Последовательное и параллельное соединения проводников
1. Потребители электрической энергии: электрические лампочки, резисторы и пр. — могут по-разному соединяться друг с другом в электрической цепи. Существует два основных типа соединения проводников: последовательное и параллельное. При последовательном соединении проводников конец одного проводника соединяется с началом другого проводника, а его конец — с началом третьего и т.д. (рис. 85).
Примером последовательного соединения проводников может служить соединение электрических лампочек в ёлочной гирлянде.
При последовательном соединении проводников ток проходит через все лампочки, при этом через поперечное сечение каждого проводника в единицу времени проходит одинаковый заряд, т.е. заряд не скапливается ни в какой части проводника. Поэтому при последовательном соединении проводников сила тока в любом участке цепи одинакова: \( I_1=I_2=I \) .
Общее сопротивление последовательно соединённых проводников равно сумме их сопротивлений: \( R_1=R_2=R \) . Это следует из того, что при последовательном соединении проводников их общая длина увеличивается, она больше, чем длина каждого отдельного проводника, соответственно увеличивается и сопротивление проводников.
По закону Ома напряжение на каждом проводнике равно: \( U_1=IR_1 \) , \( U_2=IR_2 \) , а общее напряжение равно \( U=I(R_1+R_2) \) . Поскольку сила тока во всех проводниках одинакова, а общее сопротивление равно сумме сопротивлений проводников, то полное напряжение на последовательно соединённых проводниках равно сумме напряжений на каждом проводнике: \( U=U_1+U_2 \) .
Из приведённых равенств следует, что последовательное соединение проводников используется в том случае, если напряжение, на которое рассчитаны потребители электрической энергии, меньше общего напряжения в цепи.
2. Примером параллельного соединения проводников служит соединение потребителей электрической энергии в квартире. Так, электрические лампочки, чайник, утюг и пр. включаются параллельно.
При параллельном соединении проводников все проводники одним своим концом присоединяются к одной точке цепи (А), а вторым концом к другой точке цепи (В) (рис. 86).
Поэтому вольтметр, подключенный к этим точкам, покажет напряжение как на проводнике 1, так и на проводнике 2. Таким образом, напряжение на концах всех параллельно соединённых проводников одно и то же: \( U_1=U_2=U \) .
При параллельном соединении проводников электрическая цепь разветвляется, в данном случае в точке В. Поэтому часть общего заряда проходит через один проводник, а часть — через другой. Следовательно при параллельном соединении проводников сила тока в неразветвлённой части цепи равна сумме силы тока в отдельных проводниках: \( I=I_1+I_2 \) .
В соответствии с законом Ома \( I=\frac
При параллельном соединении проводников их общее сопротивление меньше, чем сопротивление каждого проводника. Действительно, если параллельно соединены два проводника, имеющие одинаковое сопротивление \( r \) , то их общее сопротивление равно: \( R=r/2 \) . Это объясняется тем, что при параллельном соединении проводников как бы увеличивается площадь их поперечного сечения, соответственно уменьшается сопротивление.
Из приведённых формул понятно, почему потребители электрической энергии включаются параллельно: они все рассчитаны на определённое одинаковое напряжение, которое в квартирах равно 220 В. Зная сопротивление каждого потребителя, можно рассчитать силу тока в каждом из них и соответствие суммарной силы тока предельно допустимой силе тока.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке изображёна схема участка электрической цепи АВ. В эту цепь параллельно включены два резистора сопротивлением \( R_1 \) и \( R_2 \) . Напряжения на резисторах соответственно \( U_1 \) и \( U_2 \) .
По какой из формул можно определить напряжение U на участке АВ?
2. На рисунке изображёна схема электрической цепи, содержащая два параллельно включённых резистора сопротивлением \( R_1 \) и \( R_2 \) . Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?
1) \( I=I_1=I_2 \)
2) \( I=I_1+I_2 \)
3) \( U=U_1+U_2 \)
4) \( R=R_1+R_2 \)
3. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением R> и R2. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?
4. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением \( R_1 \) и \( R_2 \) . Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?
5. На рисунке изображена схема электрической цепи. В эту цепь параллельно включены два одинаковых резистора сопротивлением \( R_1 \) . По какой из формул можно определить общее сопротивление цепи \( R \) ?
6. Общее сопротивление участка цепи, изображённого на рисунке, равно 9 Ом. Сопротивления резисторов \( R_1 \) и \( R_2 \) равны. Чему равно сопротивление каждого резистора?
1) 81 Ом
2) 18 Ом
3) 9 Ом
4) 4,5 Ом
7. Чему равно сопротивление участка цепи, содержащего три последовательно соединенных резистора сопротивлением по 9 Ом каждый?
1) 1/3 Ом
2) 3 Ом
3) 9 Ом
4) 27 Ом
8. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если \( R_1 \) = 1 Ом, \( R_2 \) = 10 Ом, \( R_3 \) = 10 Ом, \( R_4 \) = 5 Ом?
1) 9 Ом
2) 11 Ом
3) 16 Ом
4) 26 Ом
9. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если \( R_1 \) = 1 Ом, \( R_2 \) = 3 Ом, \( R_3 \) = 10 Ом, \( R_4 \) = 10 Ом?
1) 9 Ом
2) 10 Ом
3) 14 Ом
4) 24 Ом
10. Если ползунок реостата (см. схему) переместить влево, то сила тока
1) в резисторе \( R_1 \) уменьшится, а в резисторе \( R_2 \) увеличится
2) увеличится в обоих резисторах
3) в резисторе \( R_1 \) увеличится, а в резисторе \( R_2 \) уменьшится
4) уменьшится в обоих резисторах
11. На рисунке изображена электрическая цепь, состоящая из источника тока, резистора и реостата. Как изменяются при передвижении ползунка реостата вправо его сопротивление, сила тока в цепи и напряжение на резисторе 1?
Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) сопротивление реостата 2
Б) сила тока в цепи
B) напряжение на резисторе 1
ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется
12. Установите соответствие между физическими величинами и правильной электрической схемой для измерения этих величин при последовательном соединении двух резисторов \( R_1 \) и \( R_2 \) . Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) сила тока в резисторе \( R_1 \) и \( R_2 \)
Б) напряжение на резисторе \( R_2 \)
B) общее напряжение на резисторах \( R_1 \) и \( R_2 \)
Часть 2
13. Три резистора соединены, как показано на рисунке. Сопротивления резисторов \( R_1 \) = 10 Ом, \( R_2 \) = 5 Ом, \( R_3 \) = 5 Ом. Каково напряжение на резисторе 1, если амперметр показывает силу тока 2 А?
Тест по физике Вывод закона сохранения механической энергии 9 класс
Тест по физике Вывод закона сохранения механической энергии для учащихся 9 класса с ответами. Тест включает в себя 10 заданий с выбором ответа.
1. Камень брошен вертикально вверх. В момент броска он имел кинетическую энергию 30 Дж. Какую потенциальную энергию относительно поверхности земли будет иметь камень в верхней точке траектории полета? Сопротивлением воздуха пренебречь.
1) 0 Дж
2) 15 Дж
3) 30 Дж
4) 60 Дж
2. Камень брошен вертикально вверх. В момент броска он имел кинетическую энергию 20 Дж. Какую кинетическую энергию будет иметь камень в верхней точке траектории полета? Сопротивлением воздуха пренебречь.
1) 0 Дж
2) 10 Дж
3) 20 Дж
4) 40 Дж
3. Тело массой 2 кг, брошенное с уровня земли вертикально вверх, упало обратно. Перед ударом о землю оно имело кинетическую энергию 100 Дж. С какой скоростью тело было брошено вверх? Сопротивлением воздуха пренебречь.
1) 10 м/с
2) 20 м/с
3) 30 м/с
4) 40 м/с
4. Тело массой 1 кг, брошенное с уровня земли вертикально вверх, упало обратно. В момент наивысшего подъема оно имело потенциальную энергию 200 Дж. С какой скоростью тело было брошено вверх? Сопротивлением воздуха пренебречь.
1) 10 м/с
2) 20 м/с
3) 30 м/с
4) 40 м/с
5. Тело массой 1 кг, брошенное вертикально вверх от поверхности земли, достигло максимальной высоты 20 м. С какой по модулю скоростью двигалось тело на высоте 10 м? Сопротивлением воздуха пренебречь.
1) 7 м/с
2) 10 м/с
3) 14,1 м/с
4) 20 м/с
6. По какой из формул можно определить кинетическую энергию Ек, которую имело тело в верхней точке траектории?
7. Шарику на нити, находящемуся в положении равновесия, сообщили небольшую горизонтальную скорость. На какую высоту поднимется шарик?
8. Шарику на нити, находящемуся в положении равновесия, сообщили небольшую горизонтальную скорость 20 м/с. На какую высоту поднимется шарик?
1) 40 м
2) 20 м
3) 10 м
4) 5 м
9. На рисунке представлен график изменения со временем кинетической энергии ребенка, качающегося на качелях. В момент, соответствующий точке А на графике, его полная механическая энергия равна
1) 10 Дж
2) 20 Дж
3) 30 Дж
4) 40 Дж
10. Мяч брошен вертикально вверх. На рисунке показан график изменения кинетической энергии мяча по мере его подъема над точкой бросания. Какова потенциальная энергия мяча на высоте 2 м?
1) 1,5 Дж
2) 3 Дж
3) 4,5 Дж
4) 6 Дж
Ответы на тест по физике Вывод закона сохранения механической энергии
1-3
2-1
3-1
4-2
5-3
6-2
7-1
8-2
9-4
10-2
Закон сохранения полной механической энергии (окончание)
6. По какой из формул можно определить кинетическую энергию Ek, которую имело тело в верхней точке траектории?
7. Шарику на нити, находящемуся в положений равновесия, сообщили небольшую горизонтальную скорость (см. рисунок). На какую высоту поднимется шарик?
8. Шарику на нити» находящемуся в положении равновесия» сообщили небольшую горизонтальную скорость 20 м/с. На какую высоту поднимется шарик?
9. На рисунке представлен график Ek, изменения со временем кинетической энергии ребенка» качающегося на качелях. В момент» соответствующий точке А 20 на графике» его полная механическая энергия равна
10. Мяч брошен вертикальна вверх. На рисунке показан график изменения кинетической энергии мяча по мере его подъема над точкой бросания. Какова потенциальная энергия мяча на высоте 2 м?
Движение тела, брошенного под углом к горизонту
H = m g l 1 m g . . + m v 2 2 m g . . = l 1 + v 2 2 g . .
h − l 1 = v 2 sin 2 . β 2 g . . = v 2 sin 2 . ( 90 − 2 α ) o 2 g . .
l 1 = h − v 2 sin 2 . ( 90 − 2 α ) o 2 g . .
H = l 1 + v 2 2 g . . = h − ( g t ) 2 sin 2 . ( 90 − 2 α ) o 2 g . . + ( g t ) 2 2 g . .
H = h − g t 2 sin 2 . ( 90 − 2 α ) 2 . . + g t 2 2 . . = h − g t 2 2 . . ( sin 2 . ( 90 − 2 α ) o − 1 )
H = 1 , 4 − 10 · 0 , 4 2 2 . . ( sin 2 . ( 90 − 6 0 ) o − 1 )
H = 1 , 4 − 5 · 0 , 16 ( sin 2 . 3 0 o − 1 )
H = 1 , 4 − 0 , 8 ( ( 1 2 . . ) 2 − 1 ) = 1 , 4 − 0 , 8 ( 1 4 . . − 1 )
H = 1 , 4 + 0 , 6 = 2 ( м )
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF17980
В момент t=0 мячик бросают с начальной скоростью v0 под углом α к горизонту с балкона высотой h (см. рисунок).
Графики А и Б представляют собой зависимости физических величин, характеризующих движение мячика в процессе полёта, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять. (Сопротивлением воздуха пренебречь. Потенциальная энергия мячика отсчитывается от уровня y=0).
К каждой позиции графика подберите соответствующую позицию утверждения и запишите выбранные цифры в порядке АБ.
- Установить вид механического движения, исходя из условий задачи.
- Записать формулы для физических величин, указанных в таблице, в соответствии с установленным видом механического движения.
- Определить, как зависят эти величины от времени.
- Установить соответствие между графиками и величинами.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Мальчик бросил стальной шарик вверх под углом к горизонту. Пренебрегая сопротивлением воздуха, определите, как меняются по мере приближения к Земле модуль ускорения шарика и горизонтальная составляющая его скорости?
Для каждой величины определите соответствующий характер изменения:
- увеличивается
- уменьшается
- не изменяется
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.