Перевод ватт (Вт) в вольты (В)
Инструкция по использованию: Чтобы перевести ватты (Вт) в вольты (В), введите мощность P в ваттах (Вт), силу тока I в амперах (А), коэффициент мощности PF от 0 до 1 (для переменного тока), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение напряжения U в вольтах (В).
- Калькулятор Вт в В (постоянный ток)
- Калькулятор Вт в В (1 фаза, переменный ток)
- Калькулятор Вт в В (3 фазы, переменный ток)
Калькулятор Вт в В (постоянный ток)
Формула для перевода Вт в В
Напряжение U в вольтах (В) сети с постоянным током равняется мощности P в ваттах (Вт), деленной на силу тока I в амперах (А).
Калькулятор Вт в В (1 фаза, переменный ток)
Формула для перевода Вт в В
Напряжение U в вольтах (В) однофазной сети с переменным током равняется мощности P в ваттах (Вт), деленной на произведение коэффициента мощности PF и силы тока I в амперах (А).
Калькулятор Вт в В (3 фазы, переменный ток)
Формула для перевода Вт в В
Напряжение U в вольтах (В) трехфазной сети с переменным током равняется мощности P в ваттах (Вт), деленной на произведение квадратного корня из трех, коэффициента мощности PF и силы тока I в амперах (А).
Перевести амперы в ватты и обратно
Мощность — это физическая величина, характеризующая скорость передачи энергии от одной физической системы к другой.
Сила тока — это величина, равная отношению количества заряда, прошедшего через поверхность за некоторое время, к промежутку времени.
Формула перевода ампер в ватты:
P — мощность;
U — напряжение;
I — сила тока.
Быстро выполнить эту простейшую математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.
Для сложных расчетов по переводу нескольких единиц измерения в требуемую (например для математического, физического или сметного анализа группы позиций) вы можете воспользоваться универсальными конвертерами единиц измерения.
На этой странице представлен самый простой онлайн переводчик единиц измерения амперы в ватты. С помощью этого калькулятора вы в один клик сможете перевести ватты в амперы и обратно.
Сколько вольт в электрошокере?
Напряжение пробоя сухого воздуха 1000 в/мм. Когда в паспорте на электрошокер пишут, что напряжение на нем до 25000000 Вольт имеется ввиду напряжение холостого хода на бесконечной нагрузке. Задача электрошокера пробить слой непроводящий одежды и образовать токопроводящий канал между электродом шокера и кожей человека. В момент образования проводящего канала по цепи потечет ток, а напряжение уменьшится за счет уменьшения нагрузки и сила поражающего действия будет зависеть от величины протекающего тока. В рекламе электрошокеров все они могут пробить слой одежды 4-5 сантиметров, для этого нужно напряжение не менее 50 кВ. Отсюда вывод реальное напряжение любого электрошокера не более 100 000В.
Почему электрошокер (миллион вольт) не убивает человека, а 220В из розетки убивает?
Частота тоже влияет. Чем больше частота переменного тока, тем менее глубоко проникает разряд.
А так все верно, сила тока маленькая получается, в отличие от розетки, где сила тока не ограничивается.
Посмотрите креосана, они там током долбятся запредельным и еще живы)
Сергей Пуговкин:
Нет, не вырвана. Тк в формулу не подставили все значения
И вместо реального значения в пару А, вы пытаетесь использовать В
Поищите реальные данные по вольтажу и амперметражу у устройств
Имея дело с физикой (описывающей поведение движущихся зарядов) и физиологией (описывающей реакцию живого тела на движущийся заряд), нельзя оперировать «логикой», в которой участвуют не конкретные значения физических величин, а «очень много» «очень мало» и так далее.
Начнем с того, что вообще убивает в случае поражения током. Чтобы наступила смерть от электрического тока, нужно выполнение определенных условий (как минимум, одного): остановка сердца (вызванная сокращением мышцы под действием протекающего через нее тока), необратимое поражение нервной системы, глубокий ожог тканей.
Для остановки сердца (если не брать случай с больными или теми, у кого установлен кардиостимулятор) нужно: чтобы ток через тело был где-то выше четверти Ампера (при приложении тока дольше секунды — выше 50-70 мА), чтобы он протекал именно через тело и затрагивал сердце, а не проходил через небольшой участок кожи. Потому, например, если взять те же пресловутые «220 из розетки» и приложить два провода к коже на руке, пока человек будет стоять на достаточно толстом изоляторе (чтобы исключить стекание тока через емкость между ногами и полом), получится ожог руки, но никто не умрёт. И, наоборот, при определенных условиях, того же человека можно убить источником тока, имеющим напряжение в скромные четыре десятка вольт, приложив напряжение между его левой рукой и ногами, обеспечив надержный контакт (большая площадь соприкосновения с проводами, мокрая кожа). Высокое напряжение, безусловно, играет существенную роль в процессе, но эта роль — не единственная. На силу воздействия также влияет частота: мышцы по-разному реагируют на постоянный ток, переменный ток низкой частоты (десятки герц, как в питающей сети), ток более высокой частоты (единицы килогерц). Более высокочастотный переменный ток нуждается в большей длительности воздействия, так как мышцы на него реагируют медленнее. Также, высокочастотные токи из-за свойств проводимости оказываются «вытеснены» на поверхность тела. Что, при прочих равных условиях (напряжение, ток, точки приложения к телу) делают их менее опасными, так как величина тока через внутренние органы снижается на порядки.
Эти же факторы в разных комбинациях влияют на поражение нервной системы и ожоги. В историях с поражением молнией всегда остается вопрос, а шел ли ток через тело, или по его поверхности, либо вообще только «по касательной» (мокрая не очень чистая одежда имеет меньшее сопротивление, да и механизм течения токов такого высокого напряжения заслуживает отдельной статьи).
Говоря о «шокерах», можно также посмотреть на конкретные цифры. Скажем, Taser заявляет для некоторых своих моделей следующие электрические параметры: ток импульсный, каждый импульс общей длиной порядка 120 микросекунд, частота следования импульсов — 20 раз в секунду, частота тока внутри импульса — 10 килогерц, сила тока на первом периоде импульса — до 3 Ампер, далее — очень быстро затухает. Что мы из этого можем извлечь? А то, что импульсы слишком короткие, чтобы вызвать смертельные изменения, частота — слишком высока, чтобы создать высокую плотность тока через внутренние органы (очевидно, подобрана, чтобы поражать только двигательные мышцы на поверхности тела), импульсы следуют достаточно редко. Плюс, электроды шокера никогда не оказываются приложены к разным концам тела. Потому, если не стараться специально вмешаться в конструкцию, убить им — достаточно сложно.