Электромагнит — это что такое? Сила электромагнита
Существуют определенные природные материалы и объекты, которые сами по себе обладают магнитными свойствами. Их называют естественными магнитами. Примерами естественного магнитного материала могут служить железные руды, насыщенные магнитными свойствами. Примером же естественного магнитного объекта выступает наша с вами планета Земля.
Естественные, они же постоянные, магниты обладают высокой остаточной магнитной индукцией, что позволяет им сохранять магнитные свойства на протяжении длительного времени.
Однако, более широкое распространение в промышленности, медицине и других отраслях нашли электромагниты — электрические аппараты, в которых магнитным полем можно управлять. В электроэнергетике применяются, кроме прочего, в реле, выключателях, генераторах.
При определенных условиях магнитные поля способны создавать поля электрические. Верно и обратное утверждение. В этом и кроется суть электромагнитов.
Классификация электромагнитов
Принято классифицировать электромагниты (ЭМ) по способу питания на электромагниты постоянного и переменного тока. ЭМ постоянного тока в свою очередь классифицируются на постоянного тока нейтральные и поляризованные. Также существуют ЭМ выпрямленного тока.
В нейтральных электромагнитах постоянного тока
магнитный поток создается обмоткой постоянного тока. Величина магнитного потока зависит лишь от обмотки, не зависит от направления. Если величина тока равна нулю, то магнитный поток и сила притяжения также опускаются практически до величины нуля.
Поляризованные ЭМ постоянного тока
характеризуются наличием двух независимых магнитных потоков — рабочего и поляризующего. Поляризующий поток создается постоянными магнитами или электромагнитами. Рабочий же поток создается под действием намагничивающей силы рабочей обмотки. При отсутствии тока на якорь магнита будет действовать сила притяжения от поляризующего потока. В отличие от нейтральных, в поляризованных электромагнитах их действие зависит не только от величины рабочего потока но и от его направления.
В электромагнитах переменного тока
обмотка питается от источника переменного тока. Величина и направление магнитного потока изменяется во времени от нуля до максимума.
Далее другие возможные классификации
- с последовательными (мало витков большого сечения) и параллельными (много витков малого сечения) обмотками
- работающие в длительном, кратковременном или прерывистом режимах
- быстродействующие, замедленно действующие и нормально действующие
- с внешним притягивающим якорем, со втягивающимся якорем, с внешним поперечно движущимся якорем
Магнитодвижущая сила в электротехнике
Студийный магнитофон, конец 80-х гг. прошлого века
В современном мире существует множество примеров использования магнитодвижущей силы, в первую очередь в силовой электротехнике. Электромагниты весьма широко используются в электрических и электромеханических устройствах, включая: электродвигатели и генераторы, трансформаторы, разнообразные реле, электрические звонки и зуммеры, громкоговорители и наушники, магнитные замки, индукционные нагреватели и магнитные грузозахваты. Этот перечень можно дополнить устройствами магнитной записи и хранения данных, включая магнитофоны, видеомагнитофоны и жесткие диски.
Блок головок и головка чтения-записи жесткого диска
Электромагниты применяются в научном и медицинском оборудовании, являясь неотъемлемой частью масс-спектрометров, ускорителей частиц, устройств магниторезонансной томографии и устройств извлечения инородных магнитных предметов из тела человека. Электромагниты используют для сепарации магнитных материалов и предметов от немагнитных, а также в средствах электрической защиты и аварийного отключения.
Электромагниты
Конструкция и принцип работы
Электромагнитом называют устройство, которое способно создавать магнитное поле при протекании электрического тока. Типичный электромагнит состоит, по крайней мере, из одной обмотки, выполненной из проводящих материалов, и ферромагнитного магнитопровода — сердечника, который приобретает свойства магнита при протекании тока через обмотку.
Обмотки электромагнитов обычно изготавливаются из изолированного алюминиевого или медного провода. Хотя существуют электромагниты с обмотками из сверхпроводящих материалов. Магнитопроводы электромагнитов выполняются из магнитомягких материалов — электротехнической или конструкционной стали и чугуна, а также из железоникелевых или железокобальтовых сплавов.
По современным физическим представлениям, такие материалы состоят из крошечных намагниченных областей, называемыми магнитными доменами. Домены в отсутствие внешнего магнитного поля ориентированы хаотически и их суммарное магнитное поле равно нулю. При подаче тока в обмотку возникает магнитное поле, заставляющее домены перестраиваться в направлении этого поля, тем самым усиливая его. Когда внешнее поле для данного материала достигает некоторой максимальной величины, все домены ориентированы в направлении поля. Дальнейшее увеличение протекающего тока не приводит к увеличению поля за счёт доменов, это явление называется магнитным насыщением.
Магнитопроводы электромагнитов, в зависимости от назначения, могут иметь различную форму, в простейшем случае представляют собой набор П-образных пластин.
Основное преимущество электромагнитов перед постоянными магнитами заключается в возможности быстрого регулирования силы притяжения (магнитодвижущей силы) изменением протекающего через обмотку тока. С другой стороны, именно это обстоятельство является недостатком электромагнитов по сравнению с постоянными магнитами, поскольку для поддержания магнитного поля требуется непрерывный расход электроэнергии.
Из-за этого электромагнитам присущи омические потери на нагрев проводов обмотки; помимо этого, для электромагнитов переменного тока характерны потери на вихревые токи Фуко и на переориентацию магнитных доменов материала сердечника. Последние потери называются потерями гистерезиса; для их снижения сердечники электромагнитов изготавливаются из специальных материалов с низкой коэрцитивной силой (малой остаточной намагниченностью или, что то же самое, с малой площадью петли гистерезиса). С этой же целью магнитопроводы электромагнитов переменного тока выполняются в виде набора тонких листов с изоляционным слоем на поверхности.
Из-за действия вышеизложенных факторов, напряженность магнитных полей обычных электромагнитов с сердечниками из ферромагнитных материалов ограничена значением в 1,6 Тл. Для получения более высоких значений напряжённости магнитного поля применяют электромагниты с обмотками из сверхпроводящих материалов без ферромагнитных сердечников.
Электромагнитная муфта
Широкое применение в современной технике нашли электромагнитные муфты, применяемые как для контактной, так и для бесконтактной передачи крутящего момента. При подаче электрического тока на обмотку электромагнитной муфты, последняя за счёт создаваемого магнитного поля притягивает арматуру ведомого вала с нагрузкой и из-за сил трения вал набирает обороты до скорости вращения ротора. При отключении тока, пружина отводит арматуру вала от ротора, и вал начинает вращаться свободно. Такой тип сцепления применяется во многих машинах и механизмах в различных областях техники, кроме того, он широко применяется для автоматизации производства. Магнитная муфта имеется практически в каждом современном автомобиле, где она используется для соединения вала компрессора кондиционера с коленчатым валом двигателя автомобиля.
Электромагнитная муфта компрессора автомобильного кондиционера
Уникальными возможностями по передаче крутящего момента в широком диапазоне усилий обладают электромагнитные муфты сцепления на ферромагнитных порошках. Они могут передавать крутящий момент почти линейно, что позволяет очень точно регулировать крутящий момент. Они находят применение в системах контроля натяжения проводов, фольги и лент при их производстве.
Кроме того, электромагнитные муфты нашли широкое применение в случаях, когда требуется передача крутящего момента через физический немагнитный барьер, разделяющий среды с различным состоянием вещества или различными агрессивными свойствами. Например: для бесконтактного перемешивания активных растворов в стеклянных емкостях химических лабораторий или для циркуляции воды в аквариумах.
Электромагниты на сверхпроводниках
Хотя идея построения таких электромагнитов была предложена ещё 1911 году голландским физиком Хейке Камерлинг-Онессом после открытия последним явления сверхпроводимости, первый практический электромагнит из сверхпроводящей ниобиевой проволоки, охлаждаемой жидким гелием до температуры 4,2°К, был построен только в 1955 году. Магнитное поле этого электромагнита составляло 0,7 Тл.
Слева направо: Хейке Камерлинг-Оннес, Карл Александр Мюллер и Йоханнес Георг Беднорц. Источник: Википедия
Открытие материалов с высокотемпературной сверхпроводимостью швейцарским физиком Карлом Мюллером и его немецким коллегой Георгом Бернодцем в 1986 году на основе купратов, и последующие исследования в этой области, позволило создать электромагниты на высокотемпературных сверхпроводниках с температурой кипящего жидкого азота (–77°К или –196°С). Это обстоятельство значительно удешевило электромагнитные установки такого типа для получения магнитных полей высокой напряжённости.
В 2007 году электромагнит с обмотками из сверхпроводящего материала YBCO (иттрий-барий-медь-кислород) создал рекордное магнитное поле в 26,8 Тл.
К сожалению, сверхпроводимость современных сверхпроводящих материалов ограничена — под действием очень сильного поля или высокой плотности тока они перестают быть сверхпроводниками. Тем не менее, электромагниты на сверхпроводниках нашли применение не только в исследовательской технике, но и в практической медицине — их используют в установках для проведения магниторезонансной томографии.
Электромагнит Биттера
Электромагнит (или соленоид) Биттера представляет собой электромагнит для создания сверхсильных стационарных магнитных полей. Этот тип электромагнита был изобретён американским физиком Френсисом Биттером в 1933 году и построен в 1936 году. Проработал до 1962 года и вплоть до 1958 года оставался самым мощным электромагнитом в мире, создававшим магнитное поле с магнитной индукцией в 10 Тесла. Кратковременно мог создавать поле в 15,2 Тл. Проблемы создания мощных электромагнитов связаны, в основном, с решением задач повышения тепловой устойчивости обмоток к нагреванию электрическим током, а также повышения механической прочности конструкции. Конструктивно представляет собой соленоид из набора медных дисков, разрезанных по радиусу и изолированных друг от друга дисками из слюды той же геометрии. Диски из меди и слюды, чередуясь между собой, образуют двойную спираль. С целью охлаждения, после формирования спиралей, в них высверливали несколько сотен отверстий, сквозь которые прокачивалась охлаждающая вода. Такая пакетная конструкция позволяла выдерживать огромные механические нагрузки, возникающие из-за действия силы Лоренца. Электрическая мощность установки достигала 2 МВт.
У современных магнитов такого типа изменены геометрия разреза дисков и форма отверстий (щелевые отверстия вместо круглых), а также изменены форма и размер пластин. Кроме того, современные конструкции выполняются в виде оппозитно расположенных отдельных секций, каждая из которых представляет собой несколько цилиндрически вложенных друг в друга соленоидов Биттера.
Учёным из университета Радбоуд в г. Неймеген, Нидерланды, удалось 31 марта 2014 года достичь рекордного значения стационарного магнитного поля для данного типа электромагнитов в 37,5 Тл при комнатной температуре.
Исполнительные электромеханизмы
Электромагнитные приводы, непосредственно преобразующие энергию электрического тока в поступательное движение рабочего органа, называются исполнительным механизмом. Конструктивно представляют собой прямоходовой электромагнит с втягивающим подпружиненным якорем. Применяются в системах позиционного регулирования и управления, поскольку регулирующий орган такого привода имеет два конечных положения, соответствующих двум возможным положениям сердечника электромагнита.
Электромагнитный клапан
Электромагнитный клапан — это электромеханическое устройство, предназначенное для регулирования потоков жидкостей и газов. Конструктивно состоит из корпуса, соленоида с подвижным сердечником, на котором установлен диск или поршень, регулирующий поток.
Автоматический выключатель с электромагнитным расцепителем
Клапан с одним выходом и одним входом, производит открывание и запирание потока. Аналогичный клапан с одним входом и двумя выходами выполняет переключение входного потока на соответствующий выход. Открывание (закрывание) или переключение клапана происходит путём подачи напряжения на катушку соленоида, при этом магнитный сердечник втягивается в соленоид, что и приводит к открытию, закрытию или переключению клапана. Для герметичности клапана его сердечник помещается внутри закрытой трубки, размещённой в соленоиде.
Электромагнитные клапаны применяются как в производственных технологических процессах, так и в быту. С их помощью можно дистанционно управлять подачей требуемого объёма жидкости, пара или газа в нужный момент времени, что находит, например, применение в системах полива, отопительных системах и других областях техники.
Примерами применения электромагнитных клапанов могут служить привычные для нас вещи: автоматическая стиральная машина (набор и слив воды), клапаны карбюратора, управления подачи воздуха на холостом ходу, переключения трансмиссии и другие электромагнитные клапаны автомобиля.
Расцепитель автоматического выключателя
Автоматический выключатель предназначен для подачи тока в электрическую цепь в нормальном режиме работы, и для разрыва цепи, отключая ток при аномальном его значении, например, при коротком замыкании.
Разрыв цепи осуществляется двумя типами расцепителей: тепловым и токовым мгновенного действия. Последний представляет собой соленоид, подвижный сердечник которого может приводить в действие механизм расцепления при превышении значения тока, называемого током отсечки. Ток отсечки обычно выбирается в пределах 2–10 раз больше номинального.
Реле
Электромагнитное реле — устройство, предназначенное для замыкания или размыкания механических электрических контактов при подаче в обмотку реле электрического тока. Конструктивно электромагнитное реле состоит из электромагнита, подвижного якоря и механически связанного с якорем переключателя. Электромагнит реле представляет собой катушку с электрическим проводом, намотанным на сердечник (якорь). Для усиления магнитного потока электромагнит реле снабжается дополнительным магнитопроводом — ярмом.
В небольших реле якорь удерживается в исходном положении благодаря упругим свойствам механических контактов, в других случаях в конструкцию реле добавляется механическая пружина, которая возвращает якорь в исходное положение. При протекании электрического тока по обмотке реле электромагнит притягивает якорь, преодолевая усилие пружины, а якорь, толкая контакты, замыкает или размыкает их. Чувствительность реле к управляющему току зависит от числа витков в обмотке: чем выше число витков, тем чувствительнее реле.
В некоторых исполнениях реле может быть целая группа контактов, как нормально замкнутых, так и нормально разомкнутых при отсутствии управляющего тока. Различные варианты электромагнитных реле нашли широкое применение в телефонии и в устройствах автоматики и применялись до тех пор, пока не были вытеснены полупроводниковыми устройствами, выполняющими те же функции.
Отдельным классом реле являются шаговые искатели — электромеханические коммутационные устройства, которые применялись в системах телефонии, автоматизации и управления технологическими процессами. Шаговые искатели управляются сериями токовых импульсов и до появления полупроводниковых реле находили широкое применение в различных областях техники. Особенно широкое распространение получили декадно-шаговые искатели, применяемые в ранних конструкциях автоматических телефонных станций.
Шаговые искатели телефонной станции
Также отдельным классом слаботочных реле являются герконовые реле — устройства, состоящие из геркона и электромагнитной катушки. Геркон представляет собой пару (или больше) ферромагнитных упругих контактов, запаянных в герметичную стеклянную колбочку с откачанным воздухом или заполненную инертным газом. Контакты геркона замыкаются при поднесении магнита или включении электромагнита. До недавнего времени находили широкое применение в качестве датчиков положения в устройствах автоматики, охранной сигнализации, компьютерной техники (клавиатуры, датчики бесщёточных двигателей постоянного тока приводов накопителей) и так далее. В последнее время герконовые датчики вытесняются датчиками Холла.
Геркон
Контакторы
Контакторы широко используются в электрооборудовании тепловозов и пассажирских вагонов
Разновидностью электромагнитного реле является контактор — двухпозиционное электромагнитное устройство, предназначенное для дистанционного включения и отключения силовых электрических цепей.
Конструктивно состоит из электромагнита, системы контактов (как подвижных, так и не подвижных) и дугогасительной системы. Кроме того, в конструкцию контактора входят и вспомогательные контакты для переключения цепей сигнализации и управления.
Контакторы применяются для коммутации электрических цепей промышленного тока при напряжении от нескольких десятков до нескольких тысяч вольт и токах до нескольких тысяч ампер. Основная область их применения — управление мощными электродвигателями на производстве и тяговыми двигателями на транспорте (электровозы, трамваи, троллейбусы, лифты и т.д.).
Устройство электромагнитов
Несмотря на обширное, судя по описанной выше классификации, количество разнообразных вариантов электромагнитов, существуют определенные однотипные узлы, которые встречаются у всех ЭМ.
- Катушка с расположенной на ней намагничивающей обмоткой
- Подвижная часть электромагнита — якорь
- Неподвижная часть — ярмо и сердечник
Между якорем и неподвижными частями существуют воздушные промежутки. Так вот, воздушные промежутки бывают полезными и паразитными. Полезные промежутки располагаются по возможному пути движения якоря. Паразитные промежутки лежат за пределами движения якоря.
Также существует понятие полюса. Полюсами называют поверхности магнитопровода, которые ограничивают полезный воздушный промежуток.
Конструктивные формы электромагнитов переменного тока не имеют множества вариантов, за счет того, что сердечник набирается из листов электротехнической стали. Это необходимо для борьбы с вихревыми токами.
Введение
Электромагнит – это прибор/устройство, способный создавать магнитное поле вследствие прохода электрического тока сквозь него. Чаще всего электромагниты состоят из ферромагнитного сердечника и нескольких слоев обмотки. Они предназначаются, в первую очередь, для образования механических усилий; к ним приставляют якорь – подвижный элемент магнитопровода, который передает это усилие.
Магнитные поля возникают в случае, когда весь набор электронов металлического объекта начинает вращаться в одинаковом направлении. В искусственных магнитах это движение обуславливается при помощи электромагнитного поля. Для постоянных электромагнитов данное явление считается натуральным.
Как работает электромагнит
Сам цикл работы ЭМ представляет собой следующую последовательность действий. Сначала в обмотку подается ток такой величины, при которой магнитные силы станут больше, чем силы удерживающие якорь в покое.
Далее произойдет отрыв якоря из состояния покоя и движение якоря в конечную точку полезного промежутка. Это первый этап.
На втором этапе якорь ЭМ подтянут и через него протекает ток. Как известно, ток создает термическое воздействие с течением времени. Поэтому время работы не должно превышать допустимое. На этом этапе сила тяги электромагнита максимальная.
Последний, Третий этап — аналогичен первому — ток уменьшается до нуля, магнитные силы становятся меньше сил, возвращающих якорь в состояние покоя, якорь отпадает. Далее электромагнит остывает.
Если характер его работы периодически повторяющийся, то за время до следующего цикла, ему необходимо успеть остыть.
Общая характеристика
Электромагнит – это простая катушка провода, которая подключена к источнику, передающему постоянный ток.
Подключившись к источнику постоянного тока (а также напряжения), катушка и провод начинают получать энергетические ресурсы и создают магнитное поле, которое является подобным полю, что образуется в постоянных полосовых магнитах. Плотность, которой обладает магнитный поток, всегда является пропорциональной величине электрического тока, протекающего сквозь толщу катушки. Полярность электромагнита определяют по направлению тока. Механизм образования включает в себя (самый простой вариант) наматывание провода вокруг сердечника, выполненного из металла, через который потом пропускают электричество из определенного источника. Если внутренняя полость катушка заполнена воздухом, то ее называют соленоидом.
Электромагнит – это устройств, посредством которого можно создавать электромагнитное поле. Главной характеристикой является его способность контролировать силу данного поля, полярность и ее форму. При этом силу магнитного поля контролируют посредством величины использованного электрического тока, который протекает сквозь катушку. Полярность можно задавать, определив в каком направлении нужно двигать протекающий ток. Форма магнитного поля зависит от формы металлической сердцевины, служащей «стержнем» для обмотки проводом. Не забывайте, что полюса электромагнита определяются аналогично тому, как это делают в соленоидах, по физическому правилу правой руки. П.П.Р. также называют правилом буравчика, являющегося мнемоническим средством, посредством которого определяют направление векторных произведений и правого базиса.
Увеличивать силу электромагнита, а точнее его поля, можно при помощи:
- применения сердечников из «мягкого» железа;
- применения больших чисел витков;
- применения электрического тока в больших размерах.
Сравнение ЭМ постоянного и переменного тока
При выборе между электромагнитами на постоянном или переменном токе следует учитывать следующие особенности:
- Сила тяги. При одинаковом сечении полюсов средняя величина силы тяги в ЭМ на переменном токе (“ЭМ
Однако, в промышленности, вышеописанные недостатки “ЭМ
тока” не вызывают особых препятствий на пути их использования.
автоматический выключатель АП-50 с электромагнитным расцепителем
Историческая справка
Широкое применение магнитодвижущей силы немыслимо без надёжных генераторов электричества и устройств, преобразующих последнее в механическое движение.
Слева направо: Франсуа Жан Доминик Араго, Уильям Стёрджен, Эдвард Дэви и Сэмьюэл Морзе. Источник: Википедия
Первый соленоид, представлявший собой проволочную катушку с постоянным током, был изобретён французским учёным Андре-Мари Ампером в 1820 году для усиления открытого Х.Эрстедом магнитного действия тока, и применён соотечественником Ампера Франсуа Араго в опытах по намагничиванию стальных стержней. Магнитные свойства соленоида были экспериментально изучены Ампером в 1822 году, при этом была установлена эквивалентность соленоида постоянным природным магнитам.
Старинный трансформатор из экспозиции Канадского музея науки и техники в Оттаве.
Первый электромагнит был создан английским учёным Уильямом Стёрджоном в 1824 году. Он представлял собой катушку из неизолированного медного провода, который наматывался в один ряд на согнутый в виде подковы стержень из мягкого железа. По причине небольшого числа витков катушки, электромагнит Стёрджона был относительно слаб — он мог поднять вес около 4-х килограмм при протекании тока от отдельной батареи. При выключении тока намагниченный железный стержень не мог удержать и 200 грамм (за счёт остаточной намагниченности), что прекрасно демонстрировало принцип работы электромагнита.
В начале 30-годов 19-го столетия американский учёный и изобретатель Джозеф Генри популяризовал и последовательно улучшал конструкцию электромагнита. Применив изолирование медных проводов шёлковой нитью, Дж. Генри удалось получить многослойную обмотку и довести число витков в ней до нескольких тысяч. В результате его электромагнит мог поднять ферромагнитные материалы весом до 936 кг.
Честь изобретения электромеханического реле приписывают как Джозефу Генри, так и английскому учёному, врачу и изобретателю Эдварду Дэви. Любопытная деталь: оба изобрели его независимо друг от друга примерно в одно и то же время (1835—1837 гг.), работая над своими версиями телеграфного аппарата!
Реле Морзе в экспозиции Канадского военного музея связи и электроники, Кингстон, Онтарио
Реле, аналогичные показанному на этой иллюстрации, использовались в логических блоках космических ракет и кораблей почти до конца XX века
А идея применения именно электромагнитного реле в качестве цифрового (в современном понятии) усилителя постоянного тока зафиксирована в американском патенте от 1840 года на имя Сэмьюэла Морзе. Это изобретение произвело революцию в телеграфии — теперь с помощью реле можно было передавать сигналы телеграфа на сколь угодно большие расстояния, вплоть до межконтинентальных. В системах управления космических ракет, кораблей, станций и спутников двоичная логика, построенная с помощью релейных схем, применялась вплоть до конца ХХ века, несмотря на наличие бортовых вычислительных машин, которые стали использоваться в космической технике с начала семидесятых.
Способы эксплуатации
Наиболее широкой и важной областью применения электромагнитов является сфера конструирования и эксплуатации электрических машин и аппаратов, входящих в систему автоматики в промышленности. Другой важной областью является аппаратура регулировки и защиты электротехнических объектов/установок. Также электромагниты применяются при изготовлении разнообразных механизмов, в роли привода по которому осуществляется необходимое поступательное перемещение (поворот) рабочего органа определенной машины или для создания удерживающих сил. Примером последних функций может служить электромагнит в составе грузоподъемного механизма/машины. Существуют электромагниты муфт, необходимых для начала действия торможения или установления сцепления (в машинах), электромагниты, применяемых в пускателях, устройствах контактора и выключателя, а также их используют при создании электроизмерительных приборов и т. д.
Электромагниты – это устройства, которые являются перспективными при конструировании тяговых приводов в скоростных транспортных средствах, где с их помощью создают магнитную подушку. В настоящее время и медицина не обходится без использования электромагнитов. При проведении химических, биологических и физических экспериментов их нередко применяют. Благодаря широте эксплуатации и конструктивном исполнении, а также масштабе и затратам энергии, электромагниты являются доступными как в быту, так и в любых других сферах деятельности человека. Вес электромагнитов может варьироваться от нескольких грамм до сотни тон, а потребляемое электричество расходуется – от доли Вт до многих десятков МВт.
От чего зависят магнитные свойства электромагнита?
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Электромагнит постоянного тока: как устроен
Словарные определения электричества и магнетизма отличаются, хотя они являются проявлениями одной и той же силы. Когда электрические заряды движутся, они создают магнитное поле. Его изменение, в свою очередь, приводит к возникновению электрического тока.
Изобретатели используют электромагнитные силы для создания электродвигателей, генераторов, аппаратов МРТ, левитирующих игрушек, бытовой электроники и множества других бесценных устройств, без которых невозможно представить повседневную жизнь современного человека. Электромагниты неразрывно связаны с электричеством, они просто не смогут работать без внешнего источника питания.
Определение
Электромагнит – это специальное устройство, работа которого создает магнитное поле при подаче на него электрического тока. Чаще всего электромагниты состоят из первичной обмотки и сердечника, который обладает ферромагнитными свойствами.
Обмотка изготавливается обычно из медного или алюминиевого провода различной толщины, обязательно покрытого изоляцией. Но существуют и электромагниты из сверхпроводящих материалов. Сами же магнитопроводы делают из стали, железоникелевых сплавов или чугуна. А для того чтобы минимизировать потери на вихревые токи, магнитопроводы конструктивно выполняются из целого набора тонких листов. Теперь мы знаем, что такое электромагнит. Рассмотрим более подробно историю создания этого полезного устройства.
История
Создателем электромагнита считается Уильям Стерджен. Именно он в 1825 году сделал первый подобный магнит. Конструктивно устройство представляло собой цилиндрический кусок железа, вокруг которого был намотан толстый заизолированный медный провод. В момент, когда по нему пускали электрический ток, стержень из металла приобретал свойства магнита. А когда течение тока прерывалось, весь магнетизм устройство сразу же теряло. Именно такое качество – включение и отключение при необходимости – и позволяет применять электромагниты в ряде технологических и промышленных сфер.
Мы рассмотрели вопрос о том, что такое электромагнит. Теперь же разберем основные его виды. Разделяются они в зависимости от способа создания магнитного поля. Но функция их остается одной и той же.
Общая характеристика
Электромагнит – это простая катушка провода, которая подключена к источнику, передающему постоянный ток.
Подключившись к источнику постоянного тока (а также напряжения), катушка и провод начинают получать энергетические ресурсы и создают магнитное поле, которое является подобным полю, что образуется в постоянных полосовых магнитах. Плотность, которой обладает магнитный поток, всегда является пропорциональной величине электрического тока, протекающего сквозь толщу катушки. Полярность электромагнита определяют по направлению тока. Механизм образования включает в себя (самый простой вариант) наматывание провода вокруг сердечника, выполненного из металла, через который потом пропускают электричество из определенного источника. Если внутренняя полость катушка заполнена воздухом, то ее называют соленоидом.
Электромагнит – это устройств, посредством которого можно создавать электромагнитное поле. Главной характеристикой является его способность контролировать силу данного поля, полярность и ее форму. При этом силу магнитного поля контролируют посредством величины использованного электрического тока, который протекает сквозь катушку. Полярность можно задавать, определив в каком направлении нужно двигать протекающий ток. Форма магнитного поля зависит от формы металлической сердцевины, служащей «стержнем» для обмотки проводом. Не забывайте, что полюса электромагнита определяются аналогично тому, как это делают в соленоидах, по физическому правилу правой руки. П.П.Р. также называют правилом буравчика, являющегося мнемоническим средством, посредством которого определяют направление векторных произведений и правого базиса.
Увеличивать силу электромагнита, а точнее его поля, можно при помощи:
- применения сердечников из «мягкого» железа;
- применения больших чисел витков;
- применения электрического тока в больших размерах.
Основная классификация
Существует три основных способа классификации электромагнитов. Они обусловлены током в электромагнитах и способом его создания:
- Нейтральный э/м постоянного тока – устройство, в котором магнитный поток создают так, что сила притяжения становится зависимой только от размерности и скорости подачи постоянного тока, а его направление в обмотке ни на что не влияет.
- Поляризованный э/м постоянного тока – устройство, внутрь которого помещают 2 независимых магнитных потока: поляризующий и рабочий. Второй создают при помощи рабочей обмотки. Поляризующиеся потоки своим образованием обязаны постоянными магнитными полями, реже дополнительным электромагнитам. Данные потоки необходимы для создания притягивающих сил в магните. Деятельность такого устройства обуславливается направлением и/или величиной электрического тока в обмотке, выполняющего работу.
- Э/м переменного тока – устройств, обмотку которого питает источник переменного тока. Течение потока магнитной природы может периодически изменяться по своему направлению и размерности (величине). Потенциал однонаправленной силы, отвечающей за притяжение, меняться может только по своей величине, что приводит к пульсации этой силы в размере от нуля до максимально предельных значений с частотой вдвое большей, чем частота подпитывающего тока. Чаще всего используются в бытовой технике.
Другие виды классификации
Существуют и другие способы классификации электромагнитов. Например, их могут различать по полю электромагнита и его статуса: переменное и/или постоянное.
Также бывают классификации, основанные на методах, по которым происходит включение обмотки (последовательное и параллельное включение), на работоспособности и ее характеристике (способные работать в течение длительного времени, прерывистые и кратковременные) и отличные по скорости выполнения задачи (замедленные и быстродействующие).
Как устроены плоскошлифовальные станки
Подавляющее большинство деталей, изготовленных из металла, подвергается такой технологической операции, как шлифовка. Для ее выполнения с высокой эффективностью и точностью и применяются станки плоскошлифовальной группы.
Довольно сложный в изготовлении ленточный станок с отличным функционалом
На плоскошлифовальных станках серийных моделей можно обрабатывать как плоские, так и профильные детали. Точность обработки поверхности, которой удается добиться при использовании таких устройств, составляет 0,16 микрон. Конечно, достичь такого результата при обработке на станках, изготовленных своими руками, практически невозможно. Однако даже той точности, которую позволяют получать самодельные станки, вполне достаточно для многих металлических изделий.
Несущим конструктивным элементом станков данной группы (как и любого другого оборудования) является станина. От ее габаритов напрямую зависит, какого размера детали можно обрабатывать на станке
Наиболее распространенным материалом изготовления станин плоскошлифовального оборудования является чугун, так как данный металл за счет своих характеристик отлично гасит вибрации, что особенно важно для устройств подобного назначения
Рабочий стол и органы управления шлифовального станка 3Г71М
Конструктивным элементом плоскошлифовальных станков, на котором фиксируется обрабатываемая заготовка, является рабочий стол, имеющий круглую или прямоугольную форму. Его размеры в зависимости от конкретной модели плоскошлифовального оборудования могут серьезно варьироваться. Обрабатываемые детали на таком рабочем столе могут фиксироваться за счет его намагниченной поверхности либо при помощи специальных зажимных элементов. В процессе обработки рабочий стол совершает возвратно-поступательные и круговые движения.
В плоскошлифовальных станках, выпускаемых серийно, рабочие столы приводятся в движение при помощи гидравлической системы. В оборудовании, собранном своими руками, для этого используют механические передачи.
Шлифовка стальной заготовки, фиксируемой на рабочей поверхности станка с помощью магнитного поля
Важными элементами конструкции плоскошлифовального оборудования, за счет которых обеспечиваются точность и плавность перемещения рабочего стола, являются направляющие. Кроме высокой точности изготовления, направляющие должны обладать исключительной прочностью, так как в процессе практически постоянных перемещений рабочего стола они подвергаются активному износу.
Для достижения высокой точности обработки направляющие должны обеспечить точное, плавное (без рывков) перемещение рабочего стола с минимальным трением соприкасающихся элементов. Именно поэтому для изготовления данных конструктивных элементов используется высокопрочная сталь, которую после изготовления из нее направляющих подвергают закалке.
Вариант изготовления направляющих с использованием уголков и подшипников
Рабочий инструмент плоскошлифовального станка, в качестве которого может использоваться шлифовальный круг или абразивная лента, устанавливается на шпинделе бабки. Вращение рабочему инструменту, за которое отвечает главный электрический двигатель, может передаваться посредством редуктора или ременной передачи.
Для плоскошлифовальных станков, которые делаются своими руками, можно выбрать более простой вариант: подобрать диаметр шлифовального круга таким образом, чтобы его можно было закрепить непосредственно на валу электродвигателя. Это исключит необходимость использования редукторной или ременной передачи.
Конструкция и составные части
Чем отличаются диэлектрические галоши от бот, где их применяют и как поверяют
Центральным рабочим элементом привода является блок соленоида, который образуется полой катушкой и магнитным сердечником. Коммуникационные электромагнитные связи данного компонента с другими деталями обеспечиваются малой внутренней арматурой с управляющими импульсными клапанами. В нормальном состоянии сердечник поддерживается пружиной со штоком, который опирается в седло.
Кроме того, типовое устройство электромагнитного привода предусматривает наличие так называемого ручного дублера рабочей части, который берет на себя функции механизма в моменты резких перепадов или полного отсутствия напряжения. Может предусматриваться и дополнительный функционал, обеспечиваемый средствами сигнализации, вспомогательными запирающими элементами и фиксаторами позиции сердечника. Но поскольку одним из преимуществ приводов такого типа является небольшой размер, то в целях оптимизации разработчики стараются исключать чрезмерное насыщение конструкции второстепенными устройствами.
Способы эксплуатации
Наиболее широкой и важной областью применения электромагнитов является сфера конструирования и эксплуатации электрических машин и аппаратов, входящих в систему автоматики в промышленности. Другой важной областью является аппаратура регулировки и защиты электротехнических объектов/установок.
Также электромагниты применяются при изготовлении разнообразных механизмов, в роли привода по которому осуществляется необходимое поступательное перемещение (поворот) рабочего органа определенной машины или для создания удерживающих сил. Примером последних функций может служить электромагнит в составе грузоподъемного механизма/машины.
Существуют электромагниты муфт, необходимых для начала действия торможения или установления сцепления (в машинах), электромагниты, применяемых в пускателях, устройствах контактора и выключателя, а также их используют при создании электроизмерительных приборов и т. д.
Электромагниты – это устройства, которые являются перспективными при конструировании тяговых приводов в скоростных транспортных средствах, где с их помощью создают магнитную подушку. В настоящее время и медицина не обходится без использования электромагнитов. При проведении химических, биологических и физических экспериментов их нередко применяют.
Благодаря широте эксплуатации и конструктивном исполнении, а также масштабе и затратам энергии, электромагниты являются доступными как в быту, так и в любых других сферах деятельности человека. Вес электромагнитов может варьироваться от нескольких грамм до сотни тон, а потребляемое электричество расходуется – от доли Вт до многих десятков МВт.
Промышленность
Наверное, все хоть раз, но видели разновидности такого устройства, как электромагнит подъемный. Это толстый «блин» различного диаметра, который обладает огромной силой притяжения и используется для переноски груза, металлолома и вообще любого иного металла. Удобство его заключается в том, что достаточно отключить питание — и весь груз сразу же отцепляется, и наоборот. Это значительно упрощает процесс погрузки и разгрузки.
Сила электромагнита, кстати, рассчитывается по следующей формуле:
F=40550∙B^2∙S.
Рассмотрим ее более подробно. В данном случае F – это сила в килограммах (также может измеряться в ньютонах), B – значение индукции, а S – площадь рабочей поверхности устройства.
Расчёты
Перед тем, как начать собирать электромагнит своими руками, делают предварительный расчёт его параметров. Элементы конструкции рассчитывают отдельно для ЭМ постоянного и переменного тока.
Для постоянного тока
Перед тем, как производить расчёты, определяются с требуемой величиной магнитодвижущей силы (МДС) катушки. Параметры обмотки должны обеспечивать нужную МДС, в то же время катушка не должна перегреваться, иначе будет потерян изоляционный слой провода намотки. Исходными данными для расчёта являются напряжение в проводе электромагнитной катушки и требуемая величина магнитодвижущей силы.
Методики расчёта электромагнитов постоянного тока постоянно публикуются в сети интернета. Там же можно подобрать формулы для определения МДС, поперечного сечения сердечника и провода обмотки, его длины.
Дополнительная информация. В основном в интернете ищут расчёты электромагнитов на 12 вольт, сделанных своими руками. В зависимости от потребностей, можно пойти разными путями расчётов. В основном выбирают «рецепты» по определению сечения и длины провода обмотки с питанием от стандартной батарейки формата «А» или «АА».
Для переменного тока
Основой для ЭМ переменного тока является расчёт обмотки. Как и в предыдущем случае, руководствуются исходными требованиями величины МДС. Несмотря на большое количество рекомендуемых формул расчёта, чаще всего «способности» устройства определяют опытным подбором параметров деталей его конструкции. Методики расчёта ЭМ переменного тока всегда можно найти во всемирной информационной паутине (интернете).
Техника
Также подобные магниты применяются в различной технике и электронике, и в бытовой сфере, к примеру, в качестве замков. Такие замки удобны тем, что очень быстры и просты в работе, но при этом достаточно в экстренной ситуации обесточить здание — и все они откроются, что очень удобно при пожаре.
Ну и, само собой, работа всех реле устроена на принципах электромагнетизма.
Как видим, это очень важное устройство, которое нашло применение в разных сферах науки и техники.
Медицина
Еще в конце XIX века электромагнитам нашли применение в медицине. Один из таких примеров — это специальный аппарат, который мог извлекать из глаза инородные тела (металлическую стружку, ржавчину, окалину и прочие).
И в наше время электромагниты также широко используются в медицине, и, наверное, один из таких аппаратов, про который слышали все, — это МРТ. Работает он на основе магнитно-ядерного резонанса, и, по сути, является огромным и мощнейшим электромагнитом.
Примеры использования ЭМ
В качестве примеров применения электромагнитов можно привести следующие приборы:
- телевизоры;
- трансформаторы;
- пусковые устройства автомобилей.
Телевизоры
Современные жилища, как правило, заполнены различными электроприборами. Находясь вблизи телеприёмника, они могут воздействовать магнитной индукцией на экран телевизора (ТВ). В ТВ уже существует встроенная защита от намагничивания экрана. Если на поле дисплея появились разноцветные пятна, то надо выключить прибор на 10-20 минут. Встроенная защита уберёт намагниченность экрана.
В некоторых случаях этот способ не оказывает нужную помощь. Тогда применяют специальный электромагнит, который называют дросселем. Это своеобразная катушка индукции. Прибор подключают к розетке бытовой электросети и проводят им вдоль и поперёк экрана. В результате наведённые магнитные поля поглощаются дросселем.
Трансформаторы
Конструкция трансформаторов очень схожа со строением электромагнитов. И там, и там есть обмотки и сердечники. Отличие трансформатора от ЭМ состоит в том, что у первого магнитопровод имеет замкнутую форму. Поэтому суммированная магнитная сила обнуляется встречными магнитными потоками.
Пусковое устройство автомобиля
Стартер автомобиля работает как пусковое устройство двигателя. Он включается на время заводки мотора. Временная передача стартового усилия на коленвал двигателя обеспечивается втягивающим электромагнитом.
При повороте ключа в замке зажигания ЭМ втягивает шестерню в зубцы коленвала. Во время контакта электродвигатель стартера проворачивает мотор до возникновения цикла сгорания топлива в цилиндрах мотора. Затем тяговое реле отключает электромагнит, и шестерня стартера возвращается в исходное положение. После чего автомобиль может двигаться.
Стартер с тяговым реле
Электромагниты настолько плотно вошли в сферу деятельности человека, что существование без них немыслимо. Нехитрые устройства можно встретить повсеместно. Знание принципа их действия позволит домашнему мастеру справляться с мелким ремонтом бытовых электротехнических устройств.
Применение грузоподъемных и крупномасштабных электромагнитов
Электродвигатели и генераторы жизненно важны в современном мире. Мотор принимает электрическую энергию и использует магнит, чтобы превратить электрическую энергию в кинетическую. Генератор, наоборот, преобразует движение, используя магниты, чтобы вырабатывать электричество. При перемещении габаритных металлических объектов используются грузоподъемные электромагниты. Они также необходимы при сортировке металлолома, для отделения чугуна и других черных металлов от цветных.
Настоящее чудо техники – японский левитирующий поезд, способный развивать скорость до 320 километров в час. В нем используются электромагниты, помогающие парить в воздухе и невероятно быстро передвигаться.
Военно-морские силы США проводят высокотехнологичные эксперименты с футуристической электромагнитной рельсовой пушкой. Она может направлять свои снаряды на значительные расстояния с огромной скоростью. Снаряды обладают огромной кинетической энергией, поэтому могут поражать цели без использования взрывчатых веществ.
Понятие электромагнитной индукции
При изучении электричества и магнетизма важным является понятие электромагнитной индукции. Индукция имеет место, когда в проводнике в присутствии изменяющегося магнитного поля возникает поток электричества. Применение электромагнитов с их индукционными принципами активно используются в электродвигателях, генераторах и трансформаторах.
Где можно применять электромагниты в медицине?
Магнитно-резонансные томографы (МРТ) также работают с помощью электромагнитов. Это специализированный медицинский метод для обследования внутренних органов человека, которые недоступны для непосредственного обследования. Наряду с основным используются дополнительные градиентные магниты.
Где применяют электромагниты? Они присутствуют во всех видах электрических устройств, включая жесткие диски, колонки, двигатели, генераторы. Электромагниты используются повсеместно и, несмотря на свою незаметность, занимают важное место в жизни современного человека.