткозамкнутый ротор (беличья клетка)
- Фазный ротор: обмотка ротора выведена на контактные кольца, вращающиеся с валом двигателя. С помощью металлографитовых щёток в цепь ротора включается пуско-регулирующий реостат. С помощью этого реостата можно уменьшить пусковой ток и регулировать скорость вращения вала двигателя.
Обмотка статора, напряжение питания
Обмотка статора может быть соединена по схеме «звезда» или «треугольник».
Если на шильдике двигателя написано: 220/380, D/Y, то это значит, что двигатель можно включать в сеть с Uл = 220 В по схеме «треугольник», а с Uл = 380 В — по схеме «звезда».
Для IEC двигателей стандартное напряжение — 230/400 В, а для отечественных — 220/380 В.
Типоразмер
Типоразмер или габарит (Frame size) — это расстояние в миллиметрах «от пола» до оси вала двигателя. Типоразмеры отечественных двигателей (ГОСТ) и импортных (IEC, NEMA) в общем случае не совпадают: наши двигатели ниже, чем импортные той же мощности.
Материал корпуса (станины)
- Алюминий (Aluminium)
- Чугун (Cast Iron).
Коэффициент полезного действия (Efficiency)
КПД η равен отношению механической мощности на валу двигателя P2 к потребляемой из сети электрической мощности P1.
Выходная мощность меньше входной на величину потерь.
Класс энергоэффективности
- EFF1 (High Efficiency motors)
- EFF2 (Improved Efficiency motors)
- EFF3 (Conventional Efficiency motors).
Монтажное исполнение
- Лапы (Foot) литые с корпусом или прикручиваемые
- Фланцы (Flange) с врезными отверстиями (малые фланцы) или со сквозными (большие фланцы)
- Комбинированные — лапы и фланец.
Класс защиты корпуса двигателя IP
Стандартная степень защиты электродвигателей — IP55.
Скорость вращения
Скорость вращения магнитного поля двигателя (синхронная скорость):
n1 = 60f / p [об/мин],
где p — число пар полюсов двигателя,
f — частота сети (50 Гц).
- 2 полюса — 3000 об/мин
- 4 полюса — 1500 об/мин (стандарт)
- 6 полюсов — 1000 об/мин
- 8 полюсов — 750 об/мин
- 10 полюсов — 600 об/мин
- 12 полюсов — 500 об/мин.
Скорость вращения ротора асинхронного двигателя меньше скорости вращения магнитного поля:
n2 = n1(1 — s),
где s — скольжение.
Многоскоростные электродвигатели — это двигатели, у которых ступенчатое изменение скорости реализовано с помощью переключения числа пар полюсов.
Температура окружающей среды и высота над уровнем моря
При установке двигателя выше 1000 метров над уровнем моря и при эксплуатации при повышенной температуре окружающей среды необходимо учитывать снижение (Derating) мощности двигателя (для этого есть специальные таблицы).
Класс нагревостойкости изоляции
- B — 130° С
- F — 150° С (достаточно для работы от преобразователя частоты)
- H — 180° С
Номинальные характеристики двигателя для всех классов изоляции указываются для температуры охлаждающей среды +40°С.
Режим нагрузки (Duty)
- S1 — продолжительный: двигатель работает при установившейся температуре
- S2 — кратковременный: двигатель не успевает нагреться до установившейся температуры, но во время остановки успевает полностью охладиться
- S3 — повторно-кратковременный: работа с постоянной нагрузкой чередуется с выключениями, при этом двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
- S4 — повторно-кратковременный с длительными пусками: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
- S5 — повторно-кратковременный с длительными пусками и электрическим торможением: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
- S6 — перемежающийся: работа с постоянной нагрузкой чередуется с работой на холостом ходу, при этом двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
- S7 — перемежающийся с длительными пусками и торможениями: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
- S8 — перемежающийся с периодическим изменением скорости вращения: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
Тепловая защита двигателя
- PTC-термисторы — это резисторы, сопротивление которых мгновенно возрастает при достижении заданной температуры. От 1 до 3 термисторов соединяются последовательно для сигнализации температуры отключения (Trip), например, 155°C. Ещё одна цепочка термисторов может быть настроена на сигнал предупреждения (Alarm), например, 145°C.
- PT100 — платиновые датчики температуры обладают высокой стойкостью к окислению и большой точностью измерения. PT100 подключаются по 2-х, 3-х или 4-х проводной схеме (чем больше проводов — тем меньше влияние помех).
От 3 до 6 датчиков PT100 могут устанавливаться в обмотку статора.
Для измерения температуры подшипников могут быть использованы ещё 2 датчика PT100. - KTY — кремниевые термодатчики с положительным коэффициентом сопротивления, характеризуются высокой линейностью характеристики, высоким быстродействием, надёжной твёрдотельной конструкцией и небольшой стоимостью.
Сервис-фактор
Двигатель с сервис-фактором 1.1 может постоянно работать с перегрузкой 10% от номинального выходного момента.
Класс по моменту (Torque class)
Класс по моменту показывает кратность пускового момента (при прямом пуске от сети) при пониженном на 5% напряжении:
- Класс 16 — 160%
- Класс 13 — 130%
- Класс 10 — 100%
- Класс 7 — 70%
- Класс 5 — 50%
Коэффициент мощности cos φ
Коэффициент мощности (cos φ) равен отношению потребляемой двигателем активной мощности к полной мощности.
Активная мощность расходуется на совершение полезной работы.
Полная мощность равна геометрической сумме активной и реактивной мощности.
Реактивная мощность расходуется на намагничивание двигателя.
Антиконденсационный нагрев
Для того, чтобы перед пуском двигателя в сыром помещении просушить обмотки есть два способа:
- Использовать двигатель со специальным встроенным нагревателем
- Подать на одну обмотку статора напряжение от 4 до 10% номинального (чтобы пропустить ток от 20 до 30% от номинального), что достаточно для испарения конденсата (применимо не для всех двигателей). Некоторые преобразователи частоты умеют это делать.
Охлаждение
- Поверхностное охлаждение (Non-ventilated: вентилятора нет)
- Самовентиляция (Self-ventilated: вентилятор на валу двигателя)
- Принудительное охлаждение (Forced cooling: независимый вентилятор или жидкостное охлаждение водой или маслом)
Для турбомеханизмов (вентиляторы и насосы, для которых момент на валу пропорционален квадрату скорости), как правило, достаточно самовентиляции.
Двигатели, которые работают от преобразователей частоты с постоянным моментом длительное время на низких скоростях, необходимо или переразмеривать, или обеспечить принудительным охлаждением.
Вентилятор
- Пластиковый
- Металлический
- Металлический с увеличенным моментом инерции
Требования к двигателю при работе от преобразователя частоты
- Температурный класс изоляции не ниже F
- Возможно принудительная вентиляция (см. выше)
- Изолированный подшипник с нерабочей стороны вала (рекомендуется для типоразмеров 225 и выше)
Подшипники
При работе от преобразователя частоты на частотах выше 50 Гц срок службы подшипников уменьшается.
У одних двигателей с рабочей стороны вала установлен плавающий подшипник (Floating bearing), а с нерабочей стороны подшипник зафиксирован (Located bearing). У других — наоборот (для сочленения с редуктором, например).
В стандартном исполнении подшипники подпружинены в аксиальном направлении (вдоль вала) для обеспечения равномерной работы двигателя. У двигателей с радиально-упорными подшипниками такой пружины нет, поэтому радиальное усилие (перпендикулярно валу — от ремня, например) должно быть приложено постоянно, иначе подшипник быстро выйдет из строя.
Смазка
Как правило, для двигателей с типоразмерами до 250, работающих в номинальном режиме, смазка рассчитана на весь срок службы подшипников.
Для пополнения смазки у двигателя должен быть предусмотрен специальный ниппель.
Вал двигателя
У двигателя может быть выведен второй конец вала двигателя, который может передавать как номинальный, так и меньший момент.
Второй конец вала несовместим с такими опциями как: датчик скорости и вентилятор принудительного охлаждения, а, возможно, и с тормозом.
Тормоз
При выборе тормоза необходимо учесть:
- Тип:
- статический (удерживающий тормоз срабатывает только при неподвижном вале)
- динамический (можно регулировать момент торможения, меньше изнашивается в случае аварийного торможения)
Датчик скорости
Датчик скорости может находится герметично внутри корпуса (Incapsulated) или снаружи под защитной крышкой.