Об использовании светодиодов, устройство светодиода, как зажечь светодиод
Со светодиодами сейчас знакомы все: это светодиодные фонари, светодиодные лампы, ленты и многое другое. Благодаря стараниям разработчиков появились совсем уж экзотические устройства, например, насадка на водопроводный кран.
Внешне она представляет собой прозрачный пластмассовый цилиндр: полилась прохладная вода — внутри насадки зажигается синий светодиод, стала потеплее — засветился желтый, а уж если вода слишком горячая, то насадка становится красной. Содержание внутренней начинки неизвестно, но то, что в качестве излучающих элементов используются светодиоды это очевидно.
Первый светодиод был разработан в университете штата Иллинойс в далеком 1962 году. В 1990 году на свет появились яркие, а позднее суперяркие светодиоды.
Собственно светодиод очень похож на обычный выпрямительный диод, только при прохождении через него прямого тока полупроводниковый кристалл начинает светиться. Английское название светодиодов light emitting diode, или LED, что дословно можно перевести как светоизлучающий диод.
Для получения разной длины волны излучения (цвета) в полупроводник добавляются различные легирующие добавки. Добавка алюминия, гелия, индия, фосфора заставляет кристалл излучать цвета от красного до желтого цвета. Чтобы получить свечение от голубого до зеленого оттенков кристаллы легируются частицами азота, галлия или индия.
В настоящее время, наверно, больше всего распространены светодиоды белого свечения. В основном это изделия для создания освещения, — от карманных фонариков-сувениров до серьезных прожекторов для установки на крышах и фасадах зданий. Но вот какая интересная деталь: в природе не существует полупроводникового материала способного светиться белым цветом.
Как же тут быть? Выйти из такой ситуации помогло ультрафиолетовое излучение: «ультрафиолетовый» кристалл покрывается слоем люминофора, примерно так же, как это сделано в люминесцентных лампах, в результате чего светодиод светится белым цветом.
Но тут тоже есть некоторая засада. Как и в люминесцентных лампах, люминофор со временем утрачивает свои свойства, свечение становится слабым. Правда, чтобы произошел такой износ, светодиод должен непрерывно светить не менее года, а может даже больше. Так что при периодическом включении — выключении срок службы этих приборов достаточно велик.
Первоначально светодиоды предназначались в основном для устройств индикации, они пришли на смену миниатюрным лампам накаливания. Преимущества тут оказались бесспорны. Это малая потребляемая мощность, низкое напряжение питания, а также высокая долговечность: лампа накаливания имеет срок службы не более тысячи часов, в то время как у светодиодов этот параметр исчисляется несколькими десятками тысяч.
В некоторых источниках утверждают, что светодиод может работать непрерывно до 11 лет! А ведь в некоторых устройствах, чтобы заменить лампочку приходится прибегать к значительной разборке корпуса и всей панели индикации. Вот тут в полном объеме помогают молоток, зубило и еще какая-то матерь.
Отличительным параметром светодиодов является разнообразие цветов, что позволяет обходиться без применения светофильтров. По сравнению с лампами накаливания светодиодны лампы обладают повышенной механической прочностью, что позволяет легко переносить вибрации и ударные нагрузки. В разумных, конечно, пределах.
Устройство светодиода
Первые светодиоды выпускались в металлических корпусах с прозрачным окошком. По мере совершенствования технологий корпус стали делать целиком из пластмассы. Цвет пластмассы, как правило, соответствует цвету свечения, но также очень распространены прозрачные корпуса. Каким цветом светится такой светодиод, можно узнать только после его включения.
Так же, как обычный выпрямительный диод, светодиод имеет два вывода анод и катод. Поэтому при подключении необходимо соблюдать полярность. Вывод анода, как правило, несколько длиннее катода, но это пока светодиод новый. Если ноги уже обрезаны, то выводы можно определить «прозвонкой» мультиметром: при правильной полярности подключения светодиод чуточку засвечивается.
В обратном направлении прибор должен показать большое сопротивление, практически обрыв, как в случае с обычным выпрямительным диодом. Внутренне устройство светодиода в прозрачном корпусе показано на рисунке 1.
Рисунок 1. Внутренне устройство светодиода в прозрачном корпусе
Как зажечь светодиод
Достаточно часто начинающие радиолюбители задают вопрос: «Какое напряжение нужно для того, чтобы зажечь светодиод?». Здесь просматривается аналогия с лампами накаливания. Вот эта лампа на 220В, а вот эта на 12. В случае применения светодиода нельзя сказать, что вот этот светодиод на напряжение 5В, а вот этот на 12В. Спрашивается, почему так?
Дело в том, что светодиод является токовым прибором: последовательно с ним включается токоограничивающий резистор, что и показано на рисунке 2.
Рисунок 2. Схема подключения светодиода через токоограничивающий резистор
Нетрудно заметить, что светодиод подключен к источнику постоянного тока с соблюдением полярности: анод подключен к положительному полюсу батареи, а катод через ограничительный резистор соответственно к отрицательному. Естественно, что ограничительный резистор можно включить и в разрыв анодного вывода, ведь цепь-то последовательная!
Источник постоянного тока на рисунке показан в виде гальванического элемента с напряжением не более полутора вольт. На самом деле это может быть батарея элементов с напряжением12…24В, а при соответствующем включении даже осветительная сеть переменного тока 220В. Главное, чтобы ограничить прямой ток через светодиод на уровне заявленном в технической документации. Для большинства современных светодиодов этот ток составляет 20мА.
Но вот тут как раз впору сделать маленькое замечание по поводу вопроса о напряжении светодиода. Дело в том, что в настоящее время с целью миниатюризации электронной аппаратуры налажен выпуск светодиодов с интегрированным, встроенным в корпус ограничительным резистором. Такая интеграция позволяет говорить о том, что вот этот светодиод имеет рабочее напряжение 12В, а этот только 5.
Именно с такой маркировкой можно увидеть ценники на прилавках радиорынков. Правда, такие приборы встречаются нечасто, поэтому, все же не следует забывать об ограничительном резисторе.
Есть еще категория светодиодов, рассчитанных на определенное рабочее напряжение. Это так называемые мигающие светодиоды, содержащие внутри интегральный генератор, заставляющий мигать кристалл с заданной частотой. Попытки изменить частоту мигания с помощью внешних конденсаторов и иных ухищрений обречены на неудачу. Хотя некоторого изменения частоты можно достичь, варьируя напряжение питания.
Так вот, мигающие светодиоды выпускаются именно на определенное напряжение: высоковольтные 3…14В, и низковольтные 1,8…5В. При этом встроенный ограничивающий резистор у низковольтных мигающих светодиодов отсутствует. Тут надо проявлять максимум внимания. Но вернемся к обычным светодиодам.
Итак, уже было сказано, что прямой ток большинства светодиодов 20 миллиампер. Можно сделать несколько меньше (всего-то упадет яркость, и цвет будет немного не тот, который ожидался), но больше крайне нежелательно. Именно это значение тока и призван обеспечить ограничивающий резистор, показанный на рисунке 2.
Для того, чтобы рассчитать величину сопротивления этого резистора следует знать два параметра. Во-первых, это напряжение питания схемы (обратите внимание, именно СХЕМЫ, а не отдельно взятого светодиода) и, во-вторых, прямое падение напряжения на светодиоде.
Это прямое падение оговаривается в техдокументации, и для большинства типов светодиодов находится в пределах 1,8…3,6В (для каждого типа свое, но чаще всего 2В). Именно таким и будет прямое падение напряжения на светодиоде при токе 20мА. Располагая такими данными, рассчитать сопротивление ограничительного резистора очень просто. Чтобы было понятней, откуда что берется, можно воспользоваться простой схемой, показанной на рисунке 3.
Рисунок 3. Схема подключения светодиода
Совершенно очевидно, что последовательно соединенные резистор R1 и светодиод HL1 представляют собой делитель напряжения. При этом известно, что прямое падение напряжения на светодиоде по справочным данным ровно 2В. Вот такой хороший нам попался светодиод.
Тогда при напряжении питания 12В, падение напряжения на резисторе R1 составит 12В – 2В = 10В. Отсюда несложно по закону Ома подсчитать сопротивление резистора, при котором ток через светодиод будет 20мА: R=U/I=10В/20мА=0,5КОм.
Формула для расчета ограничительного резистора :
Здесь все понятно и просто. В числителе находятся напряжение питания и прямое падение напряжения на светодиоде. В знаменателе находится требуемый ток через светодиод помноженный на коэффициент надежности 0,75. В механике это называется запас прочности.
В случае, когда соединены последовательно несколько светодиодов падение напряжения на них просто складывается и подставляется в показанную выше формулу. Естественно, что при этом сопротивление R при этом становится меньше, чем для одного светодиода.
Совершенно естественно, что на резисторе выделяется какая-то мощность. Чтобы резистор не сгорел сразу или со временем, его мощность обычно рассчитывается по формуле :
Все величины имеют размерность системы СИ: напряжение в вольтах, сопротивление в Омах, мощность в ваттах.
Достаточно часто возникает потребность в различных способах соединения светодиодов, подключения их к различным источникам питания, но об этом будет рассказано в продолжении статьи.
Trudolyb — сделано своими руками Чертежи, конструкции, идеи
Вы здесь: Главная страница />Электроника />Как подключить светодиод, питание светодиода.
Как подключить светодиод, питание светодиода.
Светодиод (LED(light-emitting diode)) как и любой диод может пропускать ток только в одном направлении, поэтому требуется соблюдать полярность его подключения. Ток через светодиод идет от анода(+) к катоду(-), если светодиод ранее нигде не использовался, анод имеет длинный вывод а катод — короткий. Перепутав полярность подключения, светодиод не выйдет из строя, а просто не будет светиться.
Нужно помнить, что важнейшей характеристикой светодиода является максимально допустимая сила тока, превысив которую светодиод выходит из строя. Чтобы защитить от превышения силы тока в цепь включается резистор. Как подобрать сопротивление(резистор) чтобы обеспечить правильное питание светодиода? В этом поможет Закон Ома: V = I * R, из которого следует что R = V / I.
СПРАВКА: Светодиоды работают не в точности согласно Закону Ома, их еще называют «не омические» приборы. Это означает что точно рассчитать величину силы тока, протекающего через светодиод по формуле V=IR нельзя. Однако, в наших целях, чтобы просто защитить светодиод от выхода из строя достаточно приблизительно вычислить величину сопротивленя, что позволяет сделать Закон Ома.
Для непосвященных: не нужно искать светодиоды на 12 Вольт или 9 Вольт, на большинстве указано 2-3,6 Вольта, — это их рабочее напряжение(оно также называется напряжением падения), которого мы добьемся установив резистор. Светодиод должен быть ярким, например вот эти я беру на али:
![]() | ![]() |
Хорошо себя зарекомендовали вот эти яркие, удобные для монтажа светодиоды ПИРАНЬЯ | Недорогие светодиоды 5мм . Более бюджетный вариант, характеристики чуть слабее. |
Напряжение(V) = 9Вольт, Сила тока(I) = 0,025Ампера(25 миллиАмпер), 9/0,025=360Ом Итак нам нужен резистор номиналом приблизительно 360Ом, чтобы держать силу тока, идущего через светодиод меньше максимально допустимой для выбранного светодиода. Если ровно расчетного номинала найти не удается, то можно взять следующее значение. При увеличении или уменьшении номинала сопротивления в небольших пределах можно регулировать яркость свечения светодиода. Также можем проверить какой мощности нужен резистор: P = U * I; P = 9 * 0,025 = 0,225 Ватта Поэтому резистор подойдет на 0,25 Вт
Описанный выше способ питания светодиода является самым простым и доступным, однако в некоторых случаях, как например подключение к бортовой сети автомобиля, возможно изменение яркости свечения в зависимости от оборотов двигателя. Такая нестабильная работа не лучшим образом скажется на долговечности службы светодиодов и на их яркости. Эффективно использовать светодиоды с источником нестабильного напряжения можно подключив их при помощи драйвера светодиода.
О драйверах
Драйвер светодиода — источник постоянного стабилизированного тока. Он преобразует энергию питающей сети (например — бытовой электросети 220V 50Hz) в низковольтное напряжение и производит стабилизацию тока. При этом LED-драйвер защищает светодиоды от колебаний напряжения питающей сети, обеспечивая оптимальный режим работы LED-системы и предотвращая выход светодиодов из строя.
Всего одна микросхема LM317(линейный регулятор тока) и один резистор потребуются чтобы собрать драйвер светодиода. Можно взять на али по 69р. за 10шт.:
Рассчитать номинал резистора можно по формуле: R = 1,25 / I, где R — номинал резистора (Ом); 1,25 — коэффициент; I — выходная сила тока. Например для светодиода с током 20 мА получим номинал сопротивления в 62 Ома.
О том как запитать светодиод от одной пальчиковой батарейки
Зажечь светодиод от одной пальчиковой батарейки напряжением 1,5 Вольт можно при помощи простой схемы с минимумом деталей:
Такая схема по сути является простейшим светодиодным драйвером.
Необходимые детали:
- Трансформатор, который изготавливается на ферритовом кольце намоткой провода сечением 0,25 мм, сложенным вдвое, приблизительно 25 витков;
- Биполярный Н-канальный транзистор;
- Подстроечный резистор необходим для регулирования номинального рабочего тока преобразователя;
- Диод шотке с малым падением напряжения;
- Конденсатор.
Про светодиодные модули
Модули используются для реализации подсветки в автомобильной технике, применяются в декоративной подсветке мебели, в рекламных вывесках. Их легко закреплять благодаря предусмотренным в корпусе отверстиям, и легко соединять между собой в цепи, благодаря наличию выводов.
Такие модули подойдут для подсветки небольшого пространства, или декоративного украшения например автомобилей. Для полноценного освещения используются мощные светодиоды и светодиодные модули(светодиод или группа светодиодов как со встроенным драйвером, так и без него).
Про светодиодные ленты
Все большее распространение получают светодиодные ленты. Благодаря удобству монтажа. Требуемую длину ленты можно отрезать по меткам, нанесенным через определенное количество светодиодов, и припаять питание, согласно обозначениям на контактных площадках в месте реза. Как правило они имеют хорошую влагозащищенность, либо полную водонепроницаемость, если покрыты прозрачным гибким полимером.
На таких LED-лентах установлены резисторы на каждую группу светодиодов между метками, и остается только подключить к ним блок питания, например вот такой:
Про светодиодные матрицы
![]() |
Готовые светодиодные матрицы большой яркости, работающие напрямую от 220 Вольт — удобная штука. Светодиодная матрица на 20 Ватт светит как 100 Ваттная лампа накаливания. |
Такие матрицы можно применять как для уличного освещения, конечно помещая их в защитный корпус, так и для дома, там где требуется яркий свет. Не следует забывать, что эти матрицы имеют алюминиевую подложку и для отвода тепла их следует крепить к металлическим частям корпуса.
Простейшие в 220 вольт без драйвера (самое простое питание светодиода от сети напряжением 220В)
Для нормальной работы светодиода требуется постоянное напряжение или ток. Они должны быть:
- Постоянными по направлению. Т. е. ток в цепи светодиода при приложении напряжения должен течь от «+» источника напряжения к его «–».
- Стабильными, т. е. постоянными по величине, в течение времени работы диода.
- Не пульсирующими – после выпрямления и стабилизации величины постоянных напряжения или тока не должны периодически изменяться.
Схема формы напряжения на выходе двухполупериодного выпрямителя при фильтрации электролитическим конденсатором (на схеме черный и белый прямоугольники с маркировкой «+»). Пунктир – напряжение на выходе выпрямителя. Конденсатор заряжается до амплитуды полуволны и постепенно разряжается на сопротивлении нагрузки. «Ступеньки» – это пульсации. Отношение амплитуд ступеньки и полуволны в процентах – это коэффициент пульсации.
Для светодиодов вначале использовали имевшиеся источники напряжения – 5, 9, 12 В. А рабочее напряжение p-n перехода от 1,9-2,4 до 3,7-4,4 В. Поэтому включение диода напрямую – это почти всегда его физическое сгорание от перегрева большим током. Ток нужно ограничивать токоограничивающим резистором, тратя энергию на его нагрев.
Светодиоды можно включать последовательно по несколько штук. Тогда, собрав из них цепочку, можно по сумме их прямых напряжений дойти почти до напряжения источника питания. А оставшуюся разницу «погасить», рассеяв ее в виде тепла на резисторе.
Когда диодов десятки, их соединяют в последовательные цепи, которые включают параллельно.
Устройство светодиода
Хотя и существует множество светодиодов, самая распространённая форма состоит из 5-миллиметрового полимерного корпуса с линзой, медного или алюминиевого основания, катода, параболического рефлектора (отражателя) и кристалла, который соединяется с анодом при помощи тонкой золотой проволоки.
Как работает светодиод?
Принцип работы изделия основывается на взаимодействии двух полупроводников, положительного и отрицательного типа (p-n-переход). Когда электрический ток проходит через полупроводники, в месте соприкосновения выделяется энергия, излучающая свет. Это обусловлено переходом от одного типа проводимости к другому, когда ионы положительно заряженных дырок соединяются с отрицательными зарядами электронов.
Виды и основные параметры светодиодов
На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер. В продаже имеется большое количество типов светодиодов, которые различаются между собой функциональным назначением, конструкцией, мощностью, цветом свечения и другими свойствами.
По назначению светодиоды разделяют на два вида – индикаторные и осветительные.
- светодиоды SMD;
- сверхъяркие Super Flux “Piranha”;
- DIP светодиоды (Direct In-line Package);
- Straw Hat («соломенная шляпа»).
- COB (Chip On Board) светодиоды;
- SMD LED;
- филаментные (Filament LED).
Индикаторные светодиоды отличаются малой мощностью и умеренной яркостью свечения. Используются для цветовой индикации режимов работы различных приборов и оборудования, а также для подсветки дисплеев и приборных щитов. Разновидности индикаторных светодиодов:
- DIP-светодиоды. Кристалл-излучатель находится в выводном корпусе, который чаще всего представляет собой выпуклую линзу. Минус – малый угол рассеивания излучения.
- «Пиранья» – излучатель сверхвысокой яркости с четырьмя выводами, обеспечивающими его удобное крепление на плате. Востребован для подсветки приборов в автомобилях и в рекламных вывесках.
- «Соломенная шляпа». Цилиндрический двухвыводный прибор со значительным углом рассеивания излучения и увеличенным диаметром линзы. Применяется в декоративных конструкциях и светосигналах тревоги.
- SMD-светодиоды. Приборы сверхвысокой яркости располагаются в корпусах, рассчитанных на SMT-монтаж. В их маркировке указываются размеры в дюймах (их сотых долях) или в мм. На базе SMD-светодиодов изготавливаются светодиодные ленты.
Осветительные светодиоды встречаются в конструкции фонарей, фар, лент. Отличаются мощностью и яркостью свечения. Большинство осветительных приборов размещают в корпусах для SMT-монтажа. Изготавливаются в двух разновидностях белого цвета:
- cool white – холодный;
- warm white – теплый.
Осветительный SMD-светодиод представляет собой теплоотводящую подложку, на которой смонтирован излучающий кристалл, обработанный люминофорным составом.
Распиновка светодиода
Полярность светодиода – анод или плюс и катод – минус определить легко по картинкам:
У цилиндрических корпусов катод обозначен срезом на боковой части, у анода вывод длиннее, а у катода – короче.
Катод у SMD светодиодов обозначен срезом на корпусе.
В матрицах мощных COB светодиодов «+» и «-» выдавлены на контактных площадках для пайки.
Обозначение на схеме
Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.
Схема подключения светодиода
В классической схеме рекомендуют производить подключение через токоограничительный резистор. Действительно, правильно подобрав резисторное или индуктивное сопротивление, можно подключить диод, рассчитанный на напряжение питания 3В, даже к сети переменного тока.
Главное требование к параметрам питания – ограничение тока цепи.
Поскольку сила тока – параметр, отображающий плотность потока электронов по проводнику, при превышении этого параметра диод просто взорвется из-за мгновенного и значительного выделения тепла на полупроводниковом кристалле.
Основные принципы подключения
Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.
Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть маркировку светодиода. Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.
Как определить полярность?
Для решения вопроса существует всего 3 способа:
- Конструктивно. Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом.
- С помощью мультиметра. Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод). Если результат не меняется, тогда led вышел из строя (для установления более точного диагноза, читайте как проверить светодиод).
- Визуально. Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод.
С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью определения полярности у светодиода. В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.
Подключение светоизлучающего диода к сети 220 В
Если запитать светодиод прямо от 220 В с ограничением его тока, то светить он будет при положительной полуволне и гаснуть при отрицательной. Но это только в том случае, когда обратное напряжение p-n перехода будет много больше 220 В. Обычно это в районе 380-400 В.
Второй способ включения– через гасящий конденсатор.
Сетевое напряжение подают на «мост» на диодах VD1-VD4. Конденсатор С1 «погасит» около 215-217 В. Остаток выпрямится. После фильтрации конденсатором С2 постоянное напряжение подают на светодиод. Не забудьте об ограничении тока через диод резистором
Еще одна схема подключения – с однополупериодным выпрямителем на диоде и с ограничивающим резистором, величиной 30 кОм.
ВНИМАНИЕ! Большинство схем с прямым подключением в сеть 220 В имеют серьезный недостаток – они опасны поражением человека высоким напряжением – 220 В. Поэтому их следует использовать аккуратно, с тщательной изоляцией всех токоведущих частей.
Подключение светодиодов к напряжению 220В
Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:
в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.
Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:
Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.
После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).
Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:
На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.
Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.
Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:
Параллельное соединение светодиодов не правильное
Параллельное соединение светодиодов используют, когда напряжение блока питания (источника) не хватает, для того, чтобы запитать ряд последовательных светодиодов. Если «конкретно теоретически», то параллельно светодиоды можно подключать и «тупо» — соединить все аноды и катоды LEDs. После чего подключить их к батарее и вуаля… Светодиоды горят! Причем единожды и на краткое время при подключении. Далее — конец им.
Такая схема подключения параллельно светоизлучающих диодов — не работоспособна, ввиду того, сопротивление диода маленькое и спокойно провоцирует режим КЗ (короткого замыкания).
Сразу откину некоторых злопыхателей. Есть, конечно, исключения… Ими грешат китайские производители дешевизны. Но это исключение из правил. Если кто-то разбирал китайские игрушки или зажигалки, то наверняка видел именно такую схему подключения. Где диоды подключены параллельно, не имея в свей цепи никаких посторонних электронных компонентов. Почему? Да все просто — в таких цепях ток ограничивается внутренним сопротивлением батареек AG1 (таблетка). Мощность в таких таблетках минимальна и не может нанести вред диоду. Т.е. мы опять приходим к выводу, что для нормального функционирования, диодам нужен резистор.
Повторюсь еще раз — параллельное соединение светодиодов используют только тогда, когда источник питания низковольтный.
Не смотря на то, что такой тип соединения не очень приветствуется, его частенько используют. В таких типах соединений есть одно правило — параллельное соединение светодиодов никогда не происходит с использованием ТОЛЬКО ОДНОГО резистора.
Ну или для тех, кто понимает только визуальные картинки, то не правильное параллельное соединение будет выглядеть так:
К сожалению, не смотря на то. что такое подключение не правильное, опять же, вездесущие китайцы тоже используют его во всю… Особенно в фонариках. Для этого им завышают номинал резистора, дабы не было перегрузки и товар преспокойненько может проработать год… А может и не проработать… Тут уж как повезет.
Плюсы и минусы параллельного соединения светодиодов
Большим плюсом параллельного соединения стоит отметить, что в случае правильного соединения светодиодов при перегорании одного из них, остальные будут работать. Диоды будут работать если и большее количество LEDs перегорит, здесь основным остается правило — чтобы работала хотя бы одна ветка. При последовательном соединении светодиодов выход из строя одного из них приведет к тому, что строка из последовательно соединенных чипов перестанет светиться.
Параллельное соединение позволяет соединить от двух и более светодиодов. Ограничения могут возникнуть только по мощности батареи (источника питания) и габаритов самого прибора, в который вы захотите поместить свое «детище».
Минусом параллельного соединения светодиодов отметим — удорожание конструкции, за счет того, что в цепи появляются новые элементы. В результате конечный продукт может оказаться достаточно громоздким.
Стоит представить себе елочную гирлянду с таким соединением диодов… Для ее работоспособности придется соединять еще один проводник к паре светодиод-резистор. Поэтому 99,9 % всех гирлянд собраны из последовательно соединенных светодиодов.
Последовательное подключение
При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:
В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.
Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).
Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.
После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).
Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.
Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.
Недостатки последовательного подключения
- При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
- Для питания большого количества led нужен источник с высоким напряжением.
Распространенные ошибки при подключении
Самые часто встречающиеся ошибки при соединении светодиодов:
- Выбор резистора не того номинала – если подобрать слишком маленькое сопротивление, светодиод может перегореть. При большом значении светить диод будет не в полную силу.
- Подключение напрямую к источнику питания без токоограничивающего резистора. Излучающий компонент сразу сгорит.
- Соединение по параллельной схеме с одним резистором для всех диодов. Компоненты начнут выходить из строя, так как рабочий ток у каждого различный.
- Соединение по последовательной схеме светодиодов, рассчитанных на разный ток. В таком случае часть диодов перегорит, а часть будет светить тусклее.
- Подключение напрямую к сети 220 В без защиты.
Важно! Совершение описанных ошибок повлечет за собой негативные последствия в виде поломки диода или нанесения себе травм.
Альтернативный тип подключения
Последовательно-параллельное соединение светодиодов – встречается в прожекторах и других мощных светильниках, работающих как от постоянного, так и от переменного напряжения.
Как видите, матрица поделена на ветки, каждая из которых имеет токоограничивающий резистор. Конкретный экземпляр предназначен для замены штатной лампы плафона в салоне автомобиля. Если один диод выйдет из строя – одна цепь перестанет гореть, а остальные цепочки продолжат свечение.
Если вы не можете определиться, как подключить светодиоды последовательно или параллельно, есть альтернативный вариант — гибридное соединение. С первого взгляда непонятно в чем смысл.
Гибридный вариант принял достоинства от последовательного и параллельного соединения светодиодов. Схема будет работать полностью, даже если один из элементов в цепи перегорит, в тоже время остальные элементы не испытают перегрузки. Напряжение на каждом сегменте будет ограничено светодиодом с наименьшим падением.
Чтобы собрать светильник правильно, а LED работали долго и не перегревались, нужно определиться как подключать светодиоды — последовательно или параллельно. Вы ознакомились с сильными и слабыми сторонами каждого из вариантов. Благодаря полученным знаниям можно выполнить ремонт LED лампы или прожектора.
Применение в быту
Чаще всего такие схемы встречаются в выключателях с подсветкой. Типичная схема правильного использования указана ниже:
Подключение светодиода в выключателе
Ввиду маленькой мощности световых устройств в них нет защищающих обратных диодов. Резистор установлен таким образом, чтобы ограничить прямой ток значением 1 мА. Такая схема подключения светодиода к сети 220 вольт не особо эффективна в плане яркости свечения, оно очень тусклое, но свою роль играет хорошо – в темной комнате выключатель видно. Здесь обратное напряжение при размыкании контактов цепи направлено на резистор, в качестве дополнительной нагрузки также выступает наличие светодиодной или любой другой лампочки, а также блока питания. Таким образом, светодиод защищен он обратного пробоя током.
Техника безопасности
Кратко о нюансах подключения, которое выполняется в большинстве домов – для обеспечения безопасности при работе с электрической цепью часто бывает мало выключить один только выключатель. Дело в том, что он, как правило, размыкает фазу, но при этом из-за отсутствия заземления на ноле остается остаточное напряжение. Если заземление неправильное, например, люди подключаются к батарее или водопроводу, есть риск попасть на напряжение между фазой и заземлением. Отключайте питание полностью на рубильнике или счетчике на входе в дом или квартиру, и сделайте уже правильное заземление, если у вас его нет.
Основные выводы
Подключить своими руками светодиод (несколько диодов) с использованием резисторов и накопителей заряда целесообразно, если у них небольшая мощность. Такие источники света предназначены для индикации или подсветки. Для мощных ламп эти схемы не подходят.
Если все же нужно подключить небольшую лампочку к сети 220 В, важно правильно подобрать параметры всех элементов. Высокое напряжение переменного тока быстро разрушает те из них, которые неспособны пропускать обратный ток. Залог успеха – ограничение амплитуды и грамотное определение амортизационного запаса. Немаловажно так же качество диодов и других деталей.
КАК ПОДКЛЮЧИТЬ СВЕТОДИОД
Светодиоды (LED – англ. Light-emitting diode, светящиеся диоды) используются во многих электронных проектах. Но не все могут правильно подключить или выбрать резистор для светодиода, и тогда его можно вывести из строя за доли секунды. Давайте разберёмся в этом и узнаем как всё делается.
Вначале стоит напомнить, что резистор обязательно должен сопровождать светодиод. Независимо от того, подключаете ли вы его к батарейке, Arduino или к чему-то еще, резистор необходим всегда, потому что светоизлучающий диод управляется током! Срок службы питаемого светодиода без резистора невелик, даже если поначалу он вроде бы светится.
Всё потому что LED элементы хотят потреблять как можно больше электроэнергии. Пока не начнет нагреваться, что приведет к перегреву и повреждению его структуры. Следовательно, необходим своеобразный предохранитель в виде резистора, который будет ограничивать количество тока, потребляемого светодиодом.
Какой ток светодиода
По принципу действия светодиоды очень похожи на обычные выпрямительные диоды. Только конструктивное исполнение другое. И первое существенное отличие – это полупроводниковый материал. В случае выпрямительных диодов это чаще кремний. Светодиоды же изготавливаются из разных полупроводников, в зависимости от цвета которым они светятся. Материал определяет прямое напряжение, то есть напряжение, которое прикладывается к светодиоду при прохождении прямого тока через него.
Прямое напряжение – напряжение, равное или превышающее то, при котором ток (прямой ток) начинает течь через диод, и он начинает светиться.
Прямое напряжение и прямой ток
Каждый диод имеет разное прямое напряжение, что важно при выборе ограничительного резистора.
Прямое напряжение зависит от таких факторов, как:
- температура окружающей среды,
- величина протекающего тока (чем она выше, тем большее напряжение прикладывается к диоду),
- используемого производителем полупроводникового материала.
Какой ток может течь через светодиод
Популярные в продаже светодиоды обычно работают с максимальным постоянным током 20-30 мА. Более подробную информацию по этому вопросу можно найти в документации (даташиту) к конкретному LED. Но чаще всего на этих элементах нет маркировки типа и производителя.
К счастью, производимые в настоящее время светодиоды ярко светят даже при гораздо меньшем токе (от 1–3 мА), поэтому нет необходимости подавать на них максимальный ток.
Запитывать типичные 3-5 мм светодиоды (с цветной линзой) током более 10 мА не имеет смысла. Интенсивность их свечения всё-равно существенно не увеличится! Чем больше ток протекает через светодиод (в пределах безопасного диапазона), тем ярче он будет светить. Но во многих случаях разница в яркости не будет иметь большого значения.
Какое напряжение идёт на диод
Производители указывают номинальное прямое напряжение. Это значение будет различным для каждого типа светодиода. Но не нужно каждый раз проверять значения в документации. Достаточно использовать примерную таблицу, содержащую безопасные диапазоны напряжения:
Прямое напряжение LED в зависимости от цвета
Приведенная таблица содержит значения, которые были записаны из даташитов наиболее популярных производителей светодиодов. Конечно есть исключения, например сверх-яркие или мощные светодиоды. Но в случае с обычными, можно смело пользоваться этой таблицей.
А это ещё одна, аналогичная.
Так почему важно контролировать именно ток, протекающий через диод? Правильно задать работу светодиода, задав на нем определенное напряжение, практически невозможно. Придется следить за изменениями температуры и структурными изменениями, что непросто. Поэтому используется постоянный ток.
В общем когда пропускаем через LED ток желаемой интенсивности (например 20 мА), то прямое напряжение на нем устанавливается само.
Как выбрать резистор для LED
Всё что нужно для питания светодиода, – это источник питания и токоограничивающий элемент, то есть резистор. Предположим, что есть батарея на 9 В и красный светодиод, через который должно протекать 7 мА, или по грамотному говоря 0,007 Ампера. Схема подключения с обозначением напряжения LED и резистора показана далее.
Простейшее светодиодное соединение
Ток течет от «+» клеммы батареи, проходит через резистор, светодиод, а затем возвращается обратно к источнику питания. Подключение резистора последовательно со светодиодом необходимо, чтобы не повредить его протекающим слишком большим током. Можно сказать, что резистор действует как ограничитель тока.
По правилам электроники, напряжение от аккумулятора будет распределяться между резистором и светодиодом:
Нам известен ток протекающий в этой цепи (7 мА), поэтому будем использовать закон Ома:
Приведенная формула позволяет рассчитать номинал резистора, через который следует запитать светодиод.
Какое прямое напряжение на диоде? Известно допустим, что он светится красным цветом, маркировки на нем естественно нет. Значит промежуточное значение из таблицы, которое составляет 1,9 В, будет подходящим.
Расчетное значение резистора:
R = (9 В – 1,9 В) / 0,007 А = 1014 Ом
Сразу замечу, что такого резистора мы не найдем в продаже. Все исходит из определенного стандарта, по которому производятся элементы. Тогда будем использовать ближайший по номиналу доступный резистор в 1000 Ом, то есть 1 кОм.
0.1 Ом | 1 Ом | 10 Ом | 100 Ом | 1 кОм | 10 кОм | 100 кОм | 1 МОм | 10 МОм |
0.11 Ом | 1.1 Ом | 11 Ом | 110 Ом | 1.1 кОм | 11 кОм | 110 кОм | 1.1 МОм | 11 МОм |
0.12 Ом | 1.2 Ом | 12 Ом | 120 Ом | 1.2 кОм | 12 кОм | 120 кОм | 1.2 МОм | 12 МОм |
0.13 Ом | 1.3 Ом | 13 Ом | 130 Ом | 1.3 кОм | 13 кОм | 130 кОм | 1.3 МОм | 13 МОм |
0.15 Ом | 1.5 Ом | 15 Ом | 150 Ом | 1.5 кОм | 15 кОм | 150 кОм | 1.5 МОм | 15 МОм |
0.16 Ом | 1.6 Ом | 16 Ом | 160 Ом | 1.6 кОм | 16 кОм | 160 кОм | 1.6 МОм | 16 МОм |
0.18 Ом | 1.8 Ом | 18 Ом | 180 Ом | 1.8 кОм | 18 кОм | 180 кОм | 1.8 МОм | 18 МОм |
0.2 Ом | 2 Ом | 20 Ом | 200 Ом | 2 кОм | 20 кОм | 200 кОм | 2 МОм | 20 МОм |
0.22 Ом | 2.2 Ом | 22 Ом | 220 Ом | 2.2 кОм | 22 кОм | 220 кОм | 2.2 МОм | 22 МОм |
0.24 Ом | 2.4 Ом | 24 Ом | 240 Ом | 2.4 кОм | 24 кОм | 240 кОм | 2.4 МОм | 24 МОм |
0.27 Ом | 2.7 Ом | 27 Ом | 270 Ом | 2.7 кОм | 27 кОм | 270 кОм | 2.7 МОм | 27 МОм |
0.3 Ом | 3 Ом | 30 Ом | 300 Ом | 3 кОм | 30 кОм | 300 кОм | 3 МОм | 30 МОм |
0.33 Ом | 3.3 Ом | 33 Ом | 330 Ом | 3.3 кОм | 33 кОм | 330 кОм | 3.3 МОм | 33 МОм |
0.36 Ом | 3.6 Ом | 36 Ом | 360 Ом | 3.6 кОм | 36 кОм | 360 кОм | 3.6 МОм | 36 МОм |
0.39 Ом | 3.9 Ом | 39 Ом | 390 Ом | 3.9 кОм | 39 кОм | 390 кОм | 3.9 МОм | 39 МОм |
0.43 Ом | 4.3 Ом | 43 Ом | 430 Ом | 4.3 кОм | 43 кОм | 430 кОм | 4.3 МОм | 43 МОм |
0.47 Ом | 4.7 Ом | 47 Ом | 470 Ом | 4.7 кОм | 47 кОм | 470 кОм | 4.7 МОм | 47 МОм |
0.51 Ом | 5.1 Ом | 51 Ом | 510 Ом | 5.1 кОм | 51 кОм | 510 кОм | 5.1 МОм | 51 МОм |
0.56 Ом | 5.6 Ом | 56 Ом | 560 Ом | 5.6 кОм | 56 кОм | 560 кОм | 5.6 МОм | 56 МОм |
0.62 Ом | 6.2 Ом | 62 Ом | 620 Ом | 6.2 кОм | 62 кОм | 620 кОм | 6.2 МОм | 62 МОм |
0.68 Ом | 6.8 Ом | 68 Ом | 680 Ом | 6.8 кОм | 68 кОм | 680 кОм | 6.8 МОм | 68 МОм |
0.75 Ом | 7.5 Ом | 75 Ом | 750 Ом | 7.5 кОм | 75 кОм | 750 кОм | 7.5 МОм | 75 МОм |
0.82 Ом | 8.2 Ом | 82 Ом | 820 Ом | 8.2 кОм | 82 кОм | 820 кОм | 8.2 МОм | 82 МОм |
0.91 Ом | 9.1 Ом | 91 Ом | 910 Ом | 9.1 кОм | 91 кОм | 910 кОм | 9.1 МОм | 91 МОм |
Таблица номиналов резисторов
Будет ли это иметь большое влияние на источник питания светодиодов? Давайте проверим, рассчитав ток, протекающий через светодиод, предполагая что знаем напряжение питания, напряжение приложенное к диоду, и точное значение резистора используя преобразованный закон Ома:
- I max1 = (9 В – 1,9 В) / 1014 Ом = 7,0019 мА
- I max2 = (9 В – 1,9 В) / 1000 Ом = 7,1 мА
Разница настолько мала (0,09 мА), что не о чем беспокоиться!
На самом деле мы даже не знаем точно, какое прямое напряжение на светодиоде. Так давайте проверим, как этот параметр повлияет на ток, протекающий через LED. Предположим, что сопротивление резистора равно 1000 Ом, а напряжение батареи 9 В. Вместо прямого напряжения диода подставим в формулу крайние значения из таблицы.
- I макс = (9 В – 1,6 В) / 1000 Ом = 0,0074 А = 7,4 мА
- I мин = (9 В – 2,2 В) / 1000 Ом = 0,0068 А = 6,8 мА
Отклонение от запланированных 7 мА не может превышать 0,4 мА, т.е. всего 6%. Это подтверждает, что нет смысла использовать очень точные данные о прямом напряжении на диоде для расчетов – любое отклонение в любом случае будет минимальным.
Напряжение питания не должно быть слишком низким. Теперь проверим что будет, если запитать тот же красный диод от источника напряжением 2,5 В. Для начала нужно рассчитать резистор. Предположим светодиод U = 1,9 В.
R = (2,5 В – 1,9 В) / 0,007 А = 85 Ом
В этом случае понадобится резистор на 85 Ом, конечно такое значение нигде не найдём. Но оставим это для дальнейших расчетов. Теперь оценим диапазон, в котором будет находиться прямой ток, если прямое напряжение диода достигнет экстремальных значений:
- I макс = (2,5 В – 1,6 В) / 85 Ом = 10,5 мА
- I мин = (2,5 В – 2,2 В) / 85 Ом = 3,5 мА
Здесь отклонение может составить 3,5 мА от принятого значения 7 мА, то есть до 50%! Ну и чем вызваны эти несоответствия? Изменилось только напряжение питания: оно уменьшилось с 9 В до 2,5 В. Это и привело к снижению напряжения на резисторе. Затем небольшие колебания прямого напряжения вызывали резкое изменение тока диода.
Поэтому по возможности на токоограничивающем резисторе должно падать максимально возможное напряжение. Это положительно скажется на стабилизации прямого тока диода.
Имейте ввиду, что чем больше напряжения подается на резистор, тем больше энергии потребляемой источником питания теряется. Особенно позаботимся об экономии энергии при работе от батарей. Так что всегда должен быть разумный компромисс.
Допуск точности резисторов
Каждый изготовленный радиоэлемент отличается определенной точностью исполнения, называемой допуском. Чем меньше допуск, выраженный в процентах, тем лучше. Фактическое сопротивление резистора может тогда отличаться меньше от номинального сопротивления, указанного на корпусе. Допуск можно прочитать на корпусе резистора, информация об этом закодирована в виде цвета последней полоски:
На практике, два резистора номиналом 1 кОм при измерении омметром вообще не будут равны 1000 Ом!
После расчета резистора нужно посмотреть в таблицу стандартов номиналов и найти значение, наиболее близкое к искомому. Безопаснее всего выбирать значение выше расчетного.
Вернемся к примеру, где нужно запитать красный светодиод от источника питания 2,5 В. Расчеты показали, что нужен резистор 85 Ом. Меньший резистор 82 Ом будет ближайшим в стандарте. Проверим, можно ли его безопасно использовать:
- I макс = (2,5 В – 1,6 В) / 82 Ом = 10,9 мА
- I мин = (2,5 В – 2,2 В) / 82 Ом = 3,6 мА
Даже в худшем случае максимальный ток будет далеко от предельного (20-30 мА), поэтому легко можете использовать этот радиоэлемент с меньшим сопротивлением.
Как питать несколько светодиодов
Предположим, есть 4 светодиода для подключения. Первый и самый простой вариант, – подключить каждый из них через отдельный резистор:
Независимое питание каждого светодиода
С точки зрения стабилизации рабочих параметров диодов это лучший подход: каждый из них запитан отдельно и не влияет на остальные. Проблемы с одним не повлияют на остальных. К сожалению, такой способ питания связан с большими потерями энергии. Вот пример питания 4-х красных светодиодов – каждый из них подключен через отдельный резистор 330 Ом. При таком подключении на каждый резистор подается напряжение, необходимое для правильного питания одного светодиода. С каждым последующим LED и его резистором потребление тока всей схемы соответственно увеличивается/
Параллельное соединение светодиодов
Светодиоды имеют две ножки, поэтому их можно успешно подключать параллельно или последовательно. Если бы все диоды были соединены параллельно, схема выглядела бы так:
Но это недопустимое решение!
Каждый светодиод имеет прямое напряжение, которое может незначительно отличаться от одного светодиода к другому – даже в пределах одной и той же серии. Ток для всех 4 LED течет от резистора и распределяется между диодами. В этом случае на светодиодах будет выставлено одно напряжение, потому что они включены параллельно. Сколько это будет? Неизвестно.
Ведь может оказаться, что на одном светодиоде прямое напряжение будет намного ниже, чем на остальных. Тогда почти весь ток, пропускаемый резистором, будет проходить именно через него. Светодиоды станут светить неравномерно, и со временем могут быть повреждены.
Так что стоит помнить: подключение нескольких светодиодов параллельно с использованием одного резистора недопустимо, потому что нет контроля над током, протекающим через каждый из диодов!
Что еще хуже, когда один из светодиодов выходит из строя и перестает светить, его ток будет распространяться на другие диоды. Таким образом, вместо 4 светодиодов, через которые протекает, например 10 мА (всего 40 мА), в схеме будет уже 3 светодиода, через которые протекает
13 мА (ведь всего 40 мА). А если сразу 3 LED повреждены, весь ток (40 мА) будет проходить через последний, что приведет к его гарантированному повреждению!
Если светодиоды не идентичны, одни светятся ярче, другие – темнее. Этот эффект особенно заметен, когда берем светодиоды разного цвета.
Последовательное соединение светодиодов
Один и тот же по величине ток всегда течет через последовательно соединенные компоненты.
Питание светодиодов, соединенных последовательно
При таком подключении получим такой ток, как если бы питали только один светодиод. А вот количество энергии, затрачиваемой на резистор, будет уменьшено, потому что падение напряжения на светодиодах будет большим.
Но напряжение, подаваемое на резистор – уменьшилось. Из 9 В, обеспечиваемых батареей, около 8 В должны быть выделены на диоды, включенные последовательно. Как мы знаем, меньший ток, подаваемый на резистор, ухудшит стабильность тока светодиода. Посчитаем насколько. Сначала выберем соответствующий токоограничивающий резистор для этих LED элементов. Предположим, надо чтобы в цепи протекало только около 4 мА.
R = (9 В – 4,19 В) / 0,004 А = 350 Ом
Расчетный резистор лучше всего округлить до ближайшего стандартного из серии – 330 Ом. Теперь оценим, какой ток будет протекать в наихудших возможных условиях, то есть когда прямое напряжение всех LED будет самым низким и самым высоким:
- I макс = (9 В – 4 · 1,6 В) / 330 Ом =
Всегда полезно проводить такой анализ наихудшего случая. Благодаря этому можно проверить, будет ли схема работать должным образом во всех возможных условиях.
Расчеты показали, что в зависимости от прямого напряжения на светодиоде ток, протекающий по цепи, может изменяться в широких пределах (1-8 мА). Конечно таких значений достаточно, чтобы светодиоды нормально светились. Но гораздо безопаснее будет их комбинировать следующим образом:
Питание светодиодов соединенных параллельно и последовательно
Давайте подсчитаем, насколько ток может колебаться в каждой ветви приведенной схемы. Предположим, что используем красные светодиоды и резисторы 330 Ом.
Что если подключим последовательно 4 белых светодиода с прямым напряжением 3 В? Это дает в сумме 4 х 3 В = 12 В, что выше чем напряжение источника питания (9 В). Значит такое соединение невозможно. Потребовалось бы найти источник питания с более высоким напряжением или подключить светодиоды в другой конфигурации.
Многие новички в электронике задаются вопросом, можно ли поменять местами компоненты в ряду – например разместить резистор позади светодиода, а не перед ним. Они опасаются что такая замена может повредить компоненты. Так что должно быть первым: светодиод или резистор? Важен ли порядок последовательного подключения?
На самом деле одинаковый ток протекает через последовательно соединенные компоненты. Так что никакой разницы в работе вышеперечисленных схем не будет. Элементы соединенные последовательно, можно перемещать между собой любым способом. Ток, протекающий через такую ??схему, будет одинаковым! Единственное условие – соблюдать полярность таких элементов как диоды, электролитические конденсаторы и так далее.
Простые примеры расчётов
1) Рассчитаем резистор, которым хотим запитать один зеленый светодиод от батареи 9 В. Диод предполагается использовать как сигнализатор, поэтому достаточно, чтобы он светился несильно.
- U пит = 9 В
- U диода = 2,85 В
- I диода = 2 мА
Идеальное значение резистора: (9 – 2,85) / 0,002 = 3075 Ом. Соответствующий резистор по стандарту: 3 кОм.
2) Рассчитаем резисторы, которыми хотим запитать два желтых светодиода, соединенных последовательно. Источник – блок питания 6 В. Светодиоды должны светиться достаточно ярко.
- U пит = 6 В
- U диода = 2,15 В, итого 2 х 2,15 = 4,3 В
- I диода = 7 мА
Идеальное значение резистора: (6 – 4,3) / 0,007 = 242 Ом. Соответствующий резистор: 240 Ом.
Источник питания для схемы
В приведенных рассуждениях специально упущен тот факт, что источник питания является еще одним ограничением. Имейте в виду, что батарейки вообще не обеспечивают стабильного напряжения. Не всегда на выходе батареи Крона мы получим 9 В. Может быть больше у свежей, а может быть меньше у подсевшей. Этот параметр также необходимо учитывать при подробных расчетах.
Выше для наглядности таблица с параметрами напряжения на свинцовой батарее при разной степени разряда.
Подведём итоги
Правильный выбор резистора – дело несложное, всего несколько простых формул и вольт-амперных зависимостей. Помните, что расчеты никогда не покажут идеальное значение, которое обычно недостижимо. Следовательно их результаты необходимо корректировать в зависимости от того, что есть в распоряжении по деталям. Главное, ни в коем случае не подключать светодиод без резистора!
И в дополнение несколько практических материалов о работе со светодиодами: