Пропорциональность
Пропорциональными называются две взаимно зависимые величины, если отношение их значений остается неизменным. [1] .
Содержание
Пример
Масса керосина пропорциональна его объёму: 2 л керосина имеют массу 1,6 кг, 5 л имеют массу 4 кг, 7 л имеют массу 5,6 кг. Отношение массы к объёму всегда будет равно плотности:
1,6 / 2 = 0,8; 4 / 5 = 0,8; 5,6 / 7 = 0,8 и т. д.
Коэффициент пропорциональности
Неизменное отношение пропорциональных величин называется коэффициентом пропорциональности. Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой [1] .
Символ
Математический символ ‘∝’ используется для указания пропорциональности двух величин. Пример, A ∝ B.
В юникоде для отображения используется символ U+221D.
Прямая пропорциональность
Прямая пропорциональность — функциональная зависимость, при которой некоторая величина зависит от другой величины таким образом, что их отношение остаётся постоянным. Иначе говоря, эти переменные изменяются пропорционально, в равных долях, то есть, если аргумент изменился в два раза в каком-либо направлении, то и функция изменяется тоже в два раза в том же направлении.
Математически прямая пропорциональность записывается в виде формулы:
Графиком прямой пропорциональности является прямая линия, проходящая через начало координат.
Обратная пропорциональность
Обра́тная пропорциона́льность — это функциональная зависимость, при которой увеличение независимой величины(аргумента) вызывает пропорциональное уменьшение зависимой величины(функции).
, так как
и
по отдельности для
и возрастает на каждом из них по отдельности при
.
См. также
Источники
- ↑ 12 М. Я. Выгодский «Справочник по элементарной математике», М., 1974
- Элементарная математика
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Пропорциональность» в других словарях:
ПРОПОРЦИОНАЛЬНОСТЬ — ПРОПОРЦИОНАЛЬНОСТЬ, пропорциональности, мн. нет, жен. (книжн.). 1. отвлеч. сущ. к пропорциональный. Пропорциональность частей. Пропорциональность телосложения. 2. Такая зависимость между величинами, когда они пропорционально (см. пропорциональный … Толковый словарь Ушакова
ПРОПОРЦИОНАЛЬНОСТЬ — (от лат. proportionalis соразмерный, пропорциональный). Соразмерность. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПРОПОРЦИОНАЛЬНОСТЬ отлат. proportionalis, пропорциональный. Соразмерность. Объяснение 25000… … Словарь иностранных слов русского языка
Пропорциональность — 1) соразмерность элементов и их связей в одной системе; 2) принцип организации политических систем и процессов, динамическая сбалансированность политической системы. В политологическом ракурсе «пропорциональность» подразумевает выяснение целого… … Политология. Словарь.
пропорциональность — соразмерность, соизмеримость; соответствие, стройность, гармоничность, рациональность, нормальность. Ant. непропорциональность, асимметрия Словарь русских синонимов. пропорциональность соразмерность Словарь синонимов русского языка. Практический… … Словарь синонимов
ПРОПОРЦИОНАЛЬНОСТЬ — (от латинского proportio соотношение), простейший вид функциональной зависимости. Различают прямую пропорциональность y=kx (например, путь S, пройденный при равномерном движении со скоростью v, пропорционален времени t, т.е. S=vt) и обратную… … Современная энциклопедия
ПРОПОРЦИОНАЛЬНОСТЬ — простейший вид функциональной зависимости (см. Функция). Различают прямую пропорциональность. (y =kx) и обратную пропорциональность (y=k/x). Напр., путь S, пройденный при равномерном движении со скоростью v, пропорционален времени t, т. е. S =vt… … Большой Энциклопедический словарь
Пропорциональность — (от латинского proportio соотношение), простейший вид функциональной зависимости. Различают прямую пропорциональность y=kx (например, путь S, пройденный при равномерном движении со скоростью v, пропорционален времени t, т.е. S=vt) и обратную… … Иллюстрированный энциклопедический словарь
пропорциональность — ПРОПОРЦИОНАЛЬНОСТЬ, соразмерность ПРОПОРЦИОНАЛЬНЫЙ, соразмерный ПРОПОРЦИОНАЛЬНО, соразмерно, соответственно … Словарь-тезаурус синонимов русской речи
ПРОПОРЦИОНАЛЬНОСТЬ — ПРОПОРЦИОНАЛЬНОСТЬ, и, жен. 1. см. пропорциональный. 2. В математике: такая зависимость между величинами, при к рой увеличение одной из них влечёт за собой изменение другой во столько же раз. Прямая п. (при к рой с увеличением одной величины… … Толковый словарь Ожегова
ПРОПОРЦИОНАЛЬНОСТЬ — англ. proportionality; нем. Proportionalitat. Простейший вид функциональной зависимости, фиксирующей соотношение между двумя величинами; показатель отношения исследуемой функции ко всему числу изучаемых случайностей. Antinazi. Энциклопедия… … Энциклопедия социологии
ПРОПОРЦИОНАЛЬНОСТЬ — (лат. proportionalis) соблюдение пропорций, рациональных структурных соотношений в экономике, согласованное развитие отраслей, сфер, регионов. Райзберг Б.А., Лозовский Л.Ш., Стародубцева Е.Б.. Современный экономический словарь. 2 е изд., испр. М … Экономический словарь
Коэффициент пропорциональности
Еще термины по предмету «Высшая математика»
Аликвотная дробь
дробь вида 1 n, где n > 1 — натуральное число
Полный дифференциал
дифференциал функции нескольких переменных
Спрямляемая кривая
кривая, имеющая конечную длину
Похожие
- Пропорциональность
- Пропорциональное представительство
- Затраты пропорциональные
- Издержки пропорциональные
- Налогообложение пропорциональное
- Предел пропорциональности
- Пропорциональное сведение
- Пропорциональное обложение
- Пропорциональная ответственность
- Пропорциональное перестрахование
- Принцип пропорциональности
- Пропорциональное деление
- Пропорциональные отрезки
- Пропорциональный счетчик
- Пропорциональные ставки
- Пропорциональное налогообложение
- Пропорциональный налог
- Пропорциональная зависимость (прямо пропорциональная зависимость)
- Пропорциональность в организации производства
- Принцип сбалансированности и пропорциональности
Научные статьи на тему «Коэффициент пропорциональности»
1. Методы косвенных затрат
Чаще всего используются следующие: распределение пропорционально сумме материальных затрат (обычно этим.
Методы распределения косвенных затрат Метод распределения косвенных затрат пропорционально отработанному.
отработанным машиночасам (коэффициенто-станко-часам).
Отработанные коэффициенто-станко-часы рассчитываются как произведение указанных факторов: где Тотрi.
При этом стоимость одного коэффициенто-станко-часа определяется по формуле: При расчете уровня себестоимости
2. Уравнения с пропорциональными коэффициентами
Статья посвящена решению уравнений с прямопропорциональными коэффициентами на множестве натуральных чисел. Рассматриваются четыре вида уравнений и разработан алгоритм их решения.
3. Анализ пропорциональности развития рынка банковских услуг
Общее представление о пропорциональности развития рынка банковских услуг Определение 1 Пропорциональность.
эластичности; бета коэффициенты многоэффективных моделей; кривая Лоренца и коэффициенты концентрации.
Для измерения пропорциональности рынка банковских услуг используют коэффициенты эластичности.
Однако эмпирические и теоретические коэффициенты эластичности могут также установить пропорциональность.
, коэффициентами соотношения.
4. О применении «Правила Галасюка» при использовании коэффициентов пропорциональности в экономических расчетах
Предложено «Правило Галасюка», позволяющее целенаправленно управлять результатами расчётов, основанных на использовании пропорциональности и коэффициентов пропорциональности. Показано, как использование в экономических расчётах квазипропорциональности вместо пропорциональности обеспечивает возможность получения дополнительного прироста или дополнительного уменьшения результатов расчётов.
Что такое коэффициент пропорциональности? (с решенными упражнениями)
коэффициент пропорциональности или коэффициент пропорциональности — это число, которое будет указывать, насколько второй объект изменяется по отношению к изменению, которому подвергается первый объект..
Например, если говорится, что длина лестницы составляет 2 метра, а тень, которую она проецирует, составляет 1 метр (коэффициент пропорциональности равен 1/2), то если лестница уменьшается до длины 1 метра , тень будет пропорционально уменьшать свою длину, следовательно, длина тени будет 1/2 метра.
Если, с другой стороны, лестница увеличивается до 2,3 метра, тогда длина тени будет 2,3 * 1/2 = 1,15 метра..
Пропорциональность — это постоянная связь, которая может быть установлена между двумя или более объектами, так что если один из объектов претерпевает некоторые изменения, то другие объекты также претерпевают изменения.
Например, если мы скажем, что два объекта пропорциональны по длине, мы получим, что если один объект увеличивает или уменьшает свою длину, то другой объект также пропорционально увеличивает или уменьшает свою длину..
Коэффициент пропорциональности
Коэффициент пропорциональности, как показано в примере выше, является константой, на которую необходимо умножить величину, чтобы получить другую величину.
В предыдущем случае коэффициент пропорциональности составлял 1/2, поскольку лестница «x» имела размеры 2 метра, а тень «y» — 1 метр (половину). Следовательно, оно должно быть y = (1/2) * x.
Поэтому, когда «х» меняется, то «и» тоже меняется. Если «y» — это то, что изменяется, то «x» также будет меняться, но коэффициент пропорциональности будет другим, в этом случае он будет равен 2.
Пропорциональность упражнений
Первое упражнение
Хуан хочет приготовить торт для 6 человек. Рецепт, который Хуан говорит, что торт несет 250 г муки, 100 г сливочного масла, 80 г сахара, 4 яйца и 200 мл молока..
Прежде чем приступить к приготовлению торта, Хуан понял, что у него есть рецепт торта для 4 человек. Какими должны быть величины, которые Джон должен использовать?
решение
Здесь пропорциональность следующая:
4 человека — 250 г муки — 100 г сливочного масла — 80 г сахара — 4 яйца — 200 мл молока
Коэффициент пропорциональности в этом случае равен 6/4 = 3/2, что можно понять, как если бы оно сначала делилось на 4 для получения ингредиентов на человека, а затем умножалось на 6, чтобы сделать торт для 6 человек..
Когда вы умножаете все количества на 3/2, получается, что для 6 человек ингредиенты:
6 человек — 375 г муки — 150 г сливочного масла — 120 г сахара — 6 яиц — 300 мл молока.
Второе упражнение
Два автомобиля идентичны, за исключением шин. Радиус шины транспортного средства равен 60 см, а радиус шины второго транспортного средства равен 90 см..
Если после выполнения тура у вас количество кругов, которые дали шины с наименьшим радиусом, составляло 300 кругов. Сколько кругов сделали шины с наибольшим радиусом?
решение
В этом упражнении константа пропорциональности равна 60/90 = 2/3. Таким образом, если меньшие радиопокрышки дали 300 кругов, то шины с большим радиусом дали 2/3 * 300 = 200 кругов..
Третье упражнение
Известно, что 3 рабочих за 5 часов покрасили стену площадью 15 квадратных метров. Сколько могут рисовать 7 рабочих за 8 часов??
решение
Данные, представленные в этом упражнении:
3 рабочих — 5 часов — 15 м² стены
и то, что спрашивают, это:
7 рабочих — 8 часов -? м² стены.
Во-первых, вы можете спросить: сколько бы 3 рабочих нарисовали за 8 часов? Чтобы знать это, строка данных, представленная коэффициентом пропорциональности 8/5, умножается. Это дает в результате:
3 рабочих — 8 часов — 15 * (8/5) = 24 м² стены.
Теперь мы хотим знать, что произойдет, если число рабочих увеличится до 7. Чтобы узнать, какой эффект это дает, умножьте количество окрашенных стен на коэффициент 7/3. Это дает окончательное решение:
Прямая и обратная пропорциональность
Чем старше дерево, тем оно выше. Чем медленнее темп, тем дольше идти до школы. Эти и другие процессы можно описать математическим языком в виде прямой и обратной пропорциональной зависимости. Как это делать — расскажем в этой статье.
24 декабря 2020
· Обновлено 13 июля 2022
Основные определения
Математическая зависимость — это соответствие между элементами двух множеств, при котором каждому элементу одного множества ставится в соответствие элемент из другого множества.
Прямая зависимость. Чем больше одна величина, тем больше вторая. Чем меньше одна величина, тем меньше вторая величина.
Обратная зависимость. Чем больше одна величина, тем меньше вторая. Чем меньше одна величина, тем больше вторая.
Пропорция в математике — это равенство между отношениями двух или нескольких пар чисел или величин. Пропорциональными называются две взаимно-зависимые величины, если отношение их значений остается неизменным.
Пропорциональность — это взаимосвязь между двумя величинами, при которой изменение одной из них влечет за собой изменение другой во столько же раз. Проще говоря — это зависимость одного числа от другого.
Есть две разновидности пропорциональностей:
Прямая пропорциональность. Это зависимость, при которой увеличение одного числа ведет к увеличению другого во столько же раз. А уменьшение одного числа ведет к уменьшению другого во столько же раз.
Обратная пропорциональность. Это зависимость, при которой уменьшение одного числа ведет к увеличению другого во столько же раз. А увеличение числа наоборот ведет к уменьшению другого во столько же раз.
Коэффициент пропорциональности — это неизменное отношение пропорциональных величин. Он показывает, сколько единиц одной величины приходится на единицу другой. Коэффициент пропорциональности обозначается латинской буквой k.
Прямо пропорциональные величины
Две величины называются прямо пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз — другая увеличивается (или уменьшается) во столько же раз.
Прямая пропорциональность в виде схемы: «больше — больше» или «меньше — меньше».
a и d называются крайними членами, b и c — средними.
Свойство прямо пропорциональной зависимости:
Если две величины прямо пропорциональны, то отношения соответствующих значений этих величин равны.
Примеры прямо пропорциональной зависимости:
при постоянной скорости пройденный маршрут прямо-пропорционально зависит от времени;
периметр квадрата и его сторона — прямо-пропорциональные величины;
стоимость конфет, купленных по одной цене, прямо-пропорционально зависит от их количества.
Если говорить метафорами, то прямую пропорциональную зависимость можно отличить от обратной по пословице: «Чем дальше в лес, тем больше дров». Что значит, чем дольше ты идешь по лесу, тем больше дров можно собрать.
Формула прямой пропорциональности
y = kx,
где y и x — переменные величины, k — постоянная величина, которую называют коэффициентом прямой пропорциональности.
Коэффициент прямой пропорциональности — это отношение любых соответствующих значений пропорциональных переменных y и x, равное одному и тому же числу.
Формула коэффициента прямой пропорциональности:
Пример 1.
В одно и то же путешествие поехали два автомобиля. Один двигался со скоростью 70 км/ч и за 2 часа проделал тот же путь, что другой за 7 часов. Найти скорость второго автомобиля.
Вспомним формулу для определения пути через скорость и время:
Так как оба автомобиля проделали одинаковый путь, можно составить пропорцию из двух выражений:
Найдем скорость второго автомобиля:
Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Пример 2.
Блогер за 8 дней может написать 14 постов. Сколько помощников ему понадобится, чтобы написать 420 постов за 12 дней, если они пишут с такой же скоростью?
Количество человек (блогер и помощники) увеличивается с увеличением объема работы, если ее нужно сделать за то же количество времени.
14 (постов) / 8 (дней) × х (блогеров) = 420 (постов) / 12 (дней)
Вспомним основное свойство пропорции, согласно которому:
14x × 12 = 420 × 8
х = (420 × 8) / (14 × 12)
Ответ: 20 человек напишут 420 постов за 12 дней.
Обратно пропорциональные величины
Две величины называют обратно пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз — другая уменьшается (или увеличивается) во столько же раз.
Объясним, что значит обратно пропорционально в виде схемы: «больше — меньше» или «меньше — больше».
Свойство обратной пропорциональности величин:
Если две величины находятся в обратно пропорциональной зависимости, то отношение двух произвольно взятых значений одной величины равно обратному отношению соответствующих значений другой величины.
Примеры обратно пропорциональной зависимости:
время на маршрут и скорость, с которой путь был пройден — обратно пропорциональные величины;
при одинаковой продуктивности количество школьников, решающих конкретную задачу, обратно пропорционально времени выполнения этой задачи;
количество конфет, купленных на определенную сумму денег, обратно пропорционально их цене.
Формула обратной пропорциональности
где y и x — это переменные величины,
k — постоянная величина, которую называют коэффициентом обратной пропорциональности.
Коэффициент обратной пропорциональности — это произведение любых соответствующих значений обратно пропорциональных переменных y и x, равное одному и тому же числу.
Формула коэффициента обратной пропорциональности:
Потренируемся
Пример 1. 24 человека за 5 дней раскрутили канальчик в ютубе. За сколько дней выполнят ту же работу 30 человек, если будут работать с той же эффективностью?
В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.
Чем больше людей, тем меньше времени нужно для выполнения определенной работы (раскрутки канала). Значит, это обратно пропорциональная зависимость.
Поэтому направим вторую стрелку в противоположную сторону. Обратная пропорция выглядит так:
Пусть за х дней могут раскрутить канал 30 человек. Составляем пропорцию:
Чтобы найти неизвестный член пропорции, нужно произведение средних членов разделить на известный крайний член:
Значит, 30 человек раскрутят канал за 4 дня.
Пример 2. Автомобиль проезжает от одного города до другого за 13 часов со скоростью 75 км/ч. Сколько времени ему понадобится, если он будет ехать со скоростью 52 км/ч?
Скорость и время связаны обратно пропорциональной зависимостью: чем больше скорость, тем меньше времени понадобится.