Калькуляторы расчета нагревателя муфельной печи
Опубликовал(а): Евгений Афанасьев
Обновлено: 02.09.2019
Если домашнему мастеру по характеру выполняемых им работ необходима муфельная печь, то он, конечно, может приобрести готовый прибор в магазине или по объявлениям. Однако, стоит подобное оборудование заводского производства – весьма недешево. Поэтому многие умельцы берутся за изготовление таких печей самостоятельно.
Калькуляторы расчета нагревателя муфельной печи
Основной «рабочий узел» электрической муфельной печи – нагреватель, который в условиях кустарного производства обычно исполняют в виде спирали из специальной проволоки с высокими показателями сопротивления и термической отдачи. Характеристики его должны строго соответствовать мощности создаваемого оборудования, предполагаемым температурным режимам работы, а также отвечать еще некоторым требованиям. Если планируется самостоятельное изготовление прибора, то советуем применить предлагаемые ниже алгоритм и удобные калькуляторы расчета нагревателя муфельной печи.
Расчет требует определенных пояснений, которые постараемся изложить максимально доходчиво.
Алгоритм и калькуляторы расчета нагревателя муфельной печи
Из чего делаются нагревательные спирали
Для начала – буквально несколько слов о проволоке, которая используется для навивки нагревательных спиралей. Обычно для таких целей применяется нихромовая или фехралевая.
- Нихромовая (от сокращений никель + хром) чаще всего представлена сплавами Х20Н80- Н , Х15Н60 или Х15Н60- Н .
Цены на муфельную печь
Ее достоинства:
— высокий запас прочности при любых температурах нагрева;
— пластична , легко обрабатывается, поддаётся свариванию;
— долговечность, стойкость к коррозии, отсутствие магнитных качеств.
Недостатки:
— более низкие показатели нагрева и термоустойчивости по сравнению с фехралевой .
- Фехралевая (от сокращений феррум , хром , алюминий) – в наше время чаще используется материал из сплава Х23 Ю 5Т.
Достоинства фехраля :
— намного дешевле нихрома, благодаря чему в основном материал и пользуется широкой популярностью;
— имеет более значительные показатели сопротивления и резистивного нагрева;
Недостатки:
— низкая прочность, а после даже однократного нагрева свыше 1000 градусов – выраженная хрупкость спирали;
— наличие магнитных качеств, подверженность коррозии из-за наличии в составе железа;
— ненужная химическая активность – способен вступать в реакции с материалом шамотной футеровки печи;
— чрезмерно большое термическое линейное расширение.
Каждый из мастеров волен выбрать любой из перечисленных материалов, проанализировав их «за» и «против» . Алгоритм расчёта учитывает особенности такого выбора.
Шаг 1 – определение мощности печи и силы тока, проходящего через нагреватель.
Чтобы не вдаваться в ненужные в данном случае подробности, сразу скажем, что существуют эмпирические нормы соответствия объема рабочей камеры муфельной печи и ее мощности. Они показаны в таблице ниже:
Объем муфельной камеры печи (литры) | Рекомендуемая удельная мощность печи (Вт/л) |
---|---|
1÷5 | 300÷500 |
6÷10 | 120÷300 |
11÷50 | 80÷120 |
51÷100 | 60÷80 |
101÷500 | 50÷60 |
Если есть проектные наброски будущего прибора, то объем муфельной камеры определить несложно – произведением высоты, ширины и глубины. Затем объем переводится в литры и умножается на указанные в таблице рекомендуемые нормы мощности. Так получаем мощность печи в ваттах.
Табличные значения указаны в некоторых диапазонах, так что или применяйте интерполяцию, или принимайте примерно среднюю величину.
Найденная мощность, при известном напряжении сети (220 вольт) позволяет сразу определить силу тока, который будет проходить через нагревательный элемент.
I = P / U.
I – сила тока.
Р – определённая выше мощность муфельной печи;
U – напряжение питания.
Весь этот первый шаг расчета очень легко и быстро можно проделать с помощью калькулятора: все табличные значения уже внесены в программу вычисления.
Калькулятор мощности муфельной печи и силы тока, проходящего через нагреватель
Шаг 2 – определение минимального сечения проволоки для навивки спирали
Любой электрический проводник ограничен в своих возможностях. Если через него пропускать ток, выше допустимого, он попросту перегорит или расплавится. Поэтому очередной шаг в расчетах – определение минимально допустимого диаметра проволоки для спирали.
Определить его можно по таблице. Исходные данные – рассчитанная выше сила тока и предполагаемая температура разогрева спирали.
D (мм) | S (мм ²) | Температура разогрева проволочной спирали, °C | ||||||
---|---|---|---|---|---|---|---|---|
Максимальная допустимая сила тока, А | ||||||||
5 | 19.6 | 52 | 83 | 105 | 124 | 146 | 173 | 206 |
4 | 12.6 | 37 | 60 | 80 | 93 | 110 | 129 | 151 |
3 | 7.07 | 22.3 | 37.5 | 54.5 | 64 | 77 | 88 | 102 |
2.5 | 4.91 | 16.6 | 27.5 | 40 | 46.6 | 57.5 | 66.5 | 73 |
2 | 3.14 | 11.7 | 19.6 | 28.7 | 33.8 | 39.5 | 47 | 51 |
1.8 | 2.54 | 10 | 16.9 | 24.9 | 29 | 33.1 | 39 | 43.2 |
1.6 | 2.01 | 8.6 | 14.4 | 21 | 24.5 | 28 | 32.9 | 36 |
1.5 | 1.77 | 7.9 | 13.2 | 19.2 | 22.4 | 25.7 | 30 | 33 |
1.4 | 1.54 | 7.25 | 12 | 17.4 | 20 | 23.3 | 27 | 30 |
1.3 | 1.33 | 6.6 | 10.9 | 15.6 | 17.8 | 21 | 24.4 | 27 |
1.2 | 1.13 | 6 | 9.8 | 14 | 15.8 | 18.7 | 21.6 | 24.3 |
1.1 | 0.95 | 5.4 | 8.7 | 12.4 | 13.9 | 16.5 | 19.1 | 21.5 |
1 | 0.785 | 4.85 | 7.7 | 10.8 | 12.1 | 14.3 | 16.8 | 19.2 |
0.9 | 0.636 | 4.25 | 6.7 | 9.35 | 10.45 | 12.3 | 14.5 | 16.5 |
0.8 | 0.503 | 3.7 | 5.7 | 8.15 | 9.15 | 10.8 | 12.3 | 14 |
0.75 | 0.442 | 3.4 | 5.3 | 7.55 | 8.4 | 9.95 | 11.25 | 12.85 |
0.7 | 0.385 | 3.1 | 4.8 | 6.95 | 7.8 | 9.1 | 10.3 | 11.8 |
0.65 | 0.342 | 2.82 | 4.4 | 6.3 | 7.15 | 8.25 | 9.3 | 10.75 |
0.6 | 0.283 | 2.52 | 4 | 5.7 | 6.5 | 7.5 | 8.5 | 9.7 |
0.55 | 0.238 | 2.25 | 3.55 | 5.1 | 5.8 | 6.75 | 7.6 | 8.7 |
0.5 | 0.196 | 2 | 3.15 | 4.5 | 5.2 | 5.9 | 6.75 | 7.7 |
0.45 | 0.159 | 1.74 | 2.75 | 3.9 | 4.45 | 5.2 | 5.85 | 6.75 |
0.4 | 0.126 | 1.5 | 2.34 | 3.3 | 3.85 | 4.4 | 5 | 5.7 |
0.35 | 0.096 | 1.27 | 1.95 | 2.76 | 3.3 | 3.75 | 4.15 | 4.75 |
0.3 | 0.085 | 1.05 | 1.63 | 2.27 | 2.7 | 3.05 | 3.4 | 3.85 |
0.25 | 0.049 | 0.84 | 1.33 | 1.83 | 2.15 | 2.4 | 2.7 | 3.1 |
0.2 | 0.0314 | 0.65 | 1.03 | 1.4 | 1.65 | 1.82 | 2 | 2.3 |
0.15 | 0.0177 | 0.46 | 0.74 | 0.99 | 1.15 | 1.28 | 1.4 | 1.62 |
0.1 | 0.00785 | 0.1 | 0.47 | 0.63 | 0.72 | 0.8 | 0.9 | 1 |
D — диаметр нихромовой проволоки, мм | ||||||||
S — площадь поперечного сечения нихромовой проволоки, мм² |
И сила тока, и температура берутся ближайшие, но обязательно с приведением в большую сторону. Например, при планируемом нагреве 850 градусов следует ориентироваться на 900. И, допустим , при силе тока в этом столбце, равной 17 амперам, берется большее ближайшее – 19,1 А . В двух левых столбцах сразу определяется минимально возможная проволока – ее диаметр и площадь поперечного сечение.
Более толстую проволоку использовать можно (иногда это становится и обязательным – о таких случаях будет рассказано ниже). Но меньше – никак нельзя, так как нагреватель просто перегорит в рекордно короткий срок.
Шаг 3 – определение необходимой длины проволоки для навивки спирального нагревателя
Известны мощность, напряжение, сила тока. Намечен диаметр проволоки. То есть имеется возможность, используя формулы электрического сопротивления, определить длину проводника, который будет создавать необходимый резистивный нагрев.
L = (U / I) × S / ρ
ρ — удельное сопротивление нихромового проводника, Ом×мм²/ м ;
L — длина проводника, м ;
S — площадь поперечного сечения проводника, мм².
Как видно, потребуется еще одна табличная величина – удельное сопротивление материала на единицу площади поперечного сечения и длины проводника. Необходимые для расчета данные – показаны в таблице:
Марка нихромового сплава, из которого изготовлена проволока | Диаметр проволоки, мм | Величина удельного сопротивления, Ом×мм²/м |
---|---|---|
Х23Ю5Т | независимо от диаметра | 1.39 |
Х20Н80-Н | 0,1÷0,5 включительно | 1.08 |
0,51÷3,0 включительно | 1.11 | |
более 3 | 1.13 | |
Х15Н60 или Х15Н60-Н | 0,1÷3,0 включительно | 1.11 |
более 3 | 1.12 |
Еще проще покажется расчет , если использовать наш калькулятор:
Калькулятор расчета длины проволоки для спирали
Довольно часто нихромовую ил фехралевую проволоку реализуют не на метры, а на вес. Значит, потребуется перевести длину в ее эквивалент по массе. Выполнить такой перевод поможет предлагаемая таблица:
Диаметр проволоки, мм | Вес погонного метра, г | Длина 1 кг, м | ||||
---|---|---|---|---|---|---|
Х20Н80 | Х15Н60 | ХН70Ю | Х20Н80 | Х15Н60 | ХН70Ю | |
0.6 | 2.374 | 2.317 | 2.233 | 421.26 | 431.53 | 447.92 |
0.7 | 3.231 | 3.154 | 3.039 | 309.5 | 317.04 | 329.08 |
0.8 | 4.22 | 4.12 | 3.969 | 236.96 | 242.74 | 251.96 |
0.9 | 5.341 | 5.214 | 5.023 | 187.23 | 191.79 | 199.08 |
1 | 6.594 | 6.437 | 6.202 | 151.65 | 155.35 | 161.25 |
1.2 | 9.495 | 9.269 | 8.93 | 105.31 | 107.88 | 111.98 |
1.3 | 11.144 | 10.879 | 10.481 | 89.74 | 91.92 | 95.41 |
1.4 | 12.924 | 12.617 | 12.155 | 77.37 | 79.26 | 82.27 |
1.5 | 14.837 | 14.483 | 13.953 | 67.4 | 69.05 | 71.67 |
1.6 | 16.881 | 16.479 | 15.876 | 59.24 | 60.68 | 62.99 |
1.8 | 21.365 | 20.856 | 20.093 | 46.81 | 47.95 | 49.77 |
2 | 26.376 | 25.748 | 24.806 | 37.91 | 38.84 | 40.31 |
2.2 | 31.915 | 31.155 | 30.015 | 31.33 | 32.1 | 33.32 |
2.5 | 41.213 | 40.231 | 38.759 | 24.26 | 24.86 | 25.8 |
2.8 | 51.697 | 50.466 | 48.62 | 19.34 | 19.82 | 20.57 |
3 | 59.346 | 57.933 | 55.814 | 16.85 | 17.26 | 17.92 |
3.2 | 67.523 | 65.915 | 63.503 | 14.81 | 15.17 | 15.75 |
3.5 | 80.777 | 78.853 | 75.968 | 12.38 | 12.68 | 13.16 |
3.6 | 85.458 | 83.424 | 80.371 | 11.7 | 11.99 | 12.44 |
4 | 105.504 | 102.992 | 99.224 | 9.48 | 9.71 | 10.08 |
4.5 | 133.529 | 130.349 | 125.58 | 7.49 | 7.67 | 7.96 |
5 | 164.85 | 160.925 | 155.038 | 6.07 | 6.21 | 6.45 |
5.5 | 199.469 | 194.719 | 187.595 | 5.01 | 5.14 | 5.33 |
5.6 | 206.788 | 201.684 | 194.479 | 4.84 | 4.95 | 5.14 |
6 | 237.384 | 231.732 | 223.254 | 4.21 | 4.32 | 4.48 |
6.3 | 261.716 | 255.485 | 246.138 | 3.82 | 3.91 | 4.06 |
6.5 | 278.597 | 271.963 | 262.013 | 3.59 | 3.68 | 3.82 |
7 | 323.106 | 315.413 | 303.874 | 3.09 | 3.17 | 3.29 |
8 | 422.016 | 411.968 | 396.896 | 2.37 | 2.43 | 2.52 |
9 | 534.114 | 521.397 | 502.322 | 1.87 | 1.92 | 1.99 |
10 | 659.4 | 643.7 | 620.15 | 1.52 | 1.55 | 1.61 |
Шаг 4 – Проверка соответствия удельной поверхностной мощности рассчитанного нагревателя допустимому значению
Нагреватель или не справится со своей задачей, или будет работать на грани возможностей и оттого быстро перегорит, если его поверхностная удельная мощность будет выше допустимого значения.
Поверхностная удельная мощность – это количество тепловой энергии, которое необходимо получить с единицы площади поверхности нагревателя.
Прежде всего – определяем допустимое значение этого параметра. Оно выражается следующей зависимостью:
βдоп = βэф × α
βдоп – допустимая удельная поверхностная мощность нагревателя, Вт/см²
βэф – эффективная удельная поверхностная мощность, зависящая от температурного режима работы муфельной печи.
α – коэффициент эффективности теплового излучения нагревателя.
βэф берем из таблицы. Данными для входа в нее являются:
Левый столбец – ожидаемая температура воспринимающей среды. Проще говоря – до какого уровня требуется разогреть помещенные в печь материалы или заготовки. Каждому уровню соответствует своя строка.
Все остальные столбцы – температура разогрева нагревательного элемента.
Пересечение строки и столбца даст искомое значение βэф.
Требуемая температура тепловоспринимающего материала, °С | Поверхностная мощность βэф (Вт/cм ²) при температуре разогрева нагревательного элемента, °С | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
800 | 850 | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 | 1350 | |
100 | 6.1 | 7.3 | 8.7 | 10.3 | 12.5 | 14.15 | 16.4 | 19 | 21.8 | 24.9 | 28.4 | 36.3 |
200 | 5.9 | 7.15 | 8.55 | 10.15 | 12 | 14 | 16.25 | 18.85 | 21.65 | 24.75 | 28.2 | 36.1 |
300 | 5.65 | 6.85 | 8.3 | 9.9 | 11.7 | 13.75 | 16 | 18.6 | 21.35 | 24.5 | 27.9 | 35.8 |
400 | 5.2 | 6.45 | 7.85 | 9.45 | 11.25 | 13.3 | 15.55 | 18.1 | 20.9 | 24 | 27.45 | 35.4 |
500 | 4.5 | 5.7 | 7.15 | 8.8 | 10.55 | 12.6 | 14.85 | 17.4 | 20.2 | 23.3 | 26.8 | 34.6 |
600 | 3.5 | 4.7 | 6.1 | 7.7 | 9.5 | 11.5 | 13.8 | 16.4 | 19.3 | 22.3 | 25.7 | 33.7 |
700 | 2 | 3.2 | 4.6 | 6.25 | 8.05 | 10 | 12.4 | 14.9 | 17.7 | 20.8 | 24.3 | 32.2 |
800 | — | 1.25 | 2.65 | 4.2 | 6.05 | 8.1 | 10.4 | 12.9 | 15.7 | 18.8 | 22.3 | 30.2 |
850 | — | — | 1.4 | 3 | 4.8 | 6.85 | 9.1 | 11.7 | 14.5 | 17.6 | 21 | 29 |
900 | — | — | — | 1.55 | 3.4 | 5.45 | 7.75 | 10.3 | 13 | 16.2 | 19.6 | 27.6 |
950 | — | — | — | — | 1.8 | 3.85 | 6.15 | 8.65 | 11.5 | 14.5 | 18.1 | 26 |
1000 | — | — | — | — | — | 2.05 | 4.3 | 6.85 | 9.7 | 12.75 | 16.25 | 24.2 |
1050 | — | — | — | — | — | — | 2.3 | 4.8 | 7.65 | 10.75 | 14.25 | 22.2 |
1100 | — | — | — | — | — | — | — | 2.55 | 5.35 | 8.5 | 12 | 19.8 |
1150 | — | — | — | — | — | — | — | — | 2.85 | 5.95 | 9.4 | 17.55 |
1200 | — | — | — | — | — | — | — | — | — | 3.15 | 6.55 | 14.55 |
1300 | — | — | — | — | — | — | — | — | — | — | — | 7.95 |
Теперь – поправочный коэффициент α. Его значение для спиральных нагревателей показано в следующей таблице.
Иллюстрация | Вариант расположения спирального нагревательного элемента | Значение коэффициента α |
---|---|---|
![]() | Нагревательная спираль спрятана в ниши футеровки муфельной печи. | 0,16 ÷ 0,24 |
![]() | Нагревательная спираль заключена в кварцевые трубки и расположена на полочках по стенкам камеры | 0,30 ÷ 0,36 |
Простое перемножение этих двух параметров как раз и даст допустимую удельную поверхностную мощность нагревателя.
Примечание: Практика показывает, что для муфельных печей с высокотемпературным нагревом (от 700 градусов), оптимальным значением βдоп будет 1,6 Вт/см² для нихромовых проводников, и примерно 2,0÷2,2 Вт/см² для фехралевых . Если печь работает в режиме нагрева до 400 градусов, то таких жестких рамок нет – можно ориентироваться на показатели от 4 до 6 Вт/ см².
Итак, с допустимым значением поверхностной удельной мощности определись. Значит, необходимо найти удельную мощность рассчитанного ранее нагревателя и сравнить с допустимой.
Быстро рассчитать этот параметр поможет калькулятор:
Калькулятор расчета удельной поверхностной мощности нагревателя
Если полученное значение не превышает допустимого – расчет может считаться законченным.
В том случае, когда найденное значение превосходит допустимый уровень поверхностной удельной мощности, придется проведенные расчеты несколько откорректировать. Сделать это можно, вернувшись к шагам №2 — 3, и повторив вычисления с увеличением диаметра проволоки на одну или несколько стандартных позиций – одновременно с этим возрастет и ее длина. Затем – снова сверить показатели. И так – пока не будет найден оптимальный вариант и с точки зрения максимальной экономичности , и с позиций обеспечения соответствия указанному параметру.
С набором наших калькуляторов провести повторный расчет – это дело буквально нескольких минут. И вот на этом расчет может считаться законченным. Можно приобретать проволоку выбранного сплава, с рассчитанными диаметром и длиной.
Как собрать муфельную печь своими руками
В этой публикации акцент был сделан именно на расчетах нагревательного элемента. А более подробно именно о процессе самостоятельного изготовления муфельной печи – читайте в специальной статье нашего портала.
Расчёт проволочного нагревателя
Расчёт проволочного нагревателя нужен в первую очередь для определения потребного источника питания, то есть таких его параметров как напряжение и ток, ну и как следствие – мощности.
Хочу обратить ваше внимание, что существую онлайн-калькуляторы для расчёта сопротивления и остальных параметров проволочного нагревателя (примеры: раз, два)
Вот огромная подробная статья с расчётом ниромовых нагревателей.
Есть много различных сплавов с высоким удельным сопротивлением, из которых можно делать нагреватели. В нашем примере рассмотрим нихром и кантал. Для простоты расчётов ниже приведена таблица, содержащая в себе отношение диаметра проволоки к её сопротивлению на 1 метр (Ом/м).
Чтобы найти полное сопротивление отрезка проволоки, нужно:
- Определить (задать) диаметр проволоки и её материал (это можно сделать при покупке =)
- Согласно полученным (заданным) данным, найти его сопротивление (Ом/м) из таблицы
- Умножить длину отрезка проволоки (в метрах!) на удельное, в итоге получится величина сопротивления (Ом).
Проделав эти шаги в обратной последовательности, можно найти ДЛИНУ проволоки, зная её сопротивление, и варьируя ПЛОЩАДЬ СЕЧЕНИЯ.
Зная сопротивление, можно “подключить” нашу проволоку к источнику питания, чтобы найти потребляемый ток. По закону Ома (I=U/R) ток равен напряжение (в Вольтах) / сопротивление (в Омах), на выходе получится ток в Амперах. Это нужно в такой ситуации: у вас есть блок питания например на 12 вольт и максимум на 3 Ампера. И вам нужно проверить, не будет ли ток от вашего нагревателя превышать максимальный допустимый ток с блока питания. Чтобы найти мощность нагревателя в Ваттах, нужно умножить ток на напряжение (P=U*I), где P – электрическая мощность в Ваттах.
Обратная задача: спроектировать нагреватель заданной мощности. Например, для стульчака с подогревом нужно около 30 Ватт.
- Зададимся источником питания, пусть это будет БП на 12 Вольт от светодиодной ленты.
- Смотрим, какой будет ток: I=P/U=30/12
32 Ватта. Если “реальное” значение вас не устраивает, можно слегка изменить ДЛИНУ нагревателя, и ток и мощность будут такие, как хотелось изначально. То есть берём не 0.5 метра, а чуть больше. Насколько чуть? Новую длину можно найти, разделив изначально нужно сопротивление на табличное удельное сопротивление, то есть в моём примере это 4.8/9.06
Ещё одно важное дополнение: при последовательном соединении нагревателей их сопротивление складывается (R1+R2+R3…..). А вот при параллельном – складывается очень хитро.
Надеюсь данная статья будет полезна желающим разобраться “в сути вещей”. А так конечно можно использовать готовые калькуляторы =)
Нагреватели. Методика и примеры расчета
На странице представлена только выдержка из статьи «Нагреватели. Методика и примеры расчета» .
Скачать полную версию в формате PDF
Калькулятор нагревателей электрических печей
Рассчитать нагреватель
Результаты расчета
Введение
Очень часто при желании сделать или отремонтировать нагреватель электропечи своими руками у человека появляется много вопросов. Например, какого диаметра взять проволоку, какова должна быть ее длина или какую мощность можно получить, используя проволоку или ленту с заданными параметрами и т.д. При правильном подходе к решению данного вопроса необходимо учитывать достаточно много параметров, например, силу тока, проходящего через нагреватель, рабочую температуру, тип электрической сети и другие.
В данной статье приводятся справочные данные о материалах, наиболее распространенных при изготовлении нагревателей электрических печей, а также методика и примеры их расчета (расчета нагревателей электрических печей).
Нагреватели. Материалы для изготовления нагревателей
Требования к нагревателям
- Нагреватели должны обладать достаточной жаростойкостью (окалиностойкостью) и жаропрочностью. Жаропрочность — механическая прочность при высоких температурах. Жаростойкость — сопротивление металлов и сплавов газовой коррозии при высоких температурах (более подробно свойства жаростойкости и жаропорочности описаны на странице Жаропрочные сплавы и стали).
- Нагреватель в электропечи должен быть сделан из материала, обладающего высоким удельным электрическим сопротивлением. Говоря простым языком, чем выше электрическое сопротивление материала, тем сильнее он нагревается. Следовательно, если взять материал с меньшим сопротивлением, то потребуется нагреватель большей длины и с меньшей площадью поперечного сечения. Не всегда в печи может быть размещен достаточно длинный нагреватель. Также стоит учитывать, что, чем больше диаметр проволоки, из которой сделан нагреватель, тем дольше срок его службы. Примерами материалов, обладающих высоким электрическим сопротивлением являются хромоникелевый сплав нихром Х20Н80, Х15Н60, железохромоалюминиевый сплав фехраль Х23Ю5Т, которые относятся к прецизионным сплавам с высоким электрическим сопротивлением.
- Малый температурный коэффициент сопротивления является существенным фактором при выборе материала для нагревателя. Это означает, что при изменении температуры электрическое сопротивление материала нагревателя меняется не сильно. Если температурный коэффициент электросопротивления велик, для включения печи в холодном состоянии приходится использовать трансформаторы, дающие в начальный момент пониженное напряжение.
- Физические свойства материалов нагревателей должны быть постоянными. Некоторые материалы, например карборунд, который является неметаллическим нагревателем, с течением времени могут изменять свои физические свойства, в частности электрическое сопротивление, что усложняет условия их эксплуатации. Для стабилизации электрического сопротивления используют трансформаторы с большим количеством ступеней и диапазоном напряжений.
- Металлические материалы должны обладать хорошими технологическими свойствами, а именно: пластичностью и свариваемостью, — чтобы из них можно было изготовить проволоку, ленту, а из ленты — сложные по конфигурации нагревательные элементы. Также нагреватели могут быть изготовлены из неметаллов. Неметаллические нагреватели прессуются или формуются, превращаясь в готовое изделие.
Материалы для изготовления нагревателей
Наиболее подходящими и самыми используемыми в производстве нагревателей для электропечей являются прецизионные сплавы с высоким электрическим сопротивлением. К ним относятся сплавы на основе хрома и никеля (хромоникелевые), железа, хрома и алюминия (железохромоалюминиевые). Марки и свойства данных сплавов рассмотрены в ГОСТ 10994-74 «Сплавы прецизионные. Марки». Представителями хромоникелевых сплавов является нихром марок Х20Н80, Х20Н80-Н (950-1200 °С), Х15Н60, Х15Н60-Н (900-1125 °С), железохромоалюминиевых – фехраль марок Х23Ю5Т (950-1400 °С), Х27Ю5Т (950-1350 °С), Х23Ю5 (950-1200 °С), Х15Ю5 (750-1000 °С). Также существуют железохромоникелевые сплавы — Х15Н60Ю3, Х27Н70ЮЗ.
Перечисленные выше сплавы обладают хорошими свойствами жаропрочности и жаростойкости, поэтому они могут работать при высоких температурах. Хорошую жаростойкость обеспечивает защитная пленка из окиси хрома, которая образуется на поверхности материала. Температура плавления пленки выше температуры плавления непосредственно сплава, она не растрескивается при нагреве и охлаждении.
- хорошие механические свойства как при низких, так и при высоких температурах;
- сплав крипоустойчив;
- имеет хорошие технологические свойства – пластичность и свариваемость;
- хорошо обрабатывается;
- не стареет, немагнитен.
- высокая стоимость никеля — одного из основных компонентов сплава;
- более низкие рабочие температуры по сравнению с фехралью.
- более дешевый сплав по сравнению с нихромом, т.к. не содержит никель;
- обладает лучшей по сравнению с нихромом жаростойкостью, напрмер, фехраль Х23Ю5Т может работать при температуре до 1400 °С (1400 °С — максимальная рабочая температура для нагревателя из проволоки Ø 6,0 мм и более; Ø 3,0 — 1350 °С; Ø 1,0 — 1225 °С; Ø 0,2 — 950 °С).
- хрупкий и непрочный сплав, данные негативные свойства особенно сильно проявляются после пребывания сплава при температуре большей 1000 °С;
- т.к. фехраль имеет в своем составе железо, то данный сплав является магнитным и может ржаветь во влажной атмосфере при нормальной температуре;
- имеет низкое сопротивление ползучести;
- взаимодействует с шамотной футеровкой и окислами железа;
- во время эксплуатации нагреватели из фехрали существенно удлиняются.
В последнее время разработаны сплавы типа Х15Н60Ю3 и Х27Н70ЮЗ, т.е. с добавлением 3% алюминия, что значительно улучшило жаростойкость сплавов, а наличие никеля практически исключило имеющиеся у железохромоалюминиевых сплавов недостатки. Сплавы Х15Н60ЮЗ, Х27Н60ЮЗ не взаимодействуют с шамотом и окислами железа, достаточно хорошо обрабатываются, механически прочны, нехрупки. Максимальная рабочая температура сплава Х15Н60ЮЗ составляет 1200 °С.
Помимо перечисленных выше сплавов на основе никеля, хрома, железа, алюминия для изготовления нагревателей применяют и другие материалы: тугоплавкие металлы, а также неметаллы.
Среди неметаллов для изготовления нагревателей используют карборунд, дисилицид молибдена, уголь, графит. Нагреватели из карборунда и дисилицида молибдена используют в высокотемпературных печах. В печах с защитной атмосферой применяют угольные и графитовые нагреватели.
Среди тугоплавких материалов в качестве нагревателей могут использоваться вольфрам, молибден, тантал и ниобий. В высокотемпературных вакуумных печах и печах с защитной атмосферой применяются нагреватели из молибдена и вольфрама. Молибденовые нагреватели могут работать до температуры 1700 °С в вакууме и до 2200 °С – в защитной атмосфере. Такая разница температур обусловлена испарением молибдена при температурах выше 1700 °С в вакууме. Вольфрамовые нагреватели могут работать до 3000 °С. В особых случаях применяют нагреватели из тантала и ниобия.
Расчет нагревателей электрических печей
Обычно в качестве исходных данных для расчета нагревателей электрических печей выступают мощность, которую должны обеспечивать нагреватели, максимальная температура, которая требуется для осуществления соответствующего технологического процесса (отпуска, закалки, спекания и т.д.) и размеры рабочего пространства электрической печи. Если мощность печи не задана, то ее можно определить по эмпирическому правилу . В ходе расчета нагревателей требуется получить диаметр и длину (для проволоки) или площадь сечения и длину (для ленты), которые необходимы для изготовления нагревателей.
Также необходимо определить материал, из которого следует делать нагреватели (данный пункт в статье не рассматривается). В данной статье в качестве материала для нагревателей рассматривается хромоникелевый прецизионный сплав с высоким электрическим сопротивлением нихром Х20Н80, который является одним из самых популярных при изготовлении нагревательных элементов.
Определение диаметра и длины нагревателя (нихромовой проволоки) для заданной мощности печи (простой расчет)
Пожалуй, наиболее простым вариантом расчета нагревателей из нихрома является выбор диаметра и длины нихромовой проволоки при заданной мощности нагревателя, питающего напряжения сети, а также температуры, которую будет иметь нагреватель. Несмотря на простоту расчета, в нем имеется одна особенность, на которую мы обратим внимание ниже.
Пример расчета диаметра и длины нагревательного элемента
Исходные данные:
Устройство мощностью P = 800 Вт; напряжение сети U = 220 В; температура нагревателя 800 °C. В качестве нагревательного элемента используется нихромовая проволока Х20Н80.
1. Сначала необходимо определить силу тока, которая будет проходить через нагревательный элемент:
I = P / U = 800 / 220 = 3,63 А.
2. Теперь нужно найти сопротивление нагревателя:
R = U / I = 220 / 3,63 = 61 Ом;
3. Исходя из значения полученной в п. 1 силы тока, проходящего через нихромовый нагреватель, нужно выбрать диаметр проволоки. И этот момент является важным. Если, например, при силе тока в 6 А использовать нихромовую проволоку диаметром 0,4 мм, то она сгорит. Поэтому, рассчитав силу тока, необходимо выбрать из таблицы соответствующее значение диаметра проволоки. В нашем случае для силы тока 3,63 А и температуры нагревателя 800 °C выбираем нихромовую проволоку с диаметром d = 0,35 мм и площадью поперечного сечения S = 0,096 мм 2 .
Общее правило выбора диаметра проволоки можно сформулировать следующим образом: необходимо выбрать проволоку, у которой допустимая сила тока не меньше, чем расчетная сила тока, проходящего через нагреватель. С целью экономии материала нагревателя следует выбирать проволоку с ближайшей большей (чем расчетная) допустимой силой тока.
Диаметр нихромовой проволоки, мм | Площадь поперечного сечения нихромовой проволоки, мм 2 | Температура нагрева нихромовой проволоки, °C | ||||||
---|---|---|---|---|---|---|---|---|
200 | 400 | 600 | 700 | 800 | 900 | 1000 | ||
Максимальная допустимая сила тока, А | ||||||||
5 | 19,6 | 52 | 83 | 105 | 124 | 146 | 173 | 206 |
4 | 12,6 | 37,0 | 60,0 | 80,0 | 93,0 | 110,0 | 129,0 | 151,0 |
3 | 7,07 | 22,3 | 37,5 | 54,5 | 64,0 | 77,0 | 88,0 | 102,0 |
2,5 | 4,91 | 16,6 | 27,5 | 40,0 | 46,6 | 57,5 | 66,5 | 73,0 |
2 | 3,14 | 11,7 | 19,6 | 28,7 | 33,8 | 39,5 | 47,0 | 51,0 |
1,8 | 2,54 | 10,0 | 16,9 | 24,9 | 29,0 | 33,1 | 39,0 | 43,2 |
1,6 | 2,01 | 8,6 | 14,4 | 21,0 | 24,5 | 28,0 | 32,9 | 36,0 |
1,5 | 1,77 | 7,9 | 13,2 | 19,2 | 22,4 | 25,7 | 30,0 | 33,0 |
1,4 | 1,54 | 7,25 | 12,0 | 17,4 | 20,0 | 23,3 | 27,0 | 30,0 |
1,3 | 1,33 | 6,6 | 10,9 | 15,6 | 17,8 | 21,0 | 24,4 | 27,0 |
1,2 | 1,13 | 6,0 | 9,8 | 14,0 | 15,8 | 18,7 | 21,6 | 24,3 |
1,1 | 0,95 | 5,4 | 8,7 | 12,4 | 13,9 | 16,5 | 19,1 | 21,5 |
1,0 | 0,785 | 4,85 | 7,7 | 10,8 | 12,1 | 14,3 | 16,8 | 19,2 |
0,9 | 0,636 | 4,25 | 6,7 | 9,35 | 10,45 | 12,3 | 14,5 | 16,5 |
0,8 | 0,503 | 3,7 | 5,7 | 8,15 | 9,15 | 10,8 | 12,3 | 14,0 |
0,75 | 0,442 | 3,4 | 5,3 | 7,55 | 8,4 | 9,95 | 11,25 | 12,85 |
0,7 | 0,385 | 3,1 | 4,8 | 6,95 | 7,8 | 9,1 | 10,3 | 11,8 |
0,65 | 0,342 | 2,82 | 4,4 | 6,3 | 7,15 | 8,25 | 9,3 | 10,75 |
0,6 | 0,283 | 2,52 | 4 | 5,7 | 6,5 | 7,5 | 8,5 | 9,7 |
0,55 | 0,238 | 2,25 | 3,55 | 5,1 | 5,8 | 6,75 | 7,6 | 8,7 |
0,5 | 0,196 | 2 | 3,15 | 4,5 | 5,2 | 5,9 | 6,75 | 7,7 |
0,45 | 0,159 | 1,74 | 2,75 | 3,9 | 4,45 | 5,2 | 5,85 | 6,75 |
0,4 | 0,126 | 1,5 | 2,34 | 3,3 | 3,85 | 4,4 | 5,0 | 5,7 |
0,35 | 0,096 | 1,27 | 1,95 | 2,76 | 3,3 | 3,75 | 4,15 | 4,75 |
0,3 | 0,085 | 1,05 | 1,63 | 2,27 | 2,7 | 3,05 | 3,4 | 3,85 |
0,25 | 0,049 | 0,84 | 1,33 | 1,83 | 2,15 | 2,4 | 2,7 | 3,1 |
0,2 | 0,0314 | 0,65 | 1,03 | 1,4 | 1,65 | 1,82 | 2,0 | 2,3 |
0,15 | 0,0177 | 0,46 | 0,74 | 0,99 | 1,15 | 1,28 | 1,4 | 1,62 |
0,1 | 0,00785 | 0,1 | 0,47 | 0,63 | 0,72 | 0,8 | 0,9 | 1,0 |
- если нагреватели находятся внутри нагреваемой жидкости, то нагрузку (допустимую силу тока) можно увеличить в 1,1 — 1,5 раза;
- при закрытом расположении нагревателей (например, в камерных электропечах) необходимо уменьшить нагрузки в 1,2 — 1,5 раза (меньший коэффициент берется для более толстой проволоки, больший — для тонкой).
Таким образом, получим длину нагревателя:
l = R · S / ρ = 61 · 0,096 / 1,11 = 5,3 м.
В данном примере в качестве нагревателя используется нихромовая проволока Ø 0,35 мм. В соответствии с ГОСТ 12766.1-90 «Проволока из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия» номинальное значение удельного электрического сопротивления нихромовой проволоки марки Х20Н80 составляет 1,1 Ом · мм 2 / м (ρ = 1,1 Ом · мм 2 / м), см. табл. 2.
Итогом расчетов является необходимая длина нихромовой проволоки, которая составляет 5,3 м, диаметр — 0,35 мм.
Марка сплава | Диаметр, мм | Удельное электрическое сопротивление ρном, мкОм·м |
---|---|---|
Х20Н80-Н | от 0,1 до 0,5 включ. | 1,08 |
от 0,5 до 3,0 включ. | 1,11 | |
Св. 3,0 | 1,13 | |
Х15Н60, Х15Н60-Н | от 0,1 до 3,0 включ. | 1,11 |
Св. 3,0 | 1,12 | |
Х23Ю5Т | Все диаметры | 1,39 |
Определение диаметра и длины нагревателя (нихромовой проволоки) для заданной печи (подробный расчет)
Расчет, представленный в данном пункте, является более сложным, чем выше. Здесь мы учтем дополнительные параметры нагревателей, попытаемся разобраться с вариантами подключения нагревателей к сети трехфазного тока. Расчет нагревателя будем проводить на примере электрической печи. Пусть исходными данными являются внутренние размеры печи.
1. Первое, что необходимо сделать — посчитать объем камеры внутри печи. В данном случае возьмем h = 490 мм, d = 350 мм и l = 350 мм (высота, ширина и глубина соответственно). Таким образом, получаем объем V = h · d · l = 490· 350 · 350 = 60 · 10 6 мм 3 = 60 л (мера объема).
2. Далее необходимо определить мощность, которую должна выдавать печь. Мощность измеряется в Ваттах (Вт) и определяется по эмпирическому правилу: для электрической печи объемом 10 — 50 литров удельная мощность составляет 100 Вт/л (Ватт на литр объема), объемом 100 — 500 литров — 50 — 70 Вт/л. Возьмем для рассматриваемой печи удельную мощность 100 Вт/л. Таким образом мощность нагревателя электрической печи должна составлять P = 100 · 60 = 6000 Вт = 6 КВт.
Стоит отметить, что при мощности 5-10 кВт нагреватели изготовляют, обычно, однофазными. При больших мощностях для равномерной загрузки сети нагреватели делают трехфазными.
3. Затем нужно найти силу тока, проходящего через нагреватель I = P / U, где P — мощность нагревателя, U — напряжение на нагревателе (между его концами), и сопротивление нагревателя R = U / I.
- к бытовой сети однофазного тока — тогда U = 220 В;
- к промышленной сети трехфазного тока — U = 220 В (между нулевым проводом и фазой) или U = 380 В (между двумя любыми фазами).
Бытовая сеть однофазного тока
I = P / U = 6000 / 220 = 27,3 А — ток проходящий через нагреватель.
Затем необходимо определить сопротивление нагревателя печи.
R = U / I = 220 / 27,3 = 8,06 Ом.
Рисунок 1 Проволочный нагреватель в сети однофазного тока
Искомые значения диаметра проволоки и ее длины будут определены в п. 5 данного параграфа.
Промышленная сеть трехфазного тока
При данном типе подключения нагрузка распределяется равномерно на три фазы, т.е. по 6 / 3 = 2 КВт на фазу. Таким образом, нам требуется 3 нагревателя. Далее необходимо выбрать способ подключения непосредственно нагревателей (нагрузки). Способов может быть 2: “ЗВЕЗДА” или “ТРЕУГОЛЬНИК”.
Стоит заметить, что в данной статье формулы для расчета силы тока (I) и сопротивления (R) для трехфазной сети записаны не в классическом виде. Это сделано для того, чтобы не усложнять изложение материала по расчету нагревателей электротехническими терминами и определениями (например, не упоминаются фазные и линейные напряжения и токи и соотношения между ними). С классическим подходом и формулами расчета трехфазных цепей можно ознакомиться в специализированной литературе. В данной статье некоторые математические преобразования, проведенные над классическими формулами, скрыты от читателя, и на конечный результат это не оказывает никакого влияния.
При подключении типа “ЗВЕЗДА” нагреватель подключается между фазой и нулем (см. рис. 2). Соответственно, напряжение на концах нагревателя будет U = 220 В.
Ток, проходящий через нагреватель —
I = P / U = 2000 / 220 = 9,10 А.
Сопротивление одного нагревателя —
R = U / I = 220 / 9,10 = 24,2 Ом.
Рисунок 2 Проволочный нагреватель в сети трехфазного тока. Подключение по схеме «ЗВЕЗДА»
При подключении типа “ТРЕУГОЛЬНИК” нагреватель подключается между двумя фазами (см. рис. 3). Соответственно, напряжение на концах нагревателя будет U = 380 В.
Ток, проходящий через нагреватель —
I = P / U = 2000 / 380 = 5,26 А.
Сопротивление одного нагревателя —
R = U / I = 380/ 5,26 = 72,2 Ом.
Рисунок 3 Проволочный нагреватель в сети трехфазного тока. Подключение по схеме «ТРЕУГОЛЬНИК»
4. После определения сопротивления нагревателя при соответствующем подключении к электрической сети необходимо подобрать диаметр и длину проволоки.
При определении указанных выше параметров необходимо анализировать удельную поверхностную мощность нагревателя, т.е. мощность, которая выделяется с единицы площади. Поверхностная мощность нагревателя зависит от температуры нагреваемого материала и от конструктивного выполнения нагревателей.
Пример
Из предыдущих пунктов расчета (см. п. 3 данного параграфа) нам известно сопротивление нагревателя. Для 60 литровой печи при однофазном подключении оно составляет R = 8,06 Ом. В качестве примера возьмем проволоку нихромовую Х20Н80 диаметром 1 мм. Тогда, чтобы получить требуемое сопротивление, необходимо l = R / ρ = 8,06 / 1,4 = 5,7 м нихромовой проволоки, где ρ — номинальное значение электрического сопротивления 1 м проволоки по ГОСТ 12766.1-90, [Ом/м]. Масса данного отрезка проволоки из нихрома составит m = l · μ = 5,7 · 0,007 = 0,0399 кг = 40 г, где μ — масса 1 м проволоки. Теперь необходимо определить площадь поверхности отрезка проволоки длиной 5,7 м. S = l · π · d = 570 · 3,14 · 0,1 = 179 см 2 , где l – длина проволоки [см], d – диаметр проволоки [см]. Таким образом, с площади 179 см 2 должно выделяться 6 кВт. Решая простую пропорцию, получаем, что с 1 см 2 выделяется мощность β = P / S = 6000 / 179 = 33,5 Вт, где β — поверхностная мощность нагревателя.
Полученная поверхностная мощность слишком велика. Нагреватель расплавится, если нагреть его до температуры, которая обеспечила бы полученное значение поверхностной мощности. Данная температура будет выше температуры плавления материала нагревателя.
Приведенный пример является демонстрацией неправильного выбора диаметра проволоки, которая будет использоваться для изготовления нагревателя. В п. 5 данного параграфа будет приведен пример с правильным подбором диаметра.
Для каждого материала в зависимости от требуемой температуры нагрева определено допустимое значение поверхностной мощности. Оно может определяться с помощью специальных таблиц или графиков. В данных расчетах используются таблицы.
Для высокотемпературных печей (при температуре более 700 – 800 °С) допустимая поверхностная мощность, Вт/м 2 , равна βдоп = βэф · α, где βэф – поверхностная мощность нагревателей в зависимости от температуры тепловоспринимающей среды [Вт / м 2 ], α – коэффициент эффективности излучения. βэф выбирается по таблице 3, α — по таблице 4.
Если печь низкотемпературная (температура менее 200 – 300 °С), то допустимую поверхностную мощность можно считать равной (4 — 6) · 10 4 Вт/м 2 .
Температура тепловоспринимающей поверхности, °С | βэф, Вт/cм 2 при температуре нагревателя, °С | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
800 | 850 | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 | 1350 | ||
100 | 6,1 | 7,3 | 8,7 | 10,3 | 12,5 | 14,15 | 16,4 | 19,0 | 21,8 | 24,9 | 28,4 | 36,3 | |
200 | 5,9 | 7,15 | 8,55 | 10,15 | 12,0 | 14,0 | 16,25 | 18,85 | 21,65 | 24,75 | 28,2 | 36,1 | |
300 | 5,65 | 6,85 | 8,3 | 9,9 | 11,7 | 13,75 | 16,0 | 18,6 | 21,35 | 24,5 | 27,9 | 35,8 | |
400 | 5,2 | 6,45 | 7,85 | 9,45 | 11,25 | 13,3 | 15,55 | 18,1 | 20,9 | 24,0 | 27,45 | 35,4 | |
500 | 4,5 | 5,7 | 7,15 | 8,8 | 10,55 | 12,6 | 14,85 | 17,4 | 20,2 | 23,3 | 26,8 | 34,6 | |
600 | 3,5 | 4,7 | 6,1 | 7,7 | 9,5 | 11,5 | 13,8 | 16,4 | 19,3 | 22,3 | 25,7 | 33,7 | |
700 | 2 | 3,2 | 4,6 | 6,25 | 8,05 | 10,0 | 12,4 | 14,9 | 17,7 | 20,8 | 24,3 | 32,2 | |
800 | — | 1,25 | 2,65 | 4,2 | 6,05 | 8,1 | 10,4 | 12,9 | 15,7 | 18,8 | 22,3 | 30,2 | |
850 | — | — | 1,4 | 3,0 | 4,8 | 6,85 | 9,1 | 11,7 | 14,5 | 17,6 | 21,0 | 29,0 | |
900 | — | — | — | 1,55 | 3,4 | 5,45 | 7,75 | 10,3 | 13 | 16,2 | 19,6 | 27,6 | |
950 | — | — | — | — | 1,8 | 3,85 | 6,15 | 8,65 | 11,5 | 14,5 | 18,1 | 26,0 | |
1000 | — | — | — | — | — | 2,05 | 4,3 | 6,85 | 9,7 | 12,75 | 16,25 | 24,2 | |
1050 | — | — | — | — | — | — | 2,3 | 4,8 | 7,65 | 10,75 | 14,25 | 22,2 | |
1100 | — | — | — | — | — | — | — | 2,55 | 5,35 | 8,5 | 12,0 | 19,8 | |
1150 | — | — | — | — | — | — | — | — | 2,85 | 5,95 | 9,4 | 17,55 | |
1200 | — | — | — | — | — | — | — | — | — | 3,15 | 6,55 | 14,55 | |
1300 | — | — | — | — | — | — | — | — | — | — | — | 7,95 |
Размещение нагревателей | Коэффициент α |
---|---|
Проволочные спирали, полузакрытые в пазах футеровки | 0,16 — 0,24 |
Проволочные спирали на полочках в трубках | 0,30 — 0,36 |
Проволочные зигзагообразные (стержневые) нагреватели | 0,60 — 0,72 |
Ленточные зигзагообразные нагреватели | 0,38 — 0,44 |
Ленточные профилированные (ободовые) нагреватели | 0,56 — 0,7 |
/>
Проволочные спирали, полузакрытые в пазах футеровки
/>
Проволочные спирали на полочках в трубках
/>
Проволочные зигзагообразные (стержневые) нагреватели
Предположим, что температура нагревателя 1000 °С, и хотим нагреть заготовку до температуры 700 °С. Тогда по таблице 3 подбираем βэф = 8,05 Вт/см 2 , α = 0,2, βдоп = βэф · α = 8,05 · 0,2 = 1,61 Вт/см 2 = 1,61 · 10 4 Вт/м 2 .
5. После определения допустимой поверхностной мощности нагревателя необходимо найти его диаметр (для проволочных нагревателей) или ширину и толщину (для ленточных нагревателей), а также длину.
Диаметр проволоки можно определить по следующей формуле:
d — диаметр проволоки, [м]; P — мощность нагревателя, [Вт]; U — напряжение на концах нагревателя, [В]; βдоп — допустимая поверхностная мощность нагревателя, [Вт/м 2 ]; ρt — удельное сопротивление материала нагревателя при заданной температуре, [Ом·м].
ρt = ρ20 · k, где ρ20 — удельное электрическое сопротивление материала нагревателя при 20 °С, [Ом·м] k — поправочный коэффициент для расчета изменения электрического сопротивления в зависимости от температуры (по ГОСТ 12766.1-90).
Длину проволоки можно определить по следующей формуле:
l — длина проволоки, [м].
Подберем диаметр и длину проволоки из нихрома Х20Н80. Удельное электрическое сопротивление материала нагревателя составляет
ρt = ρ20 · k = 1,13 · 10 -6 · 1,025 = 1,15 · 10 -6 Ом·м.
Бытовая сеть однофазного тока
Для 60 литровой печи, подключенной к бытовой сети однофазного тока, из предыдущих этапов расчета известно, что мощность печи составляет P = 6000 Вт, напряжение на концах нагревателя — U = 220 В, допустимая поверхностная мощность нагревателя βдоп = 1,6 · 10 4 Вт/м 2 . Тогда получаем
Полученный размер необходимо округлить до ближайшего большего стандартного. Стандартные размеры для проволоки из нихрома и фехрали можно найти в ГОСТ 12766.1-90, Приложение 2, Таблица 8. В данном случае, ближайшим большим стандартным размером является Ø 2,8 мм. Диаметр нагревателя d = 2,8 мм.
Длина нагревателя l = 43 м.
Также иногда требуется определить массу необходимого количества проволоки.
m = l · μ, где m — масса отрезка проволоки, [кг]; l — длина проволоки, [м]; μ — удельная масса (масса 1 метра проволоки), [кг/м].
В нашем случае масса нагревателя m = l · μ = 43 · 0,052 = 2,3 кг.
Данный расчет дает минимальный диаметр проволоки, при котором она может быть использована в качестве нагревателя при заданных условиях. С точки зрения экономии материала такой расчет является оптимальным. При этом также может быть использована проволока большего диаметра, но тогда ее количество возрастет.
Проверка
Результаты расчета могут быть проверены следующим способом. Был получен диаметр проволоки 2,8 мм. Тогда нужная нам длина составит
l = R / (ρ · k) = 8,06 / (0,179 · 1,025) = 43 м, где l — длина проволоки, [м]; R — сопротивление нагревателя, [Ом]; ρ — номинальное значение электрического сопротивления 1 м проволоки, [Ом/м]; k — поправочный коэффициент для расчета изменения электрического сопротивления в зависимости от температуры.
Данное значение совпадает со значением, полученным в результате другого расчета.
Теперь необходимо проверить, не превысит ли поверхностная мощность выбранного нами нагревателя допустимую поверхностную мощность, которая была найдена в п. 4. β = P / S = 6000 / (3,14 · 4300 · 0,28) = 1,59 Вт/см 2 . Полученное значение β = 1,59 Вт/см 2 не превышает βдоп = 1,6 Вт/см 2 .
Итоги
Таким образом, для нагревателя потребуется 43 метра нихромовой проволоки Х20Н80 диаметром 2,8 мм, это составляет 2,3 кг.
Промышленная сеть трехфазного тока
Также можно найти диаметр и длину проволоки, необходимой для изготовления нагревателей печи, подключенной к сети трехфазного тока.
Как описано в п. 3, на каждый из трех нагревателей приходится по 2 КВт мощности. Найдем диаметр, длину и массу одного нагревателя.
Подключение типа “ЗВЕЗДА” (см. рис. 2)
В данном случае, ближайшим большим стандартным размером является Ø 1,4 мм. Диаметр нагревателя d = 1,4 мм.
Длина одного нагревателя l = 30 м.
Масса одного нагревателя m = l · μ = 30 · 0,013 = 0,39 кг.
Проверка
Был получен диаметр проволоки 1,4 мм. Тогда нужная нам длина составит
l = R / (ρ · k) = 24,2 / (0,714 · 1,025) = 33 м.
Данное значение практически совпадает со значением, полученным в результате другого расчета.
Поверхностная мощность составит β = P / S = 2000 / (3,14 · 3000 · 0,14) = 1,52 Вт/см 2 , она не превышает допустимую.
Итоги
Для трех нагревателей, подключенных по схеме “ЗВЕЗДА”, потребуется
l = 3 · 30 = 90 м проволоки, что составляет
m = 3 · 0,39 = 1,2 кг.
Подключение типа “ТРЕУГОЛЬНИК” (см. рис. 3)
В данном случае, ближайшим большим стандартным размером является Ø 0,95 мм. Диаметр нагревателя d = 0,95 мм.
Длина одного нагревателя l = 43 м.
Масса одного нагревателя m = l · μ = 43 · 0,006 = 0,258 кг.
Проверка
Был получен диаметр проволоки 0,95 мм. Тогда нужная нам длина составит
l = R / (ρ · k) = 72,2 / (1,55 · 1,025) = 45 м.
Данное значение практически совпадает со значением, полученным в результате другого расчета.
Поверхностная мощность составит β = P / S = 2000 / (3,14 · 4300 · 0,095) = 1,56 Вт/см 2 , она не превышает допустимую.
Итоги
Для трех нагревателей, подключенных по схеме “ТРЕУГОЛЬНИК”, потребуется
l = 3 · 43 = 129 м проволоки, что составляет
m = 3 · 0,258 = 0,8 кг.
Если сравнить 2 рассмотренных выше варианта подключения нагревателей к сети трехфазного тока, то можно заметить, что для “ЗВЕЗДЫ” требуется проволока большего диаметра, чем для “ТРЕУГОЛЬНИКА” (1,4 мм против 0,95 мм), чтобы обеспечить заданную мощность печи 6 кВт. При этом требуемая длина нихромовой проволоки при подключении по схеме “ЗВЕЗДА” меньше длины проволоки при подключении типа “ТРЕУГОЛЬНИК” (90 м против 129 м), а требуемая масса, наоборот, больше (1,2 кг против 0,8 кг).
Расчет спирали
При эксплуатации основная задача — это разместить нагреватель расчетной длины в ограниченном пространстве печи. Нихромовая и фехралевая проволока подвергаются навивке в виде спиралей или сгибанию в форме зигзагов, лента сгибается в форме зигзагов, что позволяет вместить большее количество материала (по длине) в рабочую камеру. Наиболее распространенным вариантом является спираль.
Соотношения между шагом спирали и ее диаметром и диаметром проволоки выбирают таким образом, чтобы облегчить размещение нагревателей в печи, обеспечить достаточную их жесткость, в максимально возможной степени исключить локальный перегрев витков самой спирали и в то же время не затруднить теплоотдачу от них к изделиям.
Чем больше диаметр спирали и чем меньше ее шаг, тем легче разместить в печи нагреватели, но с увеличением диаметра уменьшается прочность спирали, увеличивается склонность ее витков лечь друг на друга. С другой стороны, с увеличением частоты намотки увеличивается экранирующее действие обращенной к изделиям части ее витков на остальные и, следовательно, ухудшается использование ее поверхности, а также могут возникнуть местные перегревы.
Практика установила вполне определенные, рекомендуемые соотношения между диаметром проволоки (d), шагом (t) и диаметром спирали (D) для проволоки Ø от 3 до 7 мм. Эти соотношения следующие: t ≥ 2d и D = (7÷10)·d для нихрома и D = (4÷6)·d — для менее прочных железохромоалюминиевых сплавов, таких как фехраль и т.п. Для более тонких проволок отношение D и d, а также t обычно берутся больше.
Заключение
В статье были рассмотрены различные аспекты, касающиеся расчета нагревателей электрических печей — материалы, примеры расчета с необходимыми справочными данными, ссылками на стандарты, иллюстрациями.
В примерах были рассмотрены методики расчета только проволочных нагревателей. Помимо проволоки из прецизионных сплавов для изготовления нагревателей может применяться и лента.
Расчет нагревателей не ограничивается выбором их размеров. Также необходимо определить материал, из которого должен быть сделан нагреватель, тип нагревателя (проволочный или ленточный), тип расположения нагревателей и другие особенности. Если нагреватель изготавливается в виде спирали, то необходимо определить количество витков и шаг между ними.
Надеемся, что статья оказалась Вам полезной. Мы допускаем её свободное распространение при условии сохранения ссылки на наш сайт http://www.metotech.ru
В случае обнаружения неточностей, просим сообщить нам на адрес электронной почты info@metotech.ru или с помощью системы «Орфус», выделив текст с ошибкой и нажав Ctrl+Enter.
Список литературы
- Дьяков В.И. «Типовые расчеты по электрооборудованию».
- Жуков Л.Л., Племянникова И.М., Миронова М.Н., Баркая Д.С., Шумков Ю.В. «Сплавы для нагревателей».
- Сокунов Б.А., Гробова Л.С. «Электротермические установки (электрические печи сопротивления)».
- Фельдман И.А., Гутман М.Б., Рубин Г.К., Шадрич Н.И. «Расчет и конструирование нагревателей электропечей сопротивления».
- http://www.horss.ru/h6.php?p=45
- http://www.electromonter.info/advice/nichrom.html
телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95
Простейшие электрические расчеты нагревательных элементов
Электронагреватели широко используются в бытовых электроприборах: чайниках, утюгах, каминах, плитках, паяльниках и т. д. Тепловое действие тока. При прохождении электрического тока через неподвижные металлические проводники единственным результатом работы тока является нагревание этих проводников, и, следовательно,по закону сохранения энергии вся работа, совершенная током, превращается в тепло.
Работа (в джоулях), совершаемая током при прохождении его через участок цепи, вычисляется по формуле:
- U — напряжение, В;
- I — сила тока, А;
- t- время, с.
Количество теплоты (Дж), выделенное в проводнике при прохождении по нему электрического тока, пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока и вычисляется по закону Джоуля — Ленца:
где R — сопротивление проводника, Ом.
Произведем расчет количества теплоты, необходимой для того, чтобы вскипятить воду в чайнике, вмещающем 2 л. Напряжение сети U=220 В. Ток, потребляемый электрочайником, I= 4 А. Определить время закипания воды в чайнике, если КПД его 80% и начальная температура воды 20° С.
- U=220 В;
- I=4 А;
- m=2 кг;
- КПД=0,8;
- t=20° С;
- tкип = 100° С.
- Удельная теплоемкость воды С=4200.
Определим количество теплоты, необходимое для нагрева воды до температуры кипения.
Qпол = cm (tкип — t0) = 4200 * 2(100 — 20) = 672 000 Дж.
Определим общее количество теплоты, которое должен выделить нагревательный элемент электрочайника, с учетом потерь на нагрев керамики, корпуса чайника и внешней среды:
Определим время закипания воды в чайнике:
Отсюда находим t;
Мощность электрического тока. Зная работу, совершаемую током за некоторый промежуток времени, можно рассчитать и мощность тока, под которой, так же как и в механике, понимают работу, совершаемую за единицу времени. Из формулы, определяющей работу постоянного тока А = U//t, следует, что мощность его (Р) равна:
Нередко говорят о мощности электрического тока, потребляемой от сети, желая этим выразить мысль, что при помощи электрического тока (за счет тока) нагреваются утюги, электроплитки и т. д.
В соответствии с этим на приборах нередко обозначается их мощность, т. е. мощность тока, необходимая для нормального действия этих приборов. Так, например, для нормальной работы электроплитки на 220 В мощностью 500 Вт требуется ток около 2,3 А при напряжении 220 В (2.3 * 220 = 500).
На практике применяют более крупные единицы мощности: 1 гВт (гектоватт) = 100 Вт и 1 кВт (киловатт) = 1000 Вт.
Таким образом, 1 Вт есть мощность, выделяемая током 1 А в проводнике, между концами которого поддерживается напряжение 1 В.
Единица работы, совершаемой электрическим током в течение 1 с при помощи 1 Вт, называется ватт-секундой, или иначе джоулем. Применяют и более крупные единицы работы: 1 гектоватт-час (гВт*ч) или 1 киловатт-час (кВт*ч), который равен работе, совершаемой электрическим током в течение 1 ч при мощности 1 кВт.
Длину и диаметр проволоки нагревательного элемента рассчитывают исходя из величины напряжения сети и заданной мощности нагревательного элемента. Сила тока при данном напряжении и мощности определяется по формуле:
омическое сопротивление проводника всегда вычисляется по формуле:
Зная величину тока, можно найти диаметр и сечение проволоки.
Основные данные для расчета нагревательных элементов:
Допустимая сила тока, А | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Диаметр нихромовой проволоки при температуре 700° С, мм | 0,17 | 0,3 | 0,45 | 0,55 | 0,65 | 0,75 | 0,85 |
Площадь поперечного сечения проволоки, мм2 | 0,0227 | 0,0707 | 0,159 | 0,238 | 0,332 | 0,442 | 0,57 |
Подставляя полученные значения в формулу:
где: l — длина проволоки, м; S — сечение проволоки, мм^2; R — сопротивление проволоки, Ом; р-удельное сопротивление проволоки (для нихрома р = 1,1, для фехраля р =1,3), Ом*мм^2/м, получим необходимую длину проволоки для нагревательного элемента.
Пример. Определить длину проволоки из нихрома для нагревательного элемента плитки мощностью Р = 600 Вт при напряжении сети U = 220 В.
По этим данным находим диаметр и сечение проволоки: d= 0,45 мм, S = 0,159 мм^2. Тогда длина проволоки будет равна:
Точно так же можно рассчитать нагревательные элементы и для других электронагревательных приборов.
Примечание. При эксплуатации электрорадиотехнической аппаратуры необходимо знать сечение монтажных проводов — в зависимости от величины проходящего по ним тока. В таблице приведены максимально допустимые токи нагрузки для медных проводов различного сечения.