Как устроены црза
Перейти к содержимому

Как устроены црза

Как устроены црза

Цепи вторичной коммутации цифровых устройств РЗА (ЦРЗА) представляют собой продолжение внутренних логических схем этих устройств. Внутренняя логика и внешние связи – это единое целое. Нарушения логики терминала или вторичной коммутации приводят к отказам РЗА. Поэтому разработчику схем вторичной коммутации необходимо четко представлять работу алгоритмов РЗА, логику их взаимодействия между собой и через дискретные входы-выходы с внешними цепями.
Алексей Юрьевич Емельянцев и Сергей Петрович Петров обращают внимание на проблему, остро вставшую в последние годы, когда за разработку логики терминалов РЗА берутся неквалифицированные компании либо для релейной защиты используются непредназначенные для этого устройства.

ЛОГИКА ЦРЗА И ЦЕПЕЙ ВТОРИЧНОЙ КОММУТАЦИИ
Опасности непрофессиональных решений

Алексей Емельянцев, главный специалист отдела РЗА Специализированного Управления «Леноргэнергогаз» ДОАО «Оргэнергогаз»,
г. Санкт-Петербург
Сергей Петров, начальник управления главного энергетика – главный энергетик ООО «Газпром трансгаз Санкт-Петербург»

В России прошлого века большое внимание уделялось типизации технических решений по релейной защите и противоаварийной автоматике. Типовые решения для массового применения были разработаны ведущими российскими специалистами проектных институтов, ими пользовались все проектные институты и заводы-изготовители электротехнического оборудования. Любые изменения в этих решениях допускались только после тщательной их отработки специалистами и оформлялись в виде противоаварийных или эксплуатационных циркуляров.

Сами устройства РЗА допускались к применению только после соответствующих испытаний и прохождения опытной эксплуатации, что обеспечило высокую надежность их работы на электростанциях и в электрических сетях.

Из-за введения рыночной экономики и реформ, проведенных РАО «ЕЭС России», энергетика страны переживает не лучшие времена (фактически разваливается). Разобщенность энергетических предприятий в условиях отсутствия внятной централизованной политики приводит к снижению технических требований к продукции для энергетики.

Практика показала, что во многих случаях при использовании ЦРЗА прежний российский опыт не учитывается. Зачастую применяются неадаптированные к российским условиям цифровые терминалы зарубежных фирм. В погоне за прибылью за разработку логики терминалов берутся компании, не имеющие никакого практического опыта и нужной квалификации.

Кроме того, некоторые заводы, производящие ячейки и панели РЗА, с целью экономии самостоятельно разрабатывают схемы вторичной коммутации и даже сами программируют ЦРЗА. Приведем несколько примеров без указания конкретных предприятий, так как уже упоминалось, что проблема начинает носить массовый характер.

  1. Одна из российских компаний крупного холдинга разработала схемы вторичной коммутации ячеек 10 кВ и самостоятельно запрограммировала логику ЦРЗА типа Siprotec фирмы Siemens. Терминалы после лабораторных испытаний в нашей организации были признаны неработоспособными. После чего пришлось:
    • разрабатывать новую внутреннюю логику ЦРЗА под уже произведенные ячейки;
    • вносить изменения в цепи вторичной коммутации РУ;
    • перепрограммировать терминалы;
    • проводить лабораторные испытания терминалов.
  2. Нашими специалистами были разработаны логические схемы для свободно программируемых ЦРЗА типа SEPAM 80 Schneider Electric. Однако один из российских производителей ячеек купил не запрограммированные фирмой терминалы, для ускорения процесса изготовления «упростил» логические схемы и поручил их программирование сторонней фирме, не обладающей необходимым техническим потенциалом. В результате схемы были запрограммированы неправильно, поэтому, к примеру, при КЗ на отходящем фидере 10 кВ отключалась секция шин 10 кВ.
  3. В ОАО «Газпром» на ПС 10/0,4 кВ для защиты питающих вводов 0,4 кВ используется ЦРЗА типа БМРЗ-0,4 (программируется на заводе-изготовителе). В последние годы поступило достаточно большое количество рекламаций в адрес производителя. Однако анализ этих рекламаций показал, что неправильная работа автоматики в большинстве случаев – результат ошибок, допущенных при проектировании цепей вторичной коммутации заводами-производителями ячеек.

О программируемых контроллерах (ПЛК)

Из-за неспособности самостоятельно разрабатывать схемы вторичной коммутации многие заводы стали применять в качестве устройств РЗА на объектах энергетики свободно программируемые контроллеры, изначально предназначенные для решения задач по автоматизации промышленных производств. В защиту такого подхода выдвигаются следующие аргументы:

  1. возможность использования свободно программируемой логики ПЛК и гибкая аппаратная конфигурация;
  2. возможность замены поврежденной части контроллера (например, модуля ввода дискретных сигналов);
  3. низкая стоимость ПЛК по сравнению с ЦРЗА.

Однако специалисты-релейщики могут найти возражения:

  1. Свободно программируемая логика и гибкая аппаратная конфигурация привели к разнотипности программных и проектных решений. Из-за этого эксплуатационный персонал вынужден перепрограммировать алгоритмы защит и автоматики поставляемых контроллеров. Типовые, отработанные годами решения по применению контроллеров на энергетических объектах отсутствуют, а сбой в работе устройства может привести к катастрофическим последствиям.
  2. Возможность замены поврежденной части, несомненно, является достоинством ПЛК, но никак не может оправдать массу его недостатков. Следует отметить, что многие устройства ЦРЗА также обладают возможностью модульной замены.
  3. Стоимость ПЛК и ЦРЗА отличается незначительно. Например, ПЛК Simatic S7-400 фирмы Siemens с набором необходимых модулей на границе с Германией стоит около € 6000, а устройство ЦРЗА Siprotec этой же компании – около € 7000. При расчете стоимости системы в целом, дополнительно необходимо учитывать требующиеся многочисленные внешние устройства. Хотя некоторые простые и дешевые варианты ПЛК и в такой полной конфигурации могут оказаться дешевле ЦРЗА, но соотношение цена/качество явно не в их пользу. Применение ЦРЗА позволяет кардинально уменьшить число отдельных устройств РЗА и отказаться от их технического обслуживания.

Сравнение аппаратной части ПЛК и ЦРЗА

Табл. 1 иллюстрирует разницу между ПЛК и ЦРЗА при их применении для защиты КТП со стороны 0,4 кВ с двумя вводными выключателями, секционным и двумя генераторными выключателями.

Таблица 1. Сравнение параметров ПЛК и ЦРЗА

Сравнение оказывается не в пользу ПЛК. Например, при использовании ПЛК приходится отказаться от алгоритмов дальнего резервирования и блокирования МТЗ при пуске и самозапуске электродвигателей, которые давно и успешно используются в БМРЗ-0,4. Не решены проблемы электромагнитной совместимости, поскольку ПЛК имеет неэкранированный пластмассовый корпус. Наличие металлического корпуса у ЦРЗА значительно повышает его помехоустойчивость.

На практике применяются ПЛК с модулями ввода дискретных сигналов на постоянное напряжение 24 В. С одной стороны, это удобно, так как в большинстве случаев это же напряжение необходимо и для блоков питания ПЛК. С другой стороны, наличие встроенного блока питания с входным напряжением 24 В в каждом центральном процессоре ПЛК снижает надежность системы в целом, поскольку возникают проблемы коммутирования цепей входных сигналов.

Например, применяемые в настоящее время малогабаритные электромеханические реле имеют минимальную коммутируемую мощность 300 мВт, т.е. при напряжении 24 В должен протекать ток не менее 12,5 мА. В то время как входной ток дискретных входов составляет 3–5 мА, надежность контактирования не обеспечена. При применении постоянного напряжения 220 В и протекании тока 3 мА, мощность на контактах даже при пониженном оперативном напряжении составит Р = 0,8 · 220 · 3 = 528 мВт, что больше минимально коммутируемой мощности 300 мВт. Следовательно, надежность работы контактов при повышенном напряжении будет обеспечена.

Выводы

  1. Необходимо осудить практику, когда заводы, выпускающие КРУ, с целью сбыта продукции стали браться за несвойственные им задачи разработки логики терминалов, схем вторичной коммутации и даже за выпуск рабочих проектов.
  2. Применение ПЛК в качестве устройств РЗА на энергетических объектах недопустимо. ПЛК могут применяться только в системах измерения и сбора данных и только при наличии сертификата Госстандарта России.
  3. Необходимо вернуться к практике качественных единых межведомственных стандартов и требований к решениям, предъявляемым на объектах электроэнергетики.

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Централизованная защита и управление подстанциями

Этот отчет (.pdf) начинается с обзора усовершенствований в технологиях систем защиты и управления подстанций. После этого в отчете рассматриваются следующие вопросы:

  • приводится описание ЦРЗА и рассматривается ее история;
  • информация о некоторых существующих технологиях, которые можно использовать для поддержки ЦРЗУ;
  • обзор некоторых развивающихся технологий, поддерживающих высокоскоростную коммуникацию с высокой степенью надежности;
  • рассмотрение возможных вариантов архитектуры ЦРЗА с использованием стандартизованных коммуникационных технологий, приводится пример такой системы на базе типовой конфигурации распредустройства подстанции;
  • обсуждение надежности и анализ стоимости этих вариантов архитектуры ЦРЗА.
  • рассмотрение аспектов тестирования и технического обслуживания, а также обсуждение усовершенствованных вариантов применения, которые или невозможно реализовать, или трудно внедрить на объекте без применения принципа ЦРЗА;

Данный отчет содержит в себе данные, нехваткой которых постоянно оперируют сторонники и противники ЦРЗА, – расчеты надежности и ТЭО. В конце документа приведено описание проекта iSAS, реализованного в Тюменьэнерго.

айсас

ПС 110 кВ «Олимпийская». Однолинейная схема

Также в отчете кратко была представлена информация о многообещающих развивающихся технологиях и перспективных системах, которые могли бы использовать методику ЦРЗА. Эти нестандартные варианты применения, будучи примененными соответствующим образом, в значительной степени увеличивают надежность систем релейной защиты и управления, и при этом энергосистема при умеренных затратах получит расширенные возможности по функционалу и ремонтопригодности – и с точки зрения замены оборудования, и с точки зрения обновления программного обеспечения. Реализация метода ЦРЗА потребует изменения подходов с точки зрения проектирования, производства, монтажа, тестирования, эксплуатации и технического обслуживания систем РЗА: этот пункт был особенно подчеркнут в настоящем отчете.

Какие виды релейной защиты существуют

С помощью защитного реле реализуется предписанная нормативами и правилами безопасность электроустановок. Минимизируются, исключаются последствия замыканий, ненормальных режимов функционирования, перегрузок, что также обезопасит связанные конструкции и сеть в целом. В систему часто интегрируется сигнализация. Рассмотрим назначение, какие виды РЗиА применяются, для каких электроустановок, их составляющие и алгоритм функционирования.

Понятие релейной защиты и автоматики (РЗиА)

Правила техэксплуатации и устройства электроустановок (ПУЭ, ПТЭ) регламентируют применение релейных типов защиты. Данные приборы, а скорее, комплексы специальных элементов, часто совмещаются с автоматикой, поэтому сокращено называются РЗиА (а также это сокращение без «и» или РЗ).

РЗиА

По нормам ПТЭ силовые узлы и линии электроустановок — электростанций, подстанций, электросетей — защищаются от коротких замыканий (КЗ), ненормальных состояний, сверхнагрузок узлами РЗ и автоматики. Такие устройства интегрируются в конструкции, являются их частью (закладываются еще на стадии проекта), реже — монтируются к ним отдельно. Должны по правилам быть в постоянном состоянии готовности (ожидания), за исключением выводящихся из задействования согласно особенностям их задач, принципа конструкции, режимов энергообъектов, требованиям избирательности (селективности). Узлы сигнализации (предупреждение и сообщение о развитии поломок) должны также всегда быть готовыми к активации.

ПТЭ

Где применяется

РЗиА ставят на электростанциях, генераторах, на любых электроустановках, на подобных габаритных мощных устройствах, то есть сфера использования не ограниченная, если релейная защита необходима по проекту. Область применения конкретизируется ПУЭ:

Область применения

Содержание главы 3.2 ПУЭ:

Содержание главы 3.2 ПУЭ

Для чего применяется РЗиА

Что такое релейная защита объясним более конкретно, описывая ее назначение. При задействовании электрооборудования, сетей, всегда сохраняются риски их повреждений, некорректные режимы, часто их невозможно избежать или такие условия характерные для работы ЭУ. Наиболее критические — перегрузки и КЗ. Причины: пробои, повреждения изоляционных частей, разрывы, ошибки работников, например, отсоединение узлов под нагрузкой, неправильная подача на заземленные конструкции напряжения.

КЗ на участке, где оно возникло, провоцирует появление электродуги, термическое влияние которой ведет к, как правило, бесповоротному разрушению токоведущих элементов, изолирующих частей, электроустройств в целом (реже, но такие случаи весьма распространенные). При этом на поврежденный сегмент подводятся высокие токи короткого замыкания в тысячи ампер. Возникает почти моментальный нагрев, за секунды элементы накаляются. Термические процессы также повреждают исправные участки, происходит развитие неполадки, пожар. На связанных магистралях, объектах параметры электричества глубоко понижаются, что причиняет остановку электромоторов, функционирование параллельно задействованных конструкций, генерирующих приборов, критически нарушается.

релейная защита

В описанных ситуациях важно моментально остановить развитие последствий, обычно этого достаточно для полного предотвращения аварий. Указанное достигается оперативным отключением опасного участка ЭУ, сети — автоустройствами, функционирующими на расцепление контактов, обесточивание. Это и есть релейного типа защита, она же РЗ или РЗиА.

общие сведения

Задачи РЗ

РЗ деактивирует выключатели конструкции с неполадкой, при этом электродуга гаснет или даже не успевает возникнуть. Моментально останавливается течение ампер КЗ, параллельно на исправной части ЭУ или в сети восстанавливаются нормальные величины электричества. Минимизируются, исключаются повреждения оснащения с КЗ, нормализуется режим рабочего оборудования.

книги

  • выявляет точку КЗ, локацию поломки;
  • быстро обеспечивает автоотключение, отделяет оснащение с небезопасным фактором, опасный сегмент от рабочих конструкций, сетей;
  • фиксирует неполадку и сообщает о ней, предупреждает о возможности аварии;
  • создает выдержку перед деактивацией, если это необходимо.

назначение РЗиА

Особенности

Возможны и другие нарушения на ЭУ: перегрузка, замыкание различного рода, образование газовых масс в трансформаторах, понижения там объема масла и пр. Если такие неполадки не опасные, самоустраняются, может не требоваться моментальное обесточивание. Обычно при наличии на ЭУ постоянного обслуживания специалистами хватит выдачи им уведомления. В иных случаях достаточно отключения, но с паузой.

РЗ

Реле РЗ — это приборы, узлы с автоматическим принципом, осуществляющие изменение характерного периодического типа («релейное действие», скачками) при установленной трансформации (модификации) наблюдающихся характеристик.

шкафы РЗ

Проще говоря, РЗ при фиксации нарушений параметров ЭУ производит обесточивание, разводит контакты. Пример: реле при критическом возрастании Ампер на контролируемой цепи (туда заведена его токовая намотка) до прописанной отметки расцепляет соединения.

задачи РЗ

Прибор РЗ — это взаимодействующая система реле и узлов вспомогательных, автоматических, устройств, отключающих оборудование, когда оно повреждается, при ненормальных состояниях.

шкафы РЗА

Сначала опишем отдельно логическую защиту для шин, сокращенно — ЛЗШ. Принцип: сравнивает состояние защит питающих частей и отходящих фидеров (отводов кабеля). Образец алгоритма: защита на одном из последних отключилась, значит, на нем КЗ; не стартовала на них вообще — КЗ на шинных элементах. При КЗ на отводе активируются защиты (токовые расцепители) на нем и на узлах питания участка (вводы ТТ, выключатели сегмента).

схема 1

Далее, по факту сработки происходит блокировка отключения питающих частей без паузы. При КЗ на шинных частях распределительной схемы запуск РЗ на отводах не происходит, и при активации таковой на питающих узлах она допускается без выдержки.

устройства РЗА

Остальные виды релейной защиты:

Вид Описание
Макс. токовая (МТ) Фактор сработки — определение числа Ампер (уставка).
Направленная макс. (МТЗ) Дополнительно контролирует направленность мощностей.
Газовая (ГЗ) Для деактивации ТТ, ТН при появлении внутренних поломок, сопровождающихся образованием газов.
Дифференциальная На генерирующих узлах, ТН, ТТ, шинах. Токи сравниваются на вх. в охраняемую конструкцию и на вых., система регистрирует разницу и если нарушаются предельные рамки уставки, срабатывает.
Дистанционная (ДЗ) Активируется при понижении сопротивления, что характерно при КЗ.
ДЗ с ВЧ блокированием Вместе с РЗ от замыканий на землю (ЗЗ). Для более быстрого обесточивания при КЗ. При наличии на обслуживаемой ВЛ с вх. и вых. ДЗ и ЗЗ, то КЗ на такой линии стандартно деактивируется 1–3 уровнями этой системы с паузой от 0 до нескольких сек. А ВЧ-блокировка ДЗ и ЗЗ создает 2-сторонее отключение участка без паузы при всех возможных КЗ в любых локациях.
ДЗ с блокировкой по оптокабелю Качественная замена предыдущему варианту. Исключается потребность обслуживать оснащение ВЧ, увеличивается надежность, так как оптические инструменты более стабильные, менее подвержены наводкам.
Дуговая Для предупреждения воспламенения КРУ, КТП 6,3 и 10,5. Монтируется в местах присоединений, срабатывает на повышение освещения посредством оптических обнаружителей, а также на чрезмерное давление посредством датчиков (клапанов) для этого параметра. Возможно реагирование защиты по току (его контроль), применяемое, чтобы исключить ложные активации.
Дифференциально-фазная (ДФЗ) Она же высокочастотная. Принцип состоит в контроле фаз и срабатывании, когда число Ампер на них нарушает уставку.

микропроцессорные шкафы

Автоматика

Электроавтоматика, в отличие от РЗ, не только отключает оснащение, но и включает. В первую очередь, это автовключения: повторное (АПВ) и резерва питания (АВР).

централизованая служба РЗиА

Есть также разновидности с контролем персоналом оснащения релейной защиты, это автоматика:

  • регулировка задействования генераторов, синхронных моторов (АРВ);
  • для выключателей (АУВ), для резервирования их отказов (УРОВ);
  • контроль позиций переключателей ТТ (АРНТ);
  • настраивание дугогасящих обмоток (АРК), статконденсаторов;
  • трансформаторное охлаждение;
  • наладка (синхрон) генераторов;
  • частотный старт гидрогенераторов (АЧП);
  • выявление мест неполадок цепей (ОМП).

МП500

  • режимная:
    • частотн. разгрузка (АЧР)
    • задействование деактивированных АЧР систем (ЧАПВ);
    • авторегулирование частоты и действующей мощности (АРЧМ);
    • авторазгрузка по напряжению (ДАРН); по току (ДАРТ);
    • разгрузка;
    • исключение ассинхрона, повышения напряжения;
    • балансировочная.

    реле

    Устройство

    Рассмотрим устройство в процессе описания действия РЗиА:

    Устройство РЗиА

    Название Функция
    Блок мониторинга Отслеживание электропроцессов. Параметры измеряются ТН/ТТ и узлами с подобными функциями. Выходные импульсы могут поступать напрямую на логическую часть для сравнения с прописанными пользователем величинами отклонений от уставок (нормальных значений). А также импульсы может предварительно создаваться сообщения в цифровой форме.
    Логическая часть Сравнивает поступившие импульсы с уставками. Определяется несовпадение, принимается решение о командах на активацию защиты.
    Исполнительная схема Постоянно в состоянии готовности для принятия команды от логической части. Производит переключение цепей ЭУ по прописанному алгоритму для недопущения поломок оснащения и ударов тока.
    Сигнальный узел Сам пользователь органами чувств не может адекватно отслеживать чрезвычайно быстрые процессы в ЭУ. Для сохранения данных происходящих процессов используют сигнальные приборы оповещения (изображением, звуком, светом), которые также записывают в память историю. После сработки таких устройств они выставляются в исходную позицию вручную. Система позволяет сберечь данные о всех действиях.

    структура рз

    Требования к РЗиА

    Требования к релейной защите исчерпывающе прописаны в ПУЭ (Р. 3 Гл. 3.2), а также в многочисленных пособиях — смысла дублировать их в статье нет. Обобщим их так, чтобы читатель смог сориентироваться, на что обратить внимание, быстро найти и уточнить их в указанных источниках.

    нормы времени

    Выполнением каких принципов обеспечивается работоспособность

    Нарушения в работе РЗиА при некорректном подборе, монтаже, несоблюдении норм:

    • ложные тревоги при исправной ЭУ и сети;
    • ненужные активации, например, когда сработка исполнительных узлов излишняя;
    • повреждения конструкции РЗ.

    Требования к релейной защите

    ПУЭ и связанные нормативные акты предъявляют требования, с помощью которых исключается перечисленное выше (касаются проекта, монтажа, настройки и запуска, техобслуживания):

    • соблюдение по классам, уровням надежности;
    • чувствительность;
    • быстрота сработки;
    • селективность — обеспечение уровней активации защиты в правильном порядке. Этот параметр тесно связанный с предыдущими двумя.

    Надежность

    Определяется такими характеристиками:

    • безотказностью;
    • соблюдением количества заложенных при создании РЗ циклов сработки;
    • ремонтопригодностью;
    • продолжительностью службы, сохраняемость. Ее должен гарантировать производитель, конструктор согласно ТУ (которая обязательно согласовывается с ГОСТами, ПУЭ) продукции. Изделие должно иметь паспорт и сертификат.

    Надежность рз

    Каждая позиция имеет свою оценку, указанную в техдокументации, в утвержденном согласно нормативным документам проекте.

    Есть 3 позиции по надежности при ТО и эксплуатации РЗ по активации: при КЗ внутренних на рабочих локациях, за их границами, при функционировании без неисправностей. Надежность бывает 2 типов: эксплуатационная и аппаратная.

    Чувствительность

    Требования, предъявляемые к РЗА, релейной защите в первую очередь касаются функциональных настроек, так как фиксация пороговых значений, нарушения уставок подразумевают наличие у РЗ определенной чувствительности.

    чувствительность

    Надо правильно определить, какая предполагаемая степень нарушения режима, перегрузки является опасной, и подобрать под нее соответственно настроенный вариант РЗ.

    чувствительность рза

    Есть уравнение для чувствительности (ее числового значения) при возникновении КЗ. Применяется специальная характеристика — Кч, коэффициент.

    Расчет: отношение наименьшего тока КЗ рабочего участка к величине тока активации. РЗ нормально функционирует при Iсз < Iкз min. Наиболее оптимальная чувствительность (коэфф.) — 1.5–2.

    уставки рз

    Быстродействие

    Быстрота обесточивания имеет 2 составляющие:

    • сработка защитных алгоритмов с командой на нижеуказанный узел;
    • задействование привода выключателя.

    Быстродействие

    Реагирование по времени регулируемое в диапазоне мин.-макс. значения в зависимости от возможностей устройства релейной защиты, применяемых элементов. Задержка сработки создается внедрением специальных реле с возможностью настройки, такая опция используется для наиболее отдаленных защит. РЗ размещенные ближе к месту неполадки, к защищаемому участку настраиваются на более короткий временной интервал активации или применяются без него.

    Селективность

    Второе название данной характеристики — избирательность. Опция позволяет определить место повреждения в схемах любой сложности.

    избирательность

    Генератором вырабатывается и подается электричество потребителям на сегментах 1–3 (каждый со своей защитой). При КЗ на приборе потребителя на 3 промежутке, ток течет по всем узлам РЗ, начиная от источника энергии. В таких условиях целесообразно отключать цепь сегмента с неисправностью, например, электромотора, оставляя задействованными остальных исправных потребителей. С этой целью есть возможность делать уставки РЗ для каждой цепи. Обычно такие особенности закладываются еще на стадии проектирования.

    Селективность

    Защита 5 3-го сегмента должна фиксировать токи неполадок раньше, и оперативнее активироваться, отключая поврежденные сегменты от цепей. Поэтому величины токово-временных уставок на каждом промежутке снижаются от генератора к потребителю. Прицип: чем дальше от локации поломки, тем меньшая чувствительность. Так одновременно реализуется резервирование, учитывающее возможность эффективной защиты при неполадках любых приборов, включая и системы РЗ более низкой ступени. Описанная схема означает, что при поломке самой защиты 5 сегмента 3 при аварии должны активироваться приборы защиты 3 или 4 промежутка 2. А эти секции, в свою очередь, подстраховываются защитными узлами сегмента 1.

    Селективное отключение

    Нюансы управления

    РЗ выполняется отдельным блоком, является самостоятельной схемой, несмотря на то, что зачастую интегрируется в саму конструкцию ЭУ. Такие узлы входят в общие комплексы, составляющие систему антиаварийного контроля энергосистемы, где все узлы взаимосвязаны, реализуют поставленные задачи вместе.

    Ниже схема (упрощенно) функций и действий автоматики:

    схема функций и действий автоматики

    Схема

    Разновидностей, комбинаций, мест релейной защиты на сетях и в ЭУ чрезвычайно много. Есть также стандартизированные варианты, своеобразные шаблоны — принципиальные схемы. Но независимо от сложности любой чертеж можно понять, только научившись его читать. Этот навык необходим для работы с РЗиА.

    часть схемы

    По важности и сложности «принципиалки» комплектов РЗиА вторые в проекте всей системы электрооборудования. Во всех случаях — при разработке или для проверки готовых схем потребуются хотя бы минимальные навыки в электротехнике. Даже специалистам порой сложно разобраться в схеме РЗ на элементарном вводе трансформаторов 10 кВ, не говоря уже в целом для подстанции 110/10 кВ.

    Рассмотрим прием, упрощающий понимание чертежей. Нижеописанный метод стандартный и распространенный, он не наносит ущерб качеству анализа.

    Разбивка схемы на части

    Целая схема чрезвычайно сложная для восприятия, поэтому ее условно разделяют на обособленные участки и анализируют каждый отдельно.

    пример

    Рассмотрим РЗиА с терминалами на микропроцессорах, разделим чертеж на 10 позиций:

    • поясняющая;
    • цепи:
      • измерений (тока, напряжений);
      • механизма выключателя;
      • задействованного тока (оперативного), в том числе питание терминала;
      • сигнализации;
      • выходные, в том числе ТС и резерва;
      • АСУ;
      • вспомогательные (обогрев, свет, розетки и пр.);

      Не каждый комплект РЗ содержит все 10 позиций, но отсутствие какой-либо должно быть обосновано, если же это невозможно сделать, то в наличии ошибка в схеме.

      основные методы

      Указанный метод — это своеобразный чек лист, система анализа. Полученные результаты можно зафиксировать списком с галочками напротив пунктов и передать исполнителю перед конструированием.

      Пример проверки: обосновывается отсутствие цепи привода в ТН 10 кВ (позиция 2 в разделе «цепи» списка) тем, что ячейка последнего без выключателя, и это логично. Если же ответа на поставленный вопрос, например, почему по вводу 10 кВ в РЗ отсутствуют данные параметрирования, нет, то в наличие ошибка, особенно для терминалов с гибкой логикой.

      Типовые ошибки схем:

      • в токовых цепях — неправильная полярность при подсоединении ТТ к терминалу;
      • цепи привода — взвод (готовность к активации). Может быть неправильное смыкание, разомкнутость. Надо проверять сопоставляя с алгоритмом терминала;
      • цепи оперативных токов — ключи контроля, режима управления (МУ/ДУ);
      • цепи дуговой защиты, конструкции с генерированием особенно подвержены таким сложным ошибкам.

      Типовые ошибки схем

      Пример разбивки схемы и прочтения

      Для объяснения мы взяли популярный пример из интернета, к нему также в сети есть видеоматериалы. Схему покажем по частям (соединяются в горизонтальной плоскости), так как она достаточно большая.

      Чертеж для РЗ с электромеханическими реле, выключателем ВВТЕЛ Тавридаэлектрик (без терминала, это не цифровая конструкция на микропроцессорах) линии 10 кВ на подстанции 110/10 кВ:

      схема 2

      Вторая часть схемы:

      схема 3

      Третья часть схемы:

      схема 4

      Схема доступная в сети, для ее открытия потребуются специальные программы для чертежей. Далее, выделим и покажем части.

      Поясняющая схема

      Измерительные цепи (электромеханика, МТЗ, МТО, цепи питания от переменного опертока привода выключателя, счетчики преобразователи):

      Измерительные цепи

      Цепи привода (блок питания и управления, цепи электромагнитов):

      Цепи привода

      Цепи оперативного тока (автомат, исполнительные реле, блок питания):

      Цепи оперативного тока

      Дуговая защита относится к цепям опертока:

      Дуговая защита

      Цепи аварийной и предупредительной сигнализации световой, центральной (ниже):

      Цепи аварийной и предупредительной сигнализации

      Выходные цепи (в данном случае это то, что входит в телесигнализацию):

      Выходные цепи

      Вспомогательные цепи

      Перечень элементов

      В данном примере нет таблиц логики, данных параметрирования, цепей АСУ, параллельной защиты автоматики, так как эта релейная защита без терминала, не на микропроцессорах.

      Релейная защита

      В электрической части энергосистем могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций линий электропередачи и электроустановок потребителей электроэнергии. Повреждения вызывают появление значительных аварийных токов и сопровождаются глубоким понижением напряжения на шинах электростанций и подстанций. Ток повреждения выделяет большое количество теплоты, которые вызывает сильное разрушение в месте повреждения и опасное нагревание проводов неповрежденных ЛЭП и оборудования, по которым этот ток проходит. Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы элементов энергосистемы.

      Ненормальные режимы обычно приводят к отклонению напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи. Для уменьшения разрушений в месте повреждения и обеспечения нормальной работы неповрежденной части энергосистемы необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной части энергосистемы. Опасные последствия ненормальных режимов также можно предотвратить, если своевременно принять меры к их устранению, а при необходимости отключить оборудование, оказавшееся в недопустимом для него режиме.

      Выявление и отключение повреждений следует производить очень быстро — в большинстве в течение сотых и десятых долей секунды, что может быть обеспечено только средствами автоматики. В связи с этим возникла необходимость в создании и применении автоматических устройств, защищающих энергосистему и ее элементы от опасных последствий повреждений и ненормальных режимов. Первоначально в качестве подобной защиты применялись плавкие предохранители. Впоследствии были созданы защитные устройства, выполняемые при помощи электрических автоматовреле. Такой способ получил название релейной защиты.

      Релейная защита (РЗ) осуществляет непрерывный контроль за состоянием всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить поврежденный участок и отключить его от энергосистемы, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

      При возникновении ненормальных режимов РЗ также должна выявлять их и в зависимости от характера нарушения либо отключать оборудование, если возникла опасность его повреждения, либо производить автоматические операции, необходимые для восстановления нормального режима, либо осуществлять сигнализацию оперативному персоналу, который должен принимать меры по ликвидации ненормальности.

      Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная работа энергосистем.

      Структура РЗ и ее основные элементы

      Релейную защиту можно рассматривать как управляющую систему, которая в общем случае получает информацию о токах, напряжениях и состоянии коммутационных элементов в отдельных частях энергосистемы. В результате обработки этой информации РЗ вырабатывает управляющие сигналы для выключателей (команды отключения или включения), а также различные сообщения, позволяющие фиксировать или анализировать процессы, протекающие в энергосистеме, и функционирование самой РЗ.

      Каждое устройство РЗ, призванное обнаружить повреждение и дать команду на отключение силового выключателя, имеет три структурные части: измерительную (реагирующую), логическую (оперативную) и управляющую (исполнительную).

      • Измерительная часть осуществляет непрерывный контроль за состоянием защищаемого объекта и, реагируя на появление в нем повреждения (или ненормального режима), срабатывает и выдает дискретные сигналы на вход логической части, приводящие ее в действие. В качестве контролируемых величин (входных сигналов) служит в зависимости от вида РЗ ток и/или напряжение защищаемого объекта. Эти величины в установках с рабочим напряжением выше 1000 В подводятся к измерительной части защиты через измерительные трансформаторы тока и напряжения.
      • Логическая часть воспринимает дискретные сигналы измерительной части, производит с помощью логических элементов (реле) по заданной программе логические операции и подает выходной сигнал о срабатывании РЗ на управляющую часть.
      • Управляющая часть служит для усиления сигнала логической части до значения, необходимого для отключения выключателя и приведения в действие других устройств (поскольку сигналы логической части, особенно при выполнении ее на полупроводниковых элементах, обычно имеют недостаточную мощность) и для размножения сигнала логической части.

      Кроме того, в качестве структурной части РЗ следует назвать источник питания — специальный источник стабильного напряжения для приведения в действие элементов логической и управляющей частей, подачи команды на отключение выключателей, а также для питания полупроводниковых элементов измерительной и логической частей.

      Устройство РЗ состоит из реле, соединенных между собой по определенной схеме. В практике релестроения используются три типа элементных баз:

      • электромеханическая, которая может применяться для реализации всех функциональных частей и органов РЗ в виде электромеханических реле;
      • полупроводниковая, которая может использоваться для реализации всех функциональных частей и органов РЗ в виде полупроводниковых элементов, аналоговых и цифровых микросхем;
      • микропроцессорная, которая может использоваться для реализации измерительной и логической частей РЗ на базе систем, основным элементом которых являются микропроцессоры.
      Основные требования к устройствам РЗ. Виды устройств РЗ

      Основными показателями релейной защиты, характеризующими ее функции в энергосистеме, являются чувствительность и селективность. Первая — это свойство РЗ реагировать на возможные повреждения на защищаемом участке и достаточно быстро их отключать, с тем чтобы сохранялась работоспособность как отключенных, так и оставшихся в работе элементов сети; вторая — это свойство РЗ формировать команды отключения только поврежденного участка или минимального числа участков электрической сети вблизи места повреждения, с тем чтобы свести к минимуму недоотпуск электроэнергии потребителям.

      Реализация этих функций осуществляется устройствами РЗ, которые должны удовлетворять ряду требований по обеспечению их правильного функционирования в реальных режимах работы энергосистемы. В соответствие со стандартом МЭК 50(448)-1995, неправильное функционирование защиты может выражаться в виде отказа защиты в функционировании или в непредусмотренном функционировании (излишнее действие). С точки зрения правильного функционирования к устройствам РЗ предъявляются следующие требования:

      • статическая устойчивость функционирования как способность устройства РЗ сохранять стабильность измерения и обеспечивать точность измерения, характеристики, параметры и настройки, при условии, что эти входные величины являются установившимися; она определяется в основном выполнением требований по точности параметров, характеристик, настроек в заданных диапазонах входных сигналов;
      • динамическая устойчивость функционирования, которая характеризует способность устройства РЗ обеспечивать свои функции с учетом переходных процессов, возникающих при коротком замыкании и коммутациях в энергосистеме и самом устройстве РЗ. Требование динамической устойчивости функционирования учитывается при разработке алгоритмов и конструкции устройств РЗ;
      • устойчивость к влиянию внешней среды, среди видов воздействий которой — электрические, механические и климатические;
      • надежность РЗ, под которой понимается вероятность выполнения ею требуемых функций при заданных условиях в течение заданного промежутка времени. Стандартом МЭК 50(448)-1995 определяются понятия надежности несрабатывания и надежности срабатывания.

      Все РЗ делятся на основные и резервные. Основными называются РЗ, обеспечивающие отключение повреждений в пределах защищаемого элемента с требуемыми быстротой и чувствительностью. Резервными называются РЗ, осуществляющие резервирование основной РО в случае ее отказа или вывода из работы и защиту следующего участка в случае отказа его РЗ или выключателя.

      По способу обеспечения селективности действия РЗ подразделяются на два вида — с абсолютной селективностью, зона действий которых не выходит за пределы защищаемого объекта, действия выполняются без выдержки времени; и с относительной селективностью, действующие при коротком замыкании как на защищаемом элементе, так и за его пределами, селективность обеспечивается при этом подбором выдержек времени.

      Кроме того, по принципу действия измерительных органов, определяющих факт возникновения короткого замыкания и место его нахождения, различают группы РЗ, реагирующие на следующие факторы: увеличение тока, уменьшение сопротивления, появление разности токов по концам защищаемого участка, изменение фаз тока относительно напряжения.

      Цифровая релейная защита

      Последнее десятилетие характеризуется широким применением в релейной защите цифровой (микропроцессорной) техники. Это обусловлено существенными преимуществами последней по сравнению с электромеханическими и электронными РЗ. В частности, эти преимущества заключаются в следующем:

      • повышении аппаратной надежности, массы и габаритов устройств благодаря существенному уменьшению числа используемых блоков и соединений;
      • существенном повышении удобства обслуживания и возможности сокращения обслуживающего персонала;
      • расширении и улучшении качества защитных функций (чувствительности, селективности, статической и динамической устойчивости функционирования);
      • возможности непосредственной регистрации процессов и событий и анализа возникших в энергосистеме повреждений;
      • принципиально новых возможностей управления защитой и передачи от нее информации на географически удаленные уровни управления;
      • технологичности производства.

      Принципы построения и алгоритмы, используемые в цифровой релейной защите (ЦРЗ), во многом отличаются от применяемых в электромеханических и электронных релейных защитах, ввиду существенно различающихся технической основы и способов обработки информации. Входная информация, которую получает ЦРЗ, может в общем случае содержать следующие составляющие: аналоговые сигналы, характеризующие контролируемые величины энергосистемы; входная дискретная информация, в том числе сигналы от коммутационных аппаратов, других устройств РЗ и от обслуживающего персонала; цифровая информация от других устройств РЗ, характеризующая как текущие значения переменного тока, так и логические сигналы, получаемые посредством цифровых коммуникационных интерфейсов; управление настройками и параметрами ЦРЗ, осуществляемое обслуживающим персоналом или системами управления через коммуникационный интерфейс. Выходная информация ЦРЗ может быть представлена следующими пунктами: выходная дискретная информация (логические сигналы к другим защитам и на отключение выключателей); цифровая информация к другим устройствам, характеризующая в общем случае как текущие значения переменного тока, так и логические сигналы, и получаемая посредством цифровых коммуникационных интерфейсов; сообщения различных видов, в том числе логические выходные сигналы и цифровые данные, как то: визуальное наблюдение, запись измеряемых защитой аналоговых величин токов, напряжений, мощности и пр. в нормальном и аварийном режимах; др.

      Среди основных структурных элементов ЦЗР можно выделить следующие функциональные блоки:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *