С помощью какого опыта можно показать возникновение индукционного тока
Перейти к содержимому

С помощью какого опыта можно показать возникновение индукционного тока

Опыты Фарадея в физике — основные понятия, формулы и определения с примерами

Опыты X. Эрстеда и А. Ампера показали, что электрический ток создает магнитное поле. А можно ли сделать наоборот, то есть с помощью магнитного поля получить электрический ток? После более чем 16 тысяч опытов английский физик и химик Майкл Фарадей 29 августа 1831 г. получил электрический ток с помощью магнитного поля постоянного магнита. Какие же опыты проводил Фарадей и какое значение имело его открытие?

Опыты Фарадея

Замкнем катушку на гальванометр и будем вводить в катушку постоянный магнит. Во время движения магнита стрелка гальванометра отклонится, а это означает, что в катушке возник электрический ток (рис. 8.1, а).

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Рис. 8.1. Возникновение тока в катушке фиксируется гальванометром: а — если магнит вводить в катушку, стрелка гальванометра отклоняется вправо; б — если магнит неподвижен, ток не возникает и стрелка не отклоняется; в — если выводить магнит из катушки, стрелка гальванометра отклоняется влево

Чем быстрее двигать магнит, тем больше будет сила тока; если движение магнита прекратить, прекратится и ток — стрелка вернется на нулевую отметку (рис. 8.1, б). Вынимая магнит из катушки, видим, что стрелка гальванометра отклоняется в другую сторону (рис. 8.1, в), а после прекращения движения магнита снова возвращается на нулевую отметку.

Если оставить магнит неподвижным, а двигать катушку (или приближать ее к магниту, или удалять от него, или поворачивать вблизи полюса магнита), то снова будем наблюдать отклонение стрелки гальванометра.

Теперь возьмем две катушки — А и В — и наденем их на один сердечник (рис. 8.2). Катушку В через реостат присоединим к источнику тока, а катушку А замкнем на гальванометр. Если передвигать ползунок реостата, то в катушке А будет идти электрический ток. Ток будет возникать как при увеличении, так и при уменьшении силы тока в катушке В. А вот направление тока будет разным: при увеличении силы тока стрелка гальванометра будет отклоняться в одну сторону, а при уменьшении — в другую. Ток А будет возникать также в момент замыкания и в момент размыкания цепи катушки В.

Все рассмотренные опыты — это современный вариант тех, которые на протяжении 10 лет проводил Майкл Фарадей и благодаря которым он пришел к выводу: в замкнутом проводящем контуре возникает электрический ток, если количество линии магнитной индукции, пронизывающих ограниченную контуром поверхность, изменяется.

Данное явление было названо электромагнитной индукцией, а электрический ток, возникающий при этом, — индукционным (наведенным) током (рис. 8.3).

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Рис. 8.3. Возникновение индукционного тока при изменении числа линий магнитной индукции, пронизывающих контур: а — контур приближают к магниту; б — ослабляют магнитное поле, в котором расположен контур

Причины возникновения индукционного тока

Вы узнали, когда в замкнутом проводящем контуре возникает индукционный ток. А что является причиной его возникновения? Рассмотрим два случая.

  1. Проводящий контур движется в магнитном поле (рис. 8.3, а). В данном случае свободные заряженные частицы внутри проводника движутся вместе с ним в определенном направлении. Магнитное поле действует на движущиеся заряженные частицы с определенной силой, и под действием этой силы частицы начинают направленное движение вдоль проводника, — в проводнике возникает индукционный электрический ток.
  2. Неподвижный проводящий контур расположен в переменном магнитном поле (рис. 8.3, б). В этом случае силы, действующие со стороны магнитного поля, не могут сделать направленным хаотичное движение заряженных частиц внутри проводника. Почему же в контуре возникает индукционный ток? Дело в том, что переменное магнитное поле всегда сопровождается возникновением в окружающем пространстве вихревого электрического поля (силовые линии такого поля являются замкнутыми). Таким образом, не магнитное, а электрическое поле, действуя на свободные заряженные частицы в проводнике, придает им направленное движение, тем самым создавая индукционный ток.

Определение направления индукционного тока

Чтобы определить направление индукционного тока, воспользуемся замкнутой катушкой. Если изменять пронизывающее катушку магнитное поле (например, приближать или удалять магнит), то в катушке возникает индукционный ток и она сама становится магнитом. Опыты показывают: 1) если магнит приближать к катушке, то катушка будет отталкиваться от магнита; 2) если магнит удалять от катушки, то катушка будет притягиваться к магниту.

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Рис. 8.5. Направление индукционного тока в замкнутой катушке: а — магнит приближают к катушке; б — магнит удаляют от катушки

  1. если количество линий магнитной индукции, пронизывающих катушку, увеличивается (магнитное поле внутри катушки усиливается), то в катушке возникает индукционный ток такого направления, что катушка будет обращена к магниту одноименным полюсом (рис. 8.5, а).
  2. если количество линий магнитной индукции, пронизывающих катушку, уменьшается, то в катушке возникает индукционный ток такого направления, что катушка будет обращена к магниту разноименным полюсом (рис. 8.5, б).

Зная полюсы катушки и воспользовавшись правой рукой, можно определить направление индукционного тока. Аналогично поступают и в случае, когда две катушки надеты на общий сердечник.

Промышленные источники электрической энергии

Явление электромагнитной индукции используют в электромеханических генераторах, без которых невозможно представить современную электроэнергетику.

Электромеханический генератор — устройство, в котором механическая энергия преобразуется в электрическую.

Выясним принцип действия электромеханического генератора. Возьмем рамку, состоящую из нескольких витков провода, и будем вращать ее в магнитном поле (рис. 8.6). При вращении рамки число пронизывающих ее магнитных линий то увеличивается, то уменьшается. В результате в рамке возникает ток, наличие которого доказывает свечение лампы.

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Рис. 8.6. Если вращать рамку в магнитном поле, в рамке возникает индукционный ток

Промышленные генераторы электрического тока устроены практически так же, как электродвигатели, однако по принципу действия генератор — это электрический двигатель «наоборот». Как и электродвигатель, генератор состоит из статора и ротора (рис. 8.7). Массивный неподвижный статор (1) представляет собой полый цилиндр, на внутренней поверхности которого размещен толстый

медный изолированный провод — обмотка статора (2). Внутри статора вращается ротор (3). Он, как и ротор электродвигателя, представляет собой большой цилиндр, в пазы которого вложена обмотка ротора (4). Эта обмотка питается от источника постоянного тока. Ток течет по обмотке ротора, создавая магнитное поле, которое пронизывает обмотку статора.

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Рис. 8.7. Схема устройства электромеханического генератора: 1 — статор; 2 — обмотка статора; 3 — ротор; 4 — обмотка ротора

Под действием пара (на тепловых и атомных электростанциях) или падающей с высоты воды (на гидроэлектростанциях) ротор генератора начинает быстро вращаться. Вследствие этого число линий магнитной индукции, пронизывающих витки обмотки статора, изменяется и в обмотке возникает индукционный ток. После ряда преобразований этот ток подают потребителям электрической энергии.

Пример:

Катушка и алюминиевое кольцо надеты на общий сердечник (рис. 1). Определите направление индукционного тока в кольце при замыкании ключа. Как будет вести себя кольцо в момент замыкания ключа? через некоторое время после замыкания ключа? в момент размыкания ключа?

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Анализ физической проблемы, решение

  1. Ток в катушке направлен по ее передней стенке вверх (от «+» к «-»). Воспользовавшись правой рукой, определим полюсы катушки (направление магнитных линий внутри катушки): ближе к кольцу будет южный полюс катушки (рис. 2).
  2. В момент замыкания ключа сила тока в катушке увеличивается, поэтому магнитное поле внутри кольца усиливается.
  3. В кольце возникает индукционный ток такого направления, что кольцо будет обращено к катушке одноименным полюсом (южным) и оттолкнется от нее.
  4. Воспользовавшись правой рукой, определим направление индукционного тока в кольце (оно будет противоположно направлению тока в катушке).

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Как определить направление индукционного тока (алгоритм)
  1. Определяем направление магнитной индукции внешнего магнитного поля Опыты Фарадея в физике - основные понятия, формулы и определения с примерами
  2. Выясняем, усиливается или ослабляется внешнее магнитное поле (увеличивается или уменьшается число линий магнитной индукции, пронизывающих контур).
  3. Определяем направление магнитного поля, созданного индукционным током Опыты Фарадея в физике - основные понятия, формулы и определения с примерами
  4. Определяем направление индукционного тока.

Почти сразу после замыкания ключа ток в катушке будет постоянным, магнитное поле внутри кольца не будет изменяться и индукционного тока в кольце не будет. Кольцо изготовлено из магнитослабого материала, поэтому оно почти не будет взаимодействовать с катушкой.

В момент размыкания ключа сила тока в катушке быстро уменьшается, созданное катушкой магнитное поле ослабляется. В кольце возникает индукционный ток такого направления, что кольцо будет обращено к катушке разноименным полюсом и на короткое время притянется к ней (рис. 3).

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Подводим итоги:

В замкнутом проводящем контуре при изменении количества линий магнитной индукции, пронизывающих контур, возникает электрический ток. Такой ток называют индукционным, а явление возникновения тока — электромагнитной индукцией.

Одна из причин возникновения индукционного тока заключается в том, что переменное магнитное поле всегда сопровождается возникновением в окружающем пространстве электрического поля. Электрическое поле действует на свободные заряженные частицы в проводнике, и те начинают двигаться направленно — возникает индукционный ток.

Основные определения и формулы

1. Изучая раздел I, вы выяснили, что сначала человек узнал о постоянных магнитах и начал их использовать; значительно позже были созданы электромагниты.

Естественные

Огромный естественный магнит — планета Земля: • южный магнитный полюс Земли расположен вблизи ее северного географического полюса; • северный магнитный полюс Земли расположен вблизи ее южного географического полюса

Искусственные

Магнитная стрелка, полосовой, подковообразный, кольце- вой и другие магниты

Магнитное действие зависит:

• от силы тока в обмотке; • количества витков в обмотке; • формы сердечника и материала, из которого он изготовлен

2. Вы узнали, что около намагниченного тела, подвижной заряженной частицы и проводника с током существует магнитное поле.

МАГНИТНОЕ ПОЛЕ

форма материи, которая существует около намагниченных тел, проводников с током и движущихся заряженных тел или частиц и действует на другие намагниченные тела, проводники с током и движущиеся заряженные тела или частицы, расположенные в этом поле

Индукция магнитного поля

векторная физическая величина, являющаяся силовой характеристикой магнитного поля

Линии магнитной индукции

условные линии, вдоль касательных к которым направлены векторы магнитной индукции

Модуль магнитной индукции

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

где Опыты Фарадея в физике - основные понятия, формулы и определения с примерами— наибольшая сила Ампера, действующая на расположенный в магнитном поле проводник длиной Опыты Фарадея в физике - основные понятия, формулы и определения с примерами— сила тока в проводнике.

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

  • всегда замкнуты (магнитное поле — вихревое поле);
  • направление совпадает с направлением, на которое указывает северный полюс магнитной стрелки;
  • направление можно определить по правилу буравчика

3. Вы узнали, что в магнитном поле все вещества намагничиваются, но по-разному.

Слабомагнитные вещества

внешнее магнитное поле

Сильномагнитные вещества

внешнее магнитное поле

внешнее магнитное поле

внешнее магнитное поле

магнитожесткие

сохраняют намагниченность длительное время

магнитомягкие

легко намагничиваются и размагничиваются

4. Вы выяснили, что на проводник с током, размещенный в магнитном поле, действует сила Ампера.

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Действует

на проводник с током,

размещенный в магнитном поле

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Значение

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами— модуль индукции магнитного поля;

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами— сила тока в проводнике;

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами— длина активной части проводника;

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами— угол между направлением индукции магнитного поля и направлением тока в проводнике

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Направление

определяют по правилу левой руки

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

5. Вы воспроизвели опыты М. Фарадея и ознакомились с явлением электромагнитной индукции.

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Опыты Фарадея

Когда количество линий магнитной индукции, пронизывающих замкнутую катушку, изменяется, в катушке возникает индукционный электрический ток

Опыты Фарадея в физике - основные понятия, формулы и определения с примерами

Промышленное получение тока

Электромеханический генератор — устройство, в котором благодаря электромагнитной индукции механическая энергия преобразуется в электрическую

Относительные величины магнитных полей:

Источник или участок, где измеряется

индукция магнитного поля

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Опыты Фарадея

В 1820 году было произведено открытие магнитного пола вокруг проводника Эрстедом. В то время производилось много опытов и экспериментов, связанных с электричеством. Фарадей эмпирически открыл явление электромагнитной индукции 29 августа 1831 года. Он обнаружил явление у стационарных проводников при замыкании и размыкании цепи.

Позже было доказано, что явление электромагнитной индукции появляется при движении катушек с токами друг с другом. Еще 17 октября из лабораторного журнала было видно обнаружение индукционного тока во время введения и удаления магнита из катушки. В течение месяца все особенности изучил Фарадей.

Именно он сумел объяснить явления диа- и парамагнетизма, объясняя это тем, что материалы, располагаемые в пределах магнитного поля ведут себя по-разному: ориентируются по полю, как пара- и ферромагнетики, или поперек, как диамагнетики.

Опыты Фарадея. Электромагнитная индукция

Опыты Фарадея известны из школьного курса, наглядно представленные на рисунке.

Опыты Фарадея. Электромагнитная индукция

Рисунок 3 . 1 . Возникновение электрического тока при поднесении или вытягивании катушки с левой стороны и возникновение электрического тока с двумя близко расположенными катушками справа.

Опыты Фарадея. Электромагнитная индукция

Рисунок 3 . 2 . Возникновение электрического тока при соединении катушек сердечником.

На данный момент опыты Фарадея называют классическими и применяют для обнаружения электромагнитной индукции:

  1. Замыкание гальванометра на соленоиде. В соленоид опускается постоянный магнит, перемещая который, фиксируются отклонения стрелки гальванометра. Это говорит о наличии индукционного тока. Если увеличить скорость перемещения магнита относительно катушки, тогда стрелка гальванометра отклонится еще сильнее. Это говорит о том, что произошла замена полей. Магнит может быть неподвижным или передвижение соленоида происходит относительно магнита.
  2. Две катушки. Производится установка одной в другую. Концы одной из них подключаются с гальванометром. Другая катушка подвергается прохождению тока. При его подаче и отключении стрелка гальванометра изменяет свое положение. В этом случае катушки должны находиться в движении относительно друг друга. Стрелка гальванометра уменьшает значение при его включении.

При изменении потока вектора индукции, пронизывающего проводящий контур, происходит возникновение электрического тока, что называется явлением электромагнитной индукции, а такой ток – индукционным.

Явление электромагнитной индукции и опыты

Обобщив все результаты, Фарадей выявил, что возникновение индукционного тока возможно при изменении потока магнитной индукции, сцепленного с контуром. Тогда величина индукционного тока не имеет связи с изменением потока, а только со скоростью его изменения. Фарадей доказал, что величина отклонения стрелки гальванометра связана со скоростью перемещения магнита относительно друг друга.

Исходя из 2 опытов Майкла Фарадея, Максвелл сумел описать и сформулировать основной закон электромагнитной индукции.

Основываясь на нем, электродвижущая сила индукции в замкнутом контуре равняется скорости изменения магнитного потока d Φ d t через поверхность, которая ограничена контуром ε i = — d Φ d t .

Из формулы следует, что Φ = B S → cos α — магнитный поток, а α — угол, расположенный между вектором B → и нормалью к плоскости контура. Знак минуса характеризует правило Ленца.

Суть опытов Фарадея в том, что с помощью явления электромагнитной индукции видна связь электрического и магнитного полей. Появление электрического поля возможно при изменении магнитного.

Его природа отличается от электростатического тем, что не имеет связи с электрическими зарядами, а линии напряженности не могут заканчиваться или начинаться. Их считают замкнутыми, а такое образовавшееся поле вихревым.

С помощью какого опыта можно показать возникновение индукционного тока

Раздел ОГЭ по физике: 3.13. Электромагнитная индукция. Опыты Фарадея.

Опыт Эрстеда показал, что электрический ток создаёт в окружающем пространстве магнитное поле. Майкл Фарадей пришёл к мысли, что может существовать и обратный эффект: магнитное поле, в свою очередь, порождает электрический ток. В 1831 г. М. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает индукционный ток. (Индукция в данном случае – появление, возникновение.)

1) Опыт с двумя проволочными спиралями (катушками). Одна из таких спиралей присоединялась к гальванометру, который регистрировал слабые токи. Вторая спираль сообщалась с гальванической батареей. В момент замыкания и размыкания цепи второй катушки индикаторная стрелка гальванометра обязательно отклонялась.

2) Опыт по взаимодействию магнита и катушки с током: при внесении магнита в катушку в цепи возникает электрический ток, при вынесении также возникает ток, но другого направления. Сила тока зависит от скорости внесения (вынесения) магнита.

Явление возникновения электрического поля при изменении магнитного поля называется электромагнитной индукцией.

Индукционный ток в катушке возникает при:

  • перемещении постоянного магнита относительно катушки;
  • перемещении электромагнита относительно катушки;
  • перемещении сердечника относительно электромагнита, вставленного в катушку;
  • регулировании тока в цепи электромагнита;
  • замыкании и размыкании цепи.

Если в изменяющееся магнитное поле поместить замкнутый проводящий контур, то появление тока в контуре свидетельствует о действии в контуре сторонних электрических сил (или о возникновении в контуре ЭДС индукции).

Явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего контур, является следствием электромагнитной индукции.

Основные области применения электромагнитной индукции: генерирование тока (индукционные генераторы на всех электростанциях, динамо-машины), трансформаторы.

опыты фарадея

Конспект урока по физике 8 класса «Электромагнитная индукция. Опыты Фарадея».

Открытый урок "Явление электромагнитной индукции. Опыты Фарадея. Закон Ленца"

Оборудование: разборный школьный трансформатор, гальванометр, постоянный магнит, аккумулятор, источник переменного тока, реостат, ключ, замкнутый виток с низковольтной лампой, соединительные провода, стержень с двумя алюминиевыми кольцами на концах, одно из которых сплошное, другое с разрезом, портрет М.Фарадея, телевизор, в/ф "Явление электромагнитной индукции", карточки-задания, кроссворды, ребус, криптограмма, оборудование для опытов.

I. Оргмомент.

II. Мотивация учебной деятельности

Учитель. Мы с вами прошли тему "Электромагнетизм". Сегодня нам предстоит выяснить, как вы усвоили этот материал. Обобщим знания о магнитном поле, будет совершенствовать умения объяснять магнитные явления. Раскроем особенные и общие черты магнитного и электрического полей, проведем контроль знаний, продолжим формирование умений наблюдать, обобщать, синтезировать изученное.

III. Практическая работа -КМД-

Класс делится на 4 группы. Они работают так:

Первая группа – пишет физический диктант. (Приложение 1.)
Вторая группа – решает кроссворд. (Приложение 2.)
Третья группа – решает качественные задачи. (Приложение 3.)

И получают баллы за каждую работу. Потом обмениваются между собой заданиями.

Четвертая группа – четверо играют в карты.

Пока они готовятся, желающие получить жетоны, правильно отвечают на поставленные вопросы:

– В каком месте Земли магнитная стрелка обоими концами показывает на юг? (На северном географическом полюсе)

– Если поднести несколько раз к часам сильный магнит, то показания часов будут неправильными. Как объяснить это? (Стальная пружина и другие стальные детали часов, намагничиваясь, взаимодействуют друг с другом, вследствие чего правильный ход часов нарушается)

– Правильно ли указано направление тока?

Учитель. А вот, что написал о магнитных явлениях Д.И. Менделеев, мы сможем сказать, если расшифруем, что здесь написано. (Приложение 3). К доске идет.

Решение задач.

IV. Изучение нового материала

Учитель. Ранее в электродинамике изучались явления, связанные или обусловленные существованием постоянных во времени (статических и стационарных) электрических и магнитных полей. Появляются ли новые явления при наличии переменных полей? Впервые явление, вызванное переменным магнитным полем, наблюдал в 1831году М.Фарадей. Он решал ПРОБЛЕМУ: может ли магнитное поле вызвать появление электрического тока в проводнике? А теперь посмотрим опыты и послушаем объяснение их.

По итогам зачета объявляются оценки и комментируются.

Учитель. А сейчас переходим к изучению новой темы. Цель урока мы узнаем, если разгадаем ребус. (Приложение 2) Да, да! Именно эти слова записал Майкл Фарадей в своем дневнике в 1822 году. "Превратить магнетизм в электричество". После открытия Эрстедом в 1820 году магнитного поля, было установлено, что магнитное поле и эл.ток всегда существуют одновременно. Фарадей, зная о тесной связи между током и магнитном полем, был уверен, что с помощью магнитного поля можно создать в замкнутом проводнике эл.ток. Он провёл многочисленные опыты и доказал это, открыв в 1831году явление электромагнитной индукции.
С биографией М.Фарадея нас познакомит студент .

V. Демонстрация опытов Фарадея.

Учитель. Рассмотрим опыты Фарадея, с помощью которых он открыл явление электромагнитной индукции.

1. Возьмем соленоид, соединенный с гальванометром (рис. 1), и будем вдвигать в него постоянный магнит. Оказывается, что при движении магнита стрелка гальванометра отклоняется. Если же магнит останавливается, то стрелка гальванометра возвращается в нулевое положение. То же самое получается при выдвижении магнита из соленоида или при надевании соленоида на неподвижный магнит. Такие опыты показывают, что индукционный ток возникает в соленоиде только при относительном перемещении соленоида и магнита.

2. Будем опускать в соленоид В катушку с током А (рис. 2). Оказывается, что и в этом случае в соленоиде В возникает индукционный ток только при относительном перемещении соленоида В и катушки А.

3. Вставим катушку А в соленоид В и закрепим их неподвижно (рис. 3). При этом тока в соленоиде нет. Но в моменты замыкания или размыкания цепи катушки А в соленоиде В появляется индукционный ток. То же самое

получается в моменты усиления или ослабления тока в катушке А с помощью изменения сопротивления R.
В дальнейшем цепь катушки А, соединенную с источником электрической энергии, будем называть первичной, а цепь соленоида В, в которой возникает индукционный ток, – вторичной. Эти же названия будем применять и к самим катушкам.

4. Включим первичную катушку в сеть переменного тока, а вторичную катушку соединим с лампой накаливания (рис. 4). Оказывается, лампа непрерывно горит, пока в первичной катушке течет переменный ток.
Нетрудно заметить, что общим для всех описанных опытов является изменение магнитного поля в соленоиде, которое и создает в нем индукционный ток.
Выясним теперь, всякое ли изменение магнитного поля вокруг замкнутого контура наводит в нем индукционный ток. Возьмем плоский контур в виде рамки, соединенной с гальванометром. Поместим рядом с рамкой магнит так, чтобы его линии индукции не проходили внутри рамки, а находились в ее плоскости (рис. 5а).

Оказывается, что при перемещении рамки или магнита вдоль плоскости рисунка стрелка гальванометра не отклоняется. Если же рамку поворачивать вокруг оси 00′ (рис. 5б), то в ней возникает индукционный ток.

На основании описанных опытов можно сделать следующий вывод: индукционный ток (и э. д. с. индукции) в замкнутом контуре появляется только в том случае, когда изменяется магнитный поток, который проводит через площадь, охваченную контуром.
С помощью этого явления может получится эл. ток практически любой мощности, а это позволяет широко использовать эл. энергию в промышленности. Получается она в основном с помощью индукционных генераторов, принцип работы которых основан на явлении эл-магнитной индукции. Поэтому Фарадей по праву считается одним из основателей электротехники.

Рассмотрим подробнее явление электромагнитной индукции.

Пусть в однородном магнитном поле с индукцией В находится прямолинейный металлический проводник длиной L.
Приведем этот проводник в движение со скоростью так, что бы угол между векторами В и составлял 90 градусов, то вместе с проводником будут направленно двигаться и его собственные электроны, так как их движение происходит в магнитном поле, то на них должна действовать сила Лоренца.
С помощью правила левой руки можно установить, что свободные электроны будут смещаться к концу А. И тогда между А и В возникает напряжение U , которое создаст в нем эл. силу Fэл., которая уравновесит Fл. Fэл.= Fл., в этом случае смещение электронов прекратится.
Fэл.= Е . q = U/L . q, а Fл.= В . . q . sinU/L . q = В . . q . sinU = В . . L . sin, но напряжение на полюсах при разомкнутой цепи = Е.
Еинд.= В . . L . sin

А если проводник включить в цепь, то в ней возникает индукционный ток.

Направление индукционного тока, возникающего в прямолинейном проводнике при его движении в магнитном поле, определяется по правилу правой руки (рис. 7): если правую руку расположить вдоль проводника так, чтобы линии магнитной индукции входили в ладонь, а отогнутый большой палец показывал направление движения проводника, то четыре вытянутых пальца укажут направление индукционного тока в проводнике.

VI. Закон Ленца.

Учитель. В катушке, замкнутой на гальванометр, при перемещении магнита, возникает индукционный ток. Как определить направление индукционного тока? По правилу правой руки? (А переломов не бойтесь!) Давайте определим это!
Индукционный ток создает собственное магнитное поле. Связь между направлением индукционного тока в контуре и индуцирующим магнитным полем была установлена Ленцем.
Пусть имеется катушка, вокруг катушки существует изменяющееся магнитное поле и оно пронизывает витки другой катушки. А при всяком изменении магнитного поля, пронизывающего контур замкнутого проводника, в нем наводится индукционный ток. А как определить направление индукционного тока? По правилу правой руки?
Обратимся к опыту. Почему кольцо отталкивается от магнита? А с прорезью нет? (U – тока нет.)

Значит в кольце возник ток (инд.), магнитное поле. И можно определить поле. Поменяем полюса магнита. И видим: что взаимодействие между полюсами всегда препятствует движению магнита. Ленцу удалось обобщить эту закономерность: эту связь называют законом Ленца.

Определение: индукционный ток всегда имеет такое направление, при котором его магнитное поле противодействует причине его вызывающей.

Eщё раз повторим правило Ленца.

Вернемся к опыту. Стрелка гальванометра отклоняется тем дальше, чем быстрее вдвигается в соленоид магнит или катушка с током.

Э.д.с. индукции, возникающая в какой-либо цепи, прямо пропорциональна скорости изменения магнитного потока – время, за которое происходит изменение магнитного потока. Знак минус показывает, что когда магнитный поток уменьшается ( – отриц.), э.д.с. создает индукционный ток, увеличивающий магнитный поток и наоборот.
Исходя из формулы:

VII. Закрепление материала.

Просмотр видеофильма "Электромагнитная индукция". Решение задач.

VIII. Задание на дом.

§ 23(2-6). № 18.10, № 18.12, № 14. Повторить "Эл.ток в газах"

IX. Итог урока.

Учитель. Спасибо вам за урок!.

Приложение 1.

Физический диктант

1. Напишите формулы для расчетов:

а) силы Лоренца;
б) магнитной проницаемости среды;
в) модуля вектора магнитной индукции;
г) магнитного потока;
д) силы Ампера;

2. Дополните следующие определения:

а) сила Лоренца – это .
б) сила Ампера – это .
в) температура Кюри – это .
г) магнитная проницаемость среды характеризует .

3. Какая физическая величина измеряется в теслах? Чему равна 1Тл?

4. Какими способами можно получить магнитное поле?

5. Какие величины характеризуют это поле?

6. Какую физическую величину измеряют в веберах? Чему равен 1Вб?

7. Дополните предложения:

а) У диамагнетиков они обладают свойством .
б) У ферромагнетиков их отличительные свойства .
в) У парамагнетиков для них характерно .
г) Сила Ампера применяется .
д) Электроизмерительные приборы магнитоэлектрической системы состоят из . действуют они так:
е) Сила Лоренца используется .

Приложение 2.

По вертикали в выделенных клетках: катушка проводов с железным сердечником внутри. В каждую клетку включая нумерованную напишите по букве так чтобы по горизонтали получить слова:

1. Ученый, впервые обнаруживший взаимодействие электрического тока и магнитные стрелки.
2. Место магнита, где наблюдаются наиболее сильные магнитные действия.
3. Устройство, работающее на слабых токах, при помощи которого можно управлять электрической цепью с сильными токами.
4. Изобретатель первого в мире телеграфного аппарата, печатающего буквы.
5 и 6. Приборы, совместное пользование которыми позволяет передавать звук на далекие расстояния.
7. Изобретатель электромагнитного телеграфа и азбуки из точек и тире.
8. Ученый, объяснивший намагниченность молекул железа электрическим током.
9. Прибор, служащий для ориентации на местности, основной частью которого является магнитная стрелка.
10. Русский ученый, который изобрел электрический телеграф с магнитными стрелками.
11. Одна из основных частей приборов 5 и 6, названных выше.
12. Приемник тока, служащий для превращения электрической энергии в механическую.
13. Вещество, из которого делают постоянные магниты.

Приложение 3.

Прочитайте слова английского физика, которыми он определил поставленную перед собой задачу. Назовите ученого, год, когда эта задача была решена, и явление которое им было открыто.

Отгадайте слово по буквам, каждую из которых надо определить, решив задачу

1. Мысленно поставьте стрелку по направлению тока на участке проводника НМ.
2. Каков номер в алфавите второй буквы слова, покажет после включения тока северный конец магнитной стрелки.
3. Поставьте знак направления тока в кружке изображающем сечение проводника, и из двух подсчетов выберите тот, который содержит этот знак.
4. Мысленно поставьте стрелку, указывающую направление магнитных линий внутри катушки с током.
5. Нужная буква стоит у северного конца магнитной стрелки.
6. Выберите букву, которая стоит у положительного полюса источника тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *