Какой формы бывают обычно постоянные магниты
Перейти к содержимому

Какой формы бывают обычно постоянные магниты

Тест по физике Постоянные магниты и их магнитное поле 8 класс

Тест по физике Постоянные магниты и их магнитное поле для учащихся 8 класса с ответами. Тест включает в себя 11 заданий с выбором ответа.

1. Постоянный магнит — это

1) сильно намагниченное тело
2) тело из закаленной стали или специального сплава, кото­рое хорошо намагничивается
3) намагниченное тело, которое притягивает к себе железные предметы
4) тело, сохраняющее свою намагниченность длительное время

2. Какую гипотезу о происхождении магнитных свойств веществ предложил Андре Ампер?

1) Он не предлагал такой гипотезы
2) Эти свойства возникают из-за беспорядочного движения молекул в веществе
3) Наличие магнитных свойств обусловлено существованием электрических токов внутри молекул вещества
4) Магнитными свойствами обладают вещества, имеющие электрические заряды

3. С движением каких частиц в атоме связано появление магнит­ных свойств?

1) Ядер атомов
2) Протонов в ядре атома
3) Нейтронов в ядре атома
4) Электронов

4. Какой формы бывают обычно постоянные магниты?

1) Шарообразной
2) Дугообразной
3) Цилиндрической
4) Полосовой

5. Какие места постоянного магнита оказывают наибольшее маг­нитное действие? Как их называют?

1) Их концы; южный и северный полюсы
2) Находящиеся в середине магнита; полюсы
3) Все места оказывают одинаковое действие
4) Среди ответов нет правильного

6. Какое из названных здесь веществ хорошо притягивается к магниту?

1) Полиэтилен
2) Чугун
3) Древесина
4) Медь

7. Какое из ниженазванных веществ не притягивается к магниту?

1) Сталь
2) Магнитный сплав
3) Кобальт
4) Резина

8. Как взаимодействуют разноименные полюсы магнитов?

1) Отталкиваются друг от друга
2) Не реагируют на присутствие друг друга
3) Притягиваются друг к другу
4) Притягиваются друг к другу только при очень малом рас­стоянии между ними

9. Как взаимодействуют одноименные полюсы магнитов?

1) Отталкиваются друг от друга
2) Не реагируют на присутствие друг друга
3) Притягиваются друг к другу
4) Притягиваются друг к другу только при очень большом расстоянии между ними

10. Какая из приведенных на рисунке картин магнитных линий магнитного поля соответствует случаю взаимодействия одно­именных полюсов магнитов?

Тест по физике Постоянные магниты и их магнитное поле 10 задание

11. На рисунке представлены картины магнитных полей между полюсами магнитов. На какой из них слева находится север­ный полюс?

Тест по физике Постоянные магниты и их магнитное поле 11 задание

Ответы на тест по физике Постоянные магниты и их магнитное поле
1-4
2-3
3-4
4-24
5-1
6-2
7-4
8-3
9-1
10-3
11-3

Постоянный магнит

Постоянный магнит — изделие различной формы из магнитотвёрдого материала с высокой остаточной магнитной индукцией, сохраняющее состояние намагниченности в течение длительного времени. Постоянные магниты применяются в качестве автономных (не потребляющих энергии) источников магнитного поля.

Содержание

Свойства магнита

Свойства магнита определяются характеристиками размагничивающего участка петли магнитного гистерезиса материала магнита: чем выше остаточная индукция Br и коэрцитивная сила Hc, тем выше намагниченность и стабильность магнита.

Индукция постоянного магнита Bd не может превышать Br: равенство Bd = Br возможно лишь в том случае, если магнит представляет собой замкнутый магнитопровод, то есть не имеет воздушного промежутка, однако постоянные магниты, как правило, используются для создания магнитного поля в воздушном (или заполненном другой средой) зазоре, в этом случае Bd < Br, величина разности зависит от формы магнита и свойств среды.

Для производства постоянных магнитов обычно используются следующие материалы: [1]

  • Бариевые и стронциевые магнитотвердые ферриты

Имеют состав Ba/SrO·6 Fe2O3 и характеризуются высокой устойчивостью к размагничиванию в сочетании с хорошей коррозионной стойкостью. Несмотря на низкие по сравнению с другими классами магнитные параметры и высокую хрупкость, благодаря низкой стоимости магнитотвердые ферриты наиболее широко применяются в промышленности.

  • Магниты NdFeB (неодим-железо-бор)

Редкоземельные магниты, изготавливаемые прессованием или литьем из интерметаллида Nd2Fe14B. Преимуществами этого класса магнитов являются высокие магнитные свойства (Br, Hc и (BH)max), а также невысокая стоимость. В связи со слабой коррозионной устойчивостью обычно покрываются медью, никелем или цинком.

  • Редкоземельные магниты SmCo (Самарий-Кобальт)

Изготавливаются методом порошковой металлургии из композиционного сплава SmCo5/Sm2Co17 и характеризуются высокими магнитными свойствами, отличной коррозионной устойчивостью и хорошей стабильностью параметров при температурах до 350 °C, что обеспечивает им преимущества на высоких температурах перед магнитами NdFeB

  • Магниты ALNICO (российское название ЮНДК)

Изготавливаются основе сплава Al-Ni-Co-Fe. К их преимуществам можно отнести высокую температурную стабильность в интервале температур до 550 °C, высокую временну́ю стабильность параметров в сочетании с большой величиной коэрцитивной силы, хорошую коррозионную устойчивость. Важным фактором в пользу их выбора может являться значительно меньшая стоимость по сравнению с магнитами из Sm-Co.

  • Полимерные постоянные магниты (магнитопласты)

Изготавливаются из смеси магнитного порошка и связующей полимерной компоненты (например резины). Достоинством магнитопластов является возможность получения сложных форм изделий с высокой точностью размеров, а также высокая коррозионная устойчивость в сочетании с большой величиной удельного сопротивления и малым весом.

Для применений при обычных температурах самые сильные постоянные магниты делаются из сплавов, содержащих неодим. Они используются в таких областях, как магнитно-резонансная томография, сервоприводы жёстких дисков и создание высококачественных динамиков, а также ведущей части двигателей авиамоделей.

Постоянные магниты на уроках физики обычно демонстрируются в виде подковы, полюса которой окрашены в синий и красный цвет.

Отдельные шарики и цилиндры с сильными магнитными свойствами используются в качестве хай-тек украшений/игрушек — они без дополнительных креплений собираются в цепочки, которые можно носить как браслет. Также в продаже есть конструкторы, состоящие из набора цилиндрических магнитных палочек и стальных шариков. Из них можно собирать множество конструкций, в основном фермового типа.

Кроме того, существуют гибкие плоские магниты на полимерной основе с магнитными добавками, которые используются например, для изготовления декоративных магнитов на холодильники, оформительских и прочих работ. Выпускаются в виде лент и листов, обычно с нанесённым клеевым слоем и плёнкой, его защищающей. Магнитное поле у такого плоского магнита полосатое — с шагом около двух миллиметров по всей поверхности чередуются положительные и отрицательные полюса.

Постоянные магниты

Когда-то легендарный пастух Магнес, нашел природный магнитный камень, притягивающий железо. В последствии этот камень назвали магнетит или магнитный железняк.

magnetit

Рисунок 1. Магнитный железняк — магнетит

Кусок такой железной руды называется естественным магнитом, а проявляемое им свойство притяжения — магнетизмом.

О существовании магнитных железных руд и их замечательном свойстве — магнетизме известно было давно. Однако использовать эти свойства люди тогда еще не могли. В то время единственным практическим применением естественных магнитов было определение с их помощью сторон света: естественный магнит, подвешенный на нитке, поворачивался одним концом па север, а другим — на юг. Так появился первый компас, который широко использовался мореплавателями.

В наше время явление магнетизма используется чрезвычайно широко в различных электро- и радиоустановках. Однако теперь используются не естественные, а так называемые искусственные магниты.

Искусственные магниты изготовляются из специальных сортов стали и ее сплавов. Кусок такой стали особым образом намагничивают, после чего он приобретает магнитные свойства, т. е. становится постоянным магнитом.

Форма постоянных магнитов может быть самой разнообразной в зависимости от их назначения. На рис. 2 в качестве примера показаны наиболее распространенные формы постоянных магнитов: прямолинейный, подковообразный, кольцевой и полукольцевой.

vidy-postoyannyh-magnitov

Рисунок 2. Постоянные магниты различной формы

Чтобы ознакомиться с некоторыми свойствами постоянного магнита, проделаем ряд опытов.

Возьмем прямолинейный магнит, опустим его в железные опилки и затем вынем оттуда. Мы увидим, что опилки пристанут только к концам магнита (рис. 3). Значит, наибольшая сила притяжения постоянного магнита обнаруживается у его концов, а середина магнитными свойствами не обла дает.

postoyannyj-magnit-v-matallicheskih-opilkah

Рисунок 3. Наибольшая сила притяжения магнита обнаруживается у его концов

Концы магнита называются полюсами, а линия, проходя щая через середину магнита, — нейтральной линией. У кольцеобразного магнита полюсами будут являться те его места, где обнаруживаются наибольшие силы притяжения.

Проделаем другой опыт. Подвесим прямолинейный магнит на нитке или возьмем магнитную стрелку, укрепленную на острие штатива (рис. 4). И в том и в другом случае мы заметим, что прямолинейный магнит (или магнитная стрелка) займет вполне определенное положение: один полюс магнита будет обращен к северному полюсу Земли, а другой — к ее южному полюсу. Тот конец магнита, который обращен на север, условились называть северным полюсом магнита, а конец, обращенный к югу, — южным полюсом магнита.

strelka-kompasa

Рисунок 4. Магнитная стрелка и подвешеннвй прямолинейный магнит поворачиваются своими полюсами к полюсам Земли

Итак, каждый постоянный магнит имеет два полюса: северный и южный. Северный полюс магнита обозначается буквой С (север) или N (норд), южный — буквой Ю (юг) или S (зюйд).

Проделаем, наконец, третий опыт с постоянным магнитом. Поднесем к одному из полюсов магнита (безразлично к какому) стальной предмет. Этот предмет притянется к полюсу, и надо приложить значительное усилие, чтобы оторвать его от магнита. То же произойдет с предметами из чугуна, никеля и кобальта. Но есть металлы, на которые не действует постоянный магнит. Поднесем, например, к полюсу постоянного магнита медный предмет. Магнит не притянет его к себе. То же можно наблюдать и с другими предметами из цветных металлов—алюминия, латуни, серебра.

Следовательно, магнит притягивает к себе железо, сталь, чугун, никель, кобальт. Всё эти вещества называются магнитными. Все же остальные вещества, которые не притягиваются к магниту, называются немагнитными.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Постоянные магниты — виды и свойства, формы, взаимодействие магнитов

Ферромагнитное изделие, способное сохранять значительную остаточную намагниченность после снятия внешнего магнитного поля, называется постоянным магнитом.

Постоянные магниты изготавливают из различных металлов, таких как: кобальт, железо, никель, сплавы редкоземельных металлов (для неодимовых магнитов), а также из естественных минералов типа магнетитов.

Постоянные магниты - виды и свойства, взаимодействие магнитов

Сфера применения постоянных магнитов сегодня очень широка, однако назначение их принципиально везде одно и то же — как источник постоянного магнитного поля без подвода электроэнергии. Таким образом, магнит — это тело, обладающее своим собственным магнитным полем.

Магнит и магнитное поле

Само же слово «магнит» происходит от греческого словосочетания, которое переводится как «камень из Магнесии», по названию азиатского города, где были в древности открыты залежи магнетита — магнитного железняка. С физической точки зрения элементарным магнитом является электрон, а магнитные свойства магнитов вообще обуславливаются магнитными моментами электронов, входящих в состав намагниченного материала.

Постоянный магнит является частью магнитных систем электротехнических изделий. Работа устройств с постоянными магнитами, как правило, основана на преобразовании энергии:

механической в механическую (сепараторы, магнитные муфты и т. п.);

механической в электромагнитную (электрогенераторы, громкоговорители и т. п.);

электромагнитной в механическую (электродвигатели, динамики, магнитоэлектрические системы и т. п.);

механической во внутреннюю (тормозные устройства и т. п.).

К постоянным магнитам предъявляются следующие требования:

высокая удельная магнитная энергия;

минимальные габариты при заданной напряженности поля;

сохранение работоспособности в широком диапазоне рабочих температур;

устойчивость к воздействию внешних магнитных полей; – технологичность;

низкая стоимость исходного сырья;

стабильность магнитных параметров во времени.

Разнообразие задач, решаемых при помощи постоянных магнитов, вызывает необходимость создания множества форм их исполнения. Часто постоянным магнитам придается форма подковы (т. н. «подковообразные» магниты).

На рисунке приведены примеры форм промышленно выпускаемых постоянных магнитов на основе редкоземельных элементов с защитным покрытием.

Промышленно выпускаемые постоянные магниты различной формы

Промышленно выпускаемые постоянные магниты различной формы: а – диск; б – кольцо; в – параллелепипед; г – цилиндр; д – шар; е – сектор полого цилиндра

Также выпускаются магниты из магнитотвердых металлических сплавов и ферритов в виде стержней круглого и прямоугольного сечения, а также трубчатые, С-образные, подковообразные, в виде пластин прямоугольной формы и др.

После того как материалу придана форма, он должен быть намагничен, т. е. помещен во внешнее магнитное поле, т.к. магнитные параметры постоянных магнитов определяются не только их формой или материалом, из которого они изготовлены, но и направлением намагничивания.

Заготовки намагничивают, используя постоянные магниты, электромагниты постоянного тока или намагничивающие катушки, через которые пропускаются импульсы тока. Выбор способа намагничивания зависит от материала и формы постоянного магнита.

В результате сильного нагревания, толчков постоянные магниты могут частично или полностью потерять свои магнитные свойства (размагнититься).

Петля гистерезиса

Характеристики размагничивающего участка петли магнитного гистерезиса материала, из которого изготовлен постоянный магнит, определяют свойства того или иного постоянного магнита: чем выше коэрцитивная сила Нс, и чем выше остаточная магнитная индукция Вr – тем сильнее и стабильнее магнит.

Коэрцитивная сила (буквально в переводе с латинского — «удерживающая сила») — сила, препятствующая изменению магнитной поляризации ферромагнетиков.

Пока ферромагнетик не поляризован, т. е. элементарные токи не ориентированы, коэрцитивная сила препятствует ориентировке элементарных токов. Но когда ферромагнетик уже поляризован, она удерживает элементарные токи в ориентированном положении и после того, как внешнее намагничивающее поле устранено.

Этим объясняется остаточный магнетизм, который наблюдается у многих ферромагнетиков. Чем больше коэрцитивная сила, тем сильнее выражено явление остаточного магнетизма.

Итак, коэрцитивная сила — это значение напряжённости магнитного поля, необходимого для полного размагничивания ферро- или ферримагнитного вещества. Таким образом, чем большей коэрцитивной силой обладает конкретный магнит, тем он устойчивее к размагничивающим факторам.

Единица измерения коэрцитивной силы в системе СИ — Ампер/метр. А магнитная индукция, как известно, — это векторная величина, являющаяся силовой характеристикой магнитного поля. Характерное значение остаточной магнитной индукции постоянных магнитов — порядка 1 Тесла.

Магнитный гистерезис — наличие последствия поляризации магнетиков приводит к тому, что намагничивание и размагничивание магнитного материала происходят неодинаково, т. к. намагничивание материала все время немного отстает от намагничивающего поля.

При этом часть энергии, затраченной на намагничивание тела, при размагничивании не возвращается обратно, а превращается в тепло. Поэтому многократное перемагничивание материала связано с заметными потерями энергии и иногда может вызвать сильное нагревание намагничиваемого тела.

Чем сильнее выражен гистерезис в материале, тем больше потери в нем при перемагничивании. Поэтому для магнитных цепей с переменным магнитным потоком применяют материалы, не обладающие гистерезисом (смотрите — Магнитопроводы электротехнических устройств).

Игровой набор с постоянными магнитами

Магнитные свойства постоянных магнитов могут изменяться под действием времени и внешних факторов, к которым относятся:

Изменение магнитных свойств характеризуется нестабильно- стью постоянного магнита, которая может быть структурной или магнитной.

Структурная нестабильность связана с изменениями кристаллической структуры, фазовыми превращениями, уменьшением внутренних напряжений и т. п. В этом случае исходные магнитные свойства могут быть получены восстановлением структуры (например, термообработкой материала).

Магнитная нестабильность обусловлена изменением магнитной структуры вещества магнита, которая стремится к термодинамическому равновесию с течением времени и под влиянием внешних воздействий. Магнитная нестабильность может быть:

обратимой (возвращение к исходным условиям восстанавливает исходные магнитные свойства);

необратимой (возращение исходных свойств может быть достигнуто только путем повторного намагничивания).

Грузоподьемный магнит

Постоянный магнит или электромагнит — что лучше?

Применение постоянных магнитов для создания постоянного магнитного поля вместо эквивалентных им электромагнитов позволяет:

уменьшить массогабаритные характеристики изделий;

исключить применение дополнительных источников питания (что упрощает конструкцию изделий, снижает стоимость их изготовления и эксплуатации);

обеспечить практически неограниченное время поддерживания магнитного поля в рабочих условиях (в зависимости от применяемого материала).

Недостатками постоянных магнитов являются:

хрупкость материалов, применяемых при их создании (это затрудняет механическую обработку изделий);

необходимость защиты от влияния влаги и плесневых грибков (для ферритов ГОСТ 24063), а также от воздействия повышенных влажности и температуры.

Виды и свойства постоянных магнитов

Ферритовые магниты хоть и отличаются хрупкостью, но обладают хорошей коррозийной стойкостью, что при невысокой цене делает их наиболее распространенными. Такие магниты изготавливают из сплава оксида железа с ферритом бария или стронция. Данный состав позволяет материалу сохранять свои магнитные свойства в широком температурном диапазоне — от -30°C до +270°C.

Применение ферритового магнита

Магнитные изделия в форме ферритовых колец, брусков и подков широко используются как в промышленности, так и в быту, в технике и электронике. Их используют в акустических системах, в генераторах, в двигателях постоянного тока. В автомобилестроении ферритовые магниты устанавливают в стартеры, в стеклоподъемники, в системы охлаждения и в вентиляторы.

Ферритовые магниты отличаются коэрцитивной силой порядка 200 кА/м и остаточной магнитной индукцией порядка 0,4 Тесла. В среднем, ферритовый магнит может прослужить от 10 до 30 лет.

Постоянные магниты на основе сплава из алюминия, никеля и кобальта отличаются непревзойденной температурной устойчивостью и стабильностью: они способны сохранять свои магнитные свойства при температурах до +550°C, хотя коэрцитивная сила, характерная для них, относительно мала. Под действием относительно небольшого магнитного поля, такие магниты потеряют исходные магнитные свойства.

Посудите сами: типичная коэрцитивная сила порядка 50 кА/м при остаточной намагниченности порядка 0,7 Тесла. Однако несмотря на эту особенность, магниты альнико незаменимы для некоторых научных исследований.

Постоянные магниты на основе сплава из алюминия, никеля и кобальта

Типичное содержание компонентов в сплавах альнико с высокими магнитными свойствами изменяется в следующих пределах: алюминий — от 7 до 10%, никель — от 12 до 15%, кобальт — от 18 до 40%, и от 3 до 4% меди.

Чем больше кобальта, тем выше индукция насыщения и магнитная энергия сплава. Добавки в виде от 2 до 8% титана и всего 1% ниобия способствуют получению большей коэрцитивной силы — до 145 кА/м. Добавка от 0,5 до 1% кремния обеспечивает изотропию магнитных свойств.

Если нужна исключительная устойчивость к коррозии, окислению и температуре до +350°C, то магнитный сплав самария с кобальтом — то что надо.

По стоимости самарий-кобальтовые магниты дороже неодимовых за счёт более дефицитного и дорогого металла — кобальта. Тем не менее, именно их целесообразно применять в случае необходимости иметь минимальные размеры и вес конечных изделий.

Наиболее целесообразно это в космических аппаратах, авиационной и компьютерной технике, миниатюрных электродвигателях и магнитных муфтах, в носимых приборах и устройствах (часах, наушниках, мобильных телефонах и т.д.)

Самариевые магниты

Благодаря особой коррозийной стойкости, именно самариевые магниты применяются в стратегических разработках и военных приложениях. Электродвигатели, генераторы, подъемные системы, мототехника – сильный магнит из сплава самария-кобальта идеально подходит для агрессивных сред и сложных условий эксплуатации. Коэрцитивная сила порядка 700 кА/м при остаточной магнитной индукции порядка 1 Тесла.

Неодимовые магниты на сегодняшний день очень востребованы и представляются наиболее перспективными. Сплав неодим-железо-бор позволяет создавать супермагниты для различных сфер, начиная с защелок и игрушек, заканчивая электрогенераторами и мощными подъемными машинами.

Неодимовые магниты

Высокая коэрцитивная сила порядка 1000 кА/м и остаточная намагниченность порядка 1,1 Тесла, позволяют магниту сохраняться на протяжении многих лет, за 10 лет неодимовый магнит теряет лишь 1% своей намагниченности, если температура его в условиях эксплуатации не превышает +80°C (для некоторых марок до +200°C). Таким образом, лишь два недостатка есть у неодимовых магнитов — хрупкость и низкая рабочая температура.

Магнитный порошок вместе со связующим компонентом образует мягкий, гибкий и легкий магнит. Связующие компоненты, такие как винил, каучук, пластик или акрил позволяют получать магниты различных форм и размеров.

Магнитопласты

Магнитная сила, конечно, уступает чистому магнитному материалу, но иногда такие решения необходимы для достижения определенных необычных для магнитов целей: в производстве рекламной продукции, при изготовлении съемных наклеек на авто, а также в изготовлении различных канцелярских и сувенирных товаров.

Одноименные полюса магнитов отталкиваются, а разноименные полюса притягиваются. Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой. В чем, например, причина намагничивания железа?

Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси.

При движении электронов возникают элементарные магнитные поля. И если кусок железа внести во внешнее магнитное поле, то все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле куска железа. Так, если приложенное внешнее магнитное поле было достаточно сильным, то после его отключения кусок железа станет постоянным магнитом.

Взаимодействие магнитов

Знание формы и намагниченности постоянного магнита позволяет для расчетов заменить его эквивалентной системой электрических токов намагничивания. Такая замена возможна как при расчете характеристик магнитного поля, так и при расчетах сил, действующих на магнит со стороны внешнего поля.

Для примера проведем расчет силы взаимодействия двух постоянных магнитов. Пусть магниты имеют форму тонких цилиндров, их радиусы обозначим r1 и r2, толщины h1, h2 , оси магнитов совпадают, расстояние между магнитами обозначим z, будем считать, что оно значительно больше размеров магнитов.

Возникновение силы взаимодействия между магнитами объясняется традиционным способом: один магнит создает магнитное поле, которое воздействует на второй магнит.

Для расчета силы взаимодействия мысленно заменим магниты с однородной намагниченностью J1 и J2 круговыми токами, текущими по боковой поверхности цилиндров. Силы этих токов выразим через намагниченности магнитов, а их радиусы будем считать равными радиусам магнитов.

Разложим вектор индукции B магнитного поля, создаваемого первым магнитом в месте расположения второго на две составляющие: осевую, направленную вдоль оси магнита, и радиальную — перпендикулярную ей.

Для вычисления суммарной силы, действующей на кольцо, необходимо мысленно разбить его на малые элементы Idl и просуммировать силы Ампера, действующие на каждые такой элемент.

Используя правило левой руки, легко показать, что осевая составляющая магнитного поля приводит к появлению сил Ампера, стремящихся растянуть (или сжать) кольцо – векторная сумма этих сил равна нулю.

Наличие радиальной составляющей поля приводит к возникновению сил Ампера, направленных вдоль оси магнитов, то есть к их притяжению или отталкиванию. Останется вычислить силы Ампера — это и будут силы взаимодействия между двумя магнитами.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *