Чем характеризуются активные и реактивные элементы в цепях переменного тока
Перейти к содержимому

Чем характеризуются активные и реактивные элементы в цепях переменного тока

ЛЕКЦИЯ 7. ПЕРЕМЕННЫЙ ТОК. АКТИВНЫЕ И РЕАКТИВНЫЕ ЭЛЕМЕНТЫ

До сих пор мы рассматривали электрический ток, направ­ление и сила которого оставались постоянными, т. е. не изме­нялись с течением времени. Такой ток мы называли постоян­ным. При постоянном токе электроны движутся по проводнику все время в одном и том же направлении (если не считать хаотического теплового движения электронов), причем количе­ство движущихся электронов и скорость, их движения все время остаются постоянными.

Условное графическое изображение постоянного тока при­ведено на рисунке 1.

Рисунок 1. График переменного тока.

Переменный ток отличается от постоянного тем, что он периодически изменяет свое направление, т. е. течет по про­воднику то в одну, то в другую сторону.

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока:

В общем случае цепь переменного тока характеризуется тремя параметрами: активным сопротивлением R, индуктивностью L и емкостью С. В технике часто применяются цепи переменного тока, в которых преобладает один или два из этих параметров.

При анализе работы и расчетах цепей исходят из того, что для мгновенных значений переменного тока можно использовать все правила и законы постоянного тока.

Цепь с активным сопротивлением

Активным сопротивлением R обладают элементы, которые нагреваются при прохождении через них тока (проводники, лампы накаливания, нагревательные приборы и т.д.).

Если к активному сопротивлению R (рис. 11.1) приложено синусоидальное напряжение Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока

Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, так как начальные фазы их равны ( Электрические цепи синусоидального тока= 0). Векторная диаграмма для цепи с активным сопротивлением изображена на рис. 11.16, временная диаграмма изображена на рис. 11.1в.

Математическое выражение закона Ома для цепи переменного тока с активным сопротивлением имеет вид:

Электрические цепи синусоидального тока

Это вытекает из выражения (11.1), если левую и правую части уравнения разделить на Электрические цепи синусоидального тока=1,41.

Электрические цепи синусоидального тока

Таким образом, действующее значение синусоидального тока I пропорционально действующему значению синусоидального напряжения U и обратно пропорционально сопротивлению R участка цепи, к которому приложено напряжение U. Такая интерпретация закона Ома справедлива как для мгновенных, так и для действующих и амплитудных значений синусоидального тока.

Активная мощность

Мгновенная мощность в цепи с активным сопротивлением определяется произведением мгновенных значений напряжения ка, т. е. р = ui. Это действие производится над кривыми тока и ряжения в определенном масштабе (рис. 11.1в). В результате учена временная диаграмма мгновенной мощности р. Как видно из временной диаграммы, мощность в цепи с активным сопротивлением изменяется по величине, но не изменяется по направлению (рис. 11.1в). Эта мощность (энергия) необратима. От источника она поступает на потребитель и полностью преобразуется в другие виды мощности (энергии), т.е. потребляется. Такая потребляемая мощность называется активной.

Поэтому и сопротивление R, на котором происходит подобное образование, называется активным сопротивлением, цепи с активным сопротивлением мгновенная мощность характеризует скорость преобразования электрической энергии в другие виды энергии.

Количественно мощность в цепи с активным сопротивлением определяется следующим образом:

Электрические цепи синусоидального тока

Мгновенная мощность в цепи синусоидального тока с активным сопротивлением представляет собой сумму двух величин -постоянной мощности UI и переменной Электрические цепи синусоидального тока, изменяющейся с двойной частотой.

Средняя за период мощность, равная постоянной составляющей мгновенной мощности UI, является активной мощностью Р. Среднее за период значение переменной составляющей, как и всякой синусоидальной величины, равно нулю, то есть

Электрические цепи синусоидального тока

Таким образом, величина активной мощности в цепи синусоидального тока с активным сопротивлением с учетом закона Ома определяется выражением:

Электрические цепи синусоидального тока

где U- действующее значение напряжения; I— действующее значение тока.

Единицей активной мощности является ватт:

Электрические цепи синусоидального тока

Поверхностный эффект и эффект близости

Сопротивление проводника постоянному току Электрические цепи синусоидального токаназывают омическим сопротивлением и определяют выражением (2.8) Электрические цепи синусоидального токаСопротивление проводника переменному току R называют активным.

Оказывается, что сопротивление проводника переменному току больше его омического сопротивления за счет так называемого поверхностного эффекта и эффекта близости, т. е. Электрические цепи синусоидального тока

Увеличение активного сопротивления вызвано неодинаковой плотностью тока в различных сечениях проводника (рис. 11.2а).

На рис. 11.2а изображено магнитное поле проводника цилиндрического сечения. Если по проводнику проходит переменный ток, то он создает переменный магнитный поток внутри и вне проводника. Этот поток в различных сечениях проводника индуктирует ЭДС самоиндукции, которая, согласно правилу Ленца. противодействует изменению тока как причине создания ЭДС Очевидно, центр проводника охвачен большим количеством магнитных линий (большее потокосцепление), чем слои, близкие к поверхности. Следовательно, в центре проводника ЭДС (сопротивление) больше, чем на поверхности проводника. Плотность на поверхности больше, чем в центре. Поэтому это явление и называется поверхностным эффектом.

Электрические цепи синусоидального тока

Таким образом, поверхностный эффект уменьшает сечение проводника для переменного тока, а следовательно, увеличивает активное сопротивление R.

Отношение активного сопротивления проводника к его сопротивлению определяет коэффициент поверхностного эффекта Электрические цепи синусоидального тока(кси)

Электрические цепи синусоидального тока

График зависимости коэффициента поверхностного эффекта от параметра проводника d, его удельной проводимости Электрические цепи синусоидального тока, магнитной проницаемости материала проводника Электрические цепи синусоидального токаи частоты переменного тока Электрические цепи синусоидального тока, проходящего по проводнику, показан на рис. 11.26.

При токах большой частоты Электрические цепи синусоидального тока(радиочастотах) ток в центре проводника отсутствует. Поэтому такие проводники делают трубчатыми, т.е. полыми.

На величину активного сопротивления проводника R оказывает влияние и эффект близости.

Если токи в двух параллельных проводах, расположенных близко друг к другу, направлены в одну сторону, то элементы сечения водников, удаленных на большее расстояние друг от друга, цепляются с меньшим магнитным потоком и имеют большую плотность тока (заштриховано на рис. 11.3а), чем элементы сечения проводников, расположенные близко друг к другу.

Если же токи в близко расположенных параллельных проводах направлены в различные стороны, то большая плотность тока на-дается в элементах сечения проводников, расположенных ближе друг к другу (заштриховано на рис. 11.36).

Таким образом, эффект близости в проводниках также влияет активное сопротивление проводников за счет наведения в различных элементах сечений проводников различных ЭДС взаимоиндукции, направление которых определяется правилом Ленца.

Электрические цепи синусоидального тока

Цепь с идеальной индуктивностью

Идеальной называют индуктивность L такой катушки, активным сопротивлением R и емкостью С которой можно пренебречь, т.е. R= О и С=0.

Если в цепи идеальной катушки индуктивностью L (рис. 11.4а) проходит синусоидальный ток Электрические цепи синусоидального тока, то этот ток создает в катушке синусоидальный магнитный поток Электрические цепи синусоидального тока, который индуктирует в катушке ЭДС самоиндукции, равную согласно (9.11)

Электрические цепи синусоидального тока

так как Электрические цепи синусоидального тока

Очевидно, эта ЭДС достигает своего амплитудного значения Электрические цепи синусоидального токатогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Тогда Электрические цепи синусоидального тока

Таким образом, ЭДС самоиндукции в цепи с идеальной индуктивностью L, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстает от тока по фазе на угол 90° = Электрические цепи синусоидального тока(рис. 11.46, в).

По второму закону Кирхгофа для мгновенных значений можно записать

Электрические цепи синусоидального тока

Откуда Электрические цепи синусоидального тока

Тогда напряжение, приложенное к цепи с идеальной индуктивностью (см. (11.5)):

Электрические цепи синусоидального тока

Очевидно, напряжение достигает своего амплитудного значения Um тогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Следовательно, Электрические цепи синусоидального тока

Таким образом, напряжение, приложенное к цепи с идеальной ин-ивностью, как и ток в этой цепи, изменяется по синусоидально-жону, но опережает ток по фазе на угол 90°= Электрические цепи синусоидального тока(рис. 11.46, в).

Резюмируя все вышесказанное, можно сделать вывод: для существования тока в цепи с идеальной индуктивностью необходимо ожить к цепи напряжение, которое в любой момент времени но по величине, но находится в противофазе с ЭДС, вызванной таким током (рис. 11.46, в).

Временная диаграмма (рис. 11.4в) еще раз иллюстрирует правило Ленца: ЭДС Электрические цепи синусоидального токапротиводействует изменению тока.

Если уравнение (11.10) разделить на Электрические цепи синусоидального тока=1,41, то получается Электрические цепи синусоидального тока=Электрические цепи синусоидального тока, откуда

Электрические цепи синусоидального тока

Это уравнение (11.12а) и есть математическое выражение закона Ома для цепи синусоидального тока с идеальной индуктивностью. Очевидно, знаменатель этого уравнения есть не что иное, как сопротивление, которое называют индуктивным сопротивлением XL.

Электрические цепи синусоидального тока

Закон Ома для этой цепи можно записать иначе:

Электрические цепи синусоидального тока

Индуктивное сопротивление XL — это противодействие, которое ЭДС самоиндукции eL оказывает изменению тока.

Реактивная мощность в цепи с индуктивностью

Мгновенная мощность для цепи синусоидального тока с идеальной катушкой равна произведению мгновенных значений напряжения и тока

Электрические цепи синусоидального тока

где Электрические цепи синусоидального тока

Следовательно, Электрические цепи синусоидального тока

Полученное уравнение умножают и делят на 2:

Электрические цепи синусоидального тока

Таким образом, мощность в цепи синусоидального тока с идеальной катушкой индуктивности изменяется по синусоидальному закону с двойной частотой.

Следовательно, среднее значение этой мощности за период Яс, как и любой синусоидальной величины, т. е. активная потребляемая мощность, в этой цепи равна нулю, Р= 0.

Временная диаграмма (рис. 11,4в) подтверждает этот вывод. На диаграмме видно, что мгновенная мощность (Электрические цепи синусоидального тока) в рассматриваемой цепи изменяется по синусоидальному закону с двойной частотой.

То есть в 1-ю и 3-ю четверти периода мощность (энергия) источника накапливается в магнитном поле индуктивности. Максимальное значение накапливаемой в магнитном поле идеальной катушки энергии по (9.12) равно

Электрические цепи синусоидального тока

Во 2-ю и 4-ю четверти периода эта мощность (энергия) из магнитного поля идеальной катушки возвращается к источнику.

Таким образом, в цепи переменного тока с идеальной катушки мощность не потребляется (Р= 0), а колеблется между источником и магнитным полем индуктивности, загружая источник и провода.

Такая колеблющаяся мощность (энергия), в отличие от активной, потребляемой, называется реактивной.

Обозначается реактивная мощность буквой Q и измеряется в варах, т.е. [Q]=вар (вольт-ампер реактивный).

Величина реактивной мощности в рассматриваемой цепи определяется выражением

Электрические цепи синусоидального тока

Так как реактивная мощность QL имеет место в цепи с индуктивным сопротивлением, то индуктивное сопротивление считается реактивным сопротивлением X индуктивного характера, т. е. XL.

Цепь с емкостью

Если конденсатор емкостью С подключить к источнику с постоянным напряжением U (рис. 11.5а), то ток зарядки конденсатора ходит в цепи очень короткое время, пока напряжение на конденсаторе Uc не станет равным напряжению источника U.

Ток в рассматриваемой цепи (рис. 11.5а) практически отсутствует (амперметр А покажет I=0).

Если же конденсатор подключить к источнику с синусоидальным напряжением (рис. 11.56), то ток в цепи конденсатора существует все время, пока цепь замкнута, и амперметр А покажет этот ток. Ток в цепи конденсатора, подключенного к источнику с синусоидальным напряжением, имеет место потому, что напряжена конденсаторе Uc отстает по фазе от напряжения источника и зарядке, и при разрядке конденсатора. Например, пока напряжение на конденсаторе достигает значения 1, напряжение источника достигнет значения 2 (рис. 11.5в), т. е. конденсатор заряжается; пока конденсатор зарядится до напряжения 2, напряжение источника уменьшится до напряжения 3 — конденсатор разряжается на источник и т.д. Однако ток проходит только в цепи конденсатора. Через диэлектрик конденсатора ток не проходит.

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Таким образом, если к конденсатору емкостью С приложено синусоидальное напряжение Электрические цепи синусоидального тока, то в цепи конденсатора проходит ток i (рис. 11.6а):

Электрические цепи синусоидального тока

где q= Си согласно (6.3).

Очевидно, ток в цепи конденсатора достигает амплитудного значения тогда, когда Электрические цепи синусоидального тока:

Электрические цепи синусоидального тока

Тогда Электрические цепи синусоидального тока

Как видно, ток в цепи конденсатора, как и напряжение, приложенное к его обкладкам, изменяется по синусоидальному закону, однако опережает это напряжение по фазе на угол 90°=Электрические цепи синусоидального тока

Следовательно, напряжение отстает по фазе от тока на 90° = Электрические цепи синусоидального тока(рис. 11.66).

Если уравнение (11.17) разделить на Электрические цепи синусоидального тока= 1,41, то получится равенство Электрические цепи синусоидального токаили

Электрические цепи синусоидального тока

Это равенство (11.19а) и является математическим выражением закона Ома для цепи переменного тока с емкостью.

Очевидно, знаменатель этого равенства является сопротивлением конденсатора Хс, которое называется емкостным сопротивлением:

Электрические цепи синусоидального тока

Когда закон Ома для цепи с конденсатором можно записать:

Электрические цепи синусоидального тока

Емкостное сопротивление — это противодействие, которое оказывает напряжение заряженного конденсатора напряжению, приложенному к нему (рис. 11,5а).

Реактивная мощность в цепи с конденсатором

Если в цепи конденсатора емкостью Электрические цепи синусоидального тока= 0 (рис. 11.6а) проходит ток i, изменяющийся по синусоидальному закону:

Электрические цепи синусоидального тока

Напряжение и, приложенное к этому конденсатору (рис. 11.6), будет равно

Электрические цепи синусоидального тока

Мгновенная мощность в цепи с конденсатором

Электрические цепи синусоидального тока

Мощность в цепи с конденсатором, подключенным к источнику с синусоидальным напряжением, изменяется по синусоидальному закону с двойной частотой (рис. 11.6в).

Следовательно, активная мощность Р в рассматриваемой цепи 1С. 11.6а), равная среднему значению мгновенной мощности за период, имеет нулевое значение, Р= 0.

Это следует и из временной диаграммы (рис. 11.6в). На временной диаграмме видно, что изменение мгновенной мощности р по синусоидальному закону происходит с двойной частотой: 2-ю и 4-ю четверти периода мощность (энергия) источника накапливается в электрическом поле конденсатора.

Максимальное значение энергии, накапливаемой в электрическом поле конденсатора, равно

Электрические цепи синусоидального тока

В 1-ю и 3-ю четверти периода эта мощность (энергия) из электрического поля конденсатора возвращается к источнику.

Таким образом, в цепи переменного тока с конденсатором происходит колебание мощности (энергии) между источником и электрическим полем конденсатора. Такая колеблющаяся, но не потребляемая мощность называется реактивной мощностью.

Величина реактивной мощности в цепи конденсатора определяется выражением

Электрические цепи синусоидального тока

Из временных диаграмм (рис. 11.4в, 11.6в) видно, что реактивная мощность в цепи конденсатора изменяется в противофазе с реактивной мощностью в цепи с идеальной катушкой. Отсюда и знак «минус» в уравнении (11.21) — аналитическом выражении мгновенной мощности в цепи с конденсатором.

Так как реактивная мощность Qc имеет место в цепи с емкостным сопротивлением, то это емкостное сопротивление считается реактивным сопротивлением Х емкостного характера (Хс).

Расчет линейных электрических цепей синусоидального тока

Расчет электрических цепей синусоидального тока производится преимущественно с помощью векторных диаграмм. В нашей главе рассматривается расчет неразветвленных цепей синусоидального тока, содержащих активное сопротивление R, активность L и емкость С в различных сочетаниях.

Цепь с активным сопротивлением и индуктивностью

Если по цепи с реальной катушкой, обладающей активным сопротивлением R и индуктивностью L, проходит синусоидальный ток Электрические цепи синусоидального тока(рис. 12.1а), то этот ток создает падение напряжения на активном сопротивлении проводников катушки и индуктивном сопротивлении катушки Электрические цепи синусоидального тока

Следовательно, по второму закону Кирхгофа, для мгновенных значений, приложенное к реальной катушке напряжение можно записать

Электрические цепи синусоидального тока

Это равенство справедливо для неразветвленной цепи синусоидального тока с последовательно включенными активным сопротивлением R и индуктивным сопротивлением XL (рис. 12.16).

Активное напряжение (рис. 11.16) совпадет по фазе с током и может быть записано Электрические цепи синусоидального тока. Индуктивное напряжение Электрические цепи синусоидального токаопережает ток на угол 90° = Электрические цепи синусоидального тока.

Электрические цепи синусоидального тока

Мгновенное значение напряжения, приложенного к цепи, определяется алгебраической суммой мгновенных значений напряжений Электрические цепи синусоидального токасогласно (12.1). А действующее значение этого напряжения U определяется геометрической суммой их действующих значений

Электрические цепи синусоидального тока

Это равенство лежит в основе построения векторной диаграммы (рис. 12.1 в).

Из векторной диаграммы (рис. 12.1 в) видно, что напряжение U, приложенное к реальной катушке, опережает по фазе ток Электрические цепи синусоидального токана угол ф. Мгновенное значение этого напряжения может быть записано:

Электрические цепи синусоидального тока

где ф — это международное обозначение угла сдвига фаз между током и напряжением для любой цепи переменного тока.

Воспользовавшись теоремой Пифагора для определения гипотенузы прямоугольного треугольника, по векторной диаграмме (рис. 12.1 в) определяется напряжение

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Равенство (12.4) является математическим выражением закона Ома для цепи синусоидального тока с активным R и индуктивным XL сопротивлениями в неразветвленной цепи.

Знаменатель этого равенства является сопротивлением этой цепи, которое называется полным, или кажущимся, сопротивлением цепи синусоидального тока. Обозначается кажущееся (полное) сопротивление любой цепи переменного тока буквой Z:

Электрические цепи синусоидального тока

где Zk — полное, или кажущееся, сопротивление реальной катушки.

Тогда закон Ома для любой цепи переменного тока в общем виде можно записать

Электрические цепи синусоидального тока

где Z — кажущееся сопротивление этой цепи.

Треугольники напряжений, сопротивлений, мощностей

Треугольник, все стороны которого изображены векторами напряжений, называется треугольником напряжений. Пользуясь векторной диаграммой для неразветвленной цепи с активным и индуктивным сопротивлениями (рис. 12.1в), выделяем треугольник напряжений (рис. 12.2а).

Связь между напряжениями в данной цепи можно рассматривать как соотношение между сторонами и углами прямоугольного треугольника:

Электрические цепи синусоидального тока

Если все стороны треугольника напряжений разделить на ве-1ину тока в цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают сопротивления цепи, т. е. получится треугольник составлений (рис. 12.16). Сопротивления не являются векторными величинами. Из треугольника сопротивлений можно определить:

Электрические цепи синусоидального тока

Электрические цепи синусоидального тока

Обычно тригометрические функции угла ф определяются из треугольника сопротивлений отношением (12.9).

Если все стороны треугольника напряжений умножить на величину тока цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают мощности цепи, т.е. получится треугольник мощностей (рис. 12.2в).

Произведение напряжения и тока цепи характеризует полную мощность цепи

Электрические цепи синусоидального тока

которая измеряется в вольт-амперах, т.е. Электрические цепи синусоидального тока

Однако потребляется в цепи только часть полной мощности — активная мощность

Электрические цепи синусоидального тока

где cos ф показывает, какая часть полной мощности Электрические цепи синусоидального токапотребляется в цепи, поэтому cos ф называют коэффициентом мощности:

Электрические цепи синусоидального тока

Полная мощность цепи S называется кажущейся. Из того же треугольника мощностей (рис. 12.2в) записать:

Электрические цепи синусоидального тока

Построив треугольники напряжений, сопротивлений и мощностей для любой цепи синусоидального тока, по выражениям (12.7)—(12.14) можно рассчитать параметры этой цепи.

Цепь с активным сопротивлением и емкостью

Если в цепи с последовательно включенными активным сопротивлением R и емкостью С протекает синусоидальный ток Электрические цепи синусоидального тока, то он создает падение напряжения на активном сопротивлении Электрические цепи синусоидального токаи на емкостном сопротивлении Электрические цепи синусоидального тока. Векторная диаграмма для этой цепи изображена на рис. 12.36.

Электрические цепи синусоидального тока

Напряжение цепи изменяется, как и ток, по синусоидальному закону и отстает по фазе от тока на угол ф

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *