Что является источником радиоволн? Где они используются?
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Электромагнитные волны: что это такое, свойства, формулы, применение
Электромагнитные волны (также называют как электромагнитное излучение) – это распространение в пространстве переменных электрических и магнитных полей. Другими словами, это поперечные волны, распространяющиеся со скоростью 300 000 км/с в вакууме. Электромагнитные волны включают: радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолет, рентгеновские и гамма-лучи. Приведенные волны различаются по длине и частоте.
В этой статье вы узнаете, что такое электромагнитные волны, как они используются, а также важные формулы, которые математически их описывают.
Что такое электромагнитная волна?
Название “электромагнитные волны” состоит из двух частей – “электромагнитные” и “волны”. Волны” говорит о том, что что-то периодически колеблется вверх и вниз. Добавление слова “электромагнитный” говорит о том, что это “что-то” – электрические и магнитные поля.
Это означает, что электромагнитные волны (также называемые электромагнитным излучением) описывают периодическое колебание электрического и магнитного полей. Поля не колеблются беспорядочно вверх и вниз, а связаны друг с другом так, что электрическое поле перпендикулярно магнитному полю (см. рисунок 1).
Рис. 1. Электромагнитная волна
Когда мы помещаем куда-либо положительный или отрицательный электрический заряд, в пространстве вокруг него возникают силы, действующие на другие заряды; например, явление поляризации (разделение электрических зарядов в проводнике). Мы говорим, что электрический заряд создает вокруг себя электрическое поле, и это поле оказывает влияние на другие заряды. Это электрическое поле отвечает за протекание электрического тока.
Если заряд, создающий поле, перемещается, т.е. приближается к одним зарядам и удаляется от других, то действующие силы будут меняться. Из этого следует, что поле будет меняться. Поэтому мы можем иметь дело с полем, постоянным во времени (статическим), или с полем, изменяющимся во времени. Если электрическое поле в проводнике постоянно, то постоянна и сила тока. Если поле меняется, то меняется и электрический ток.
То же самое справедливо и для магнитных сил – они возникают в пространстве вокруг магнита, электромагнита или проводника, в котором течет электрический ток. Это означает, что эти тела являются источниками магнитного поля. Если источники поля неподвижны, а электрический ток в обмотках электромагнита или одиночного проводника имеет постоянное значение, то создаваемое поле будет статическим. Движение источников и изменение силы тока создадут переменное поле.
Вы уже знаете, что изменение положения магнита относительно проводника может вызвать протекание в нем электрического тока. Поскольку для этого потока необходимо электрическое поле, следует, что переменное магнитное поле создает электрическое поле. Вы также знаете, что при протекании электрического тока в проводнике возникает магнитное поле вокруг проводника, и если электрический ток течет то в одну, то в другую сторону, или его интенсивность увеличивается или уменьшается, то магнитное поле, создаваемое этим электрическим током, будет переменным.
Что происходит, когда в каком-либо месте возникает переменное магнитное поле? Сразу же появится переменное электрическое поле. Там не обязательно должен быть проводник. А когда в определенном месте появляется изменяющееся электрическое поле (например, при движении)? Да, вы правы – в этом месте появится переменное магнитное поле. Именно так эти поля переносятся в пространстве.
Деформация поверхности воды распространяется, создавая волну, а сгущение воздуха, вызванное движением струны, передается по воздуху, создавая звуковую волну. В отношении переменных электрических и магнитных полей мы говорим об электромагнитной волне. Во второй половине 19 века теория распространения волн была разработана Джеймсом Клерком Максвеллом. Известно, что он как-то сказал, что это чрезвычайно красивая теория, которая никогда не будет полезна.
Электромагнитные волны были открыты Генрихом Герцем в 1886 году. Теория Максвелла была подтверждена, но Герц не дожил до рождения радио.
Как видно из вышесказанного, для того чтобы возбудить электромагнитную волну, необходимо где-то индуцировать изменение магнитного или электрического поля. А как узнать, что волна куда-то дошла? Если мы возбудим механическую волну на одном берегу озера, то, когда она достигнет лодки, плывущей по воде на другом берегу, мы заметим, что она начнет подниматься и опускаться. Электромагнитная волна, создаваемая переменными электрическим и магнитным полями, вызывает электрический ток в замкнутой цепи приемника. Наиболее важное различие между обоими типами волн заключается в том, что механическая волна требует материальной среды, в которой она может распространяться. Электромагнитная волна может распространяться в вакууме.
Свойства электромагнитных волн
Существует ряд свойств, которыми обладают электромагнитные волны. В этом подразделе мы перечислим наиболее важные свойства и их значение.
- Среда распространения. В то время как механические волны нуждаются в среде для распространения, электромагнитные волны могут распространяться и в вакууме. Электромагнитные волны могут распространяться не только в вакууме, но и в газах, таких как воздух, в жидкостях, таких как вода, или в твердых телах, таких как стекловолокно. Такое разнообразие сред распространения позволяет использовать электромагнитные волны для многих технологических и нетехнологических применений.
- Скорость распространения. Электромагнитные волны распространяются в вакууме со скоростью около c = 3*10 8 м / с. Это также скорость, с которой распространяется свет. Это открытие стало первым указанием на то, что свет является электромагнитным излучением.
- Тип распространения. Если бы вы посмотрели в направлении электромагнитной волны и увидели, например, колебания электрического поля, вы бы заметили, что электрическое поле колеблется перпендикулярно направлению распространения волны. Поэтому электромагнитные волны являются поперечными волнами. Благодаря этому свойству электромагнитное излучение может быть поляризовано. Магнитное поле всегда перпендикулярно электрическому полю.
- Цвет. Каждая электромагнитная волна имеет длину волны. Длина волны и частота волны могут быть преобразованы друг в друга (подзаголовок “Формулы”). Определенный цвет соответствует определенной длине волны (следовательно, и определенной частоте). Эта взаимосвязь между длиной волны и цветом иллюстрируется электромагнитным спектром.
Формулы
В этом разделе мы покажем вам, как преобразовать длину волны, частоту и энергию электромагнитной волны.
Связь длины волны с частотой и энергии с частотой.
В вакууме все типы электромагнитных волн распространяются с одинаковой скоростью (c). В любой другой среде считаем, что электромагнитные волны распространяются со скоростью v.
Если обозначить длину волны через λ, а частоту через f, то получится следующее: с = λ * f (1), где c – скорость света.
Однако это соотношение также применимо к волнам, которые распространяются не со скоростью c, а со скоростью v. Длина волны показывает пространственное расстояние между двумя гребнями или впадинами волны. Обратная величина частоты дает временное расстояние между двумя гребнями или впадинами. Поэтому длина волны имеет единицу измерения метр [ м ], а частота – единицу c -1 = 1 / c .
Между энергией E волны и ее частотой f действует соотношение: E = h * f (2), где h – постоянная Планка.
Если мы возьмем первое соотношение и преобразуем его к частоте, то получим f = c / λ .
Если мы теперь заменим частоту f во второй формуле на c / λ , то получим E = h * c / λ = ( h*c ) / λ .
Это означает, что все три величины связаны друг с другом. Таким образом, если вы задали одну из трех величин, вы можете рассчитать две другие. Например, если вы знаете длину волны, вы можете использовать формулу f = c / λ и вычислить частоту, а далее использовать формулу E = ( h*c ) / λ для того, чтобы вычислить энергию электромагнитной волны E.
Преобразование единиц измерения.
При выполнении таких преобразований всегда следите за тем, чтобы единицы измерения правильно соотносились друг с другом. Энергия E имеет единицу измерения джоуль (Дж), поэтому мы ожидаем, что выражение ( h*c ) / λ также имеет единицу измерения джоуль. Скорость света c имеет единицу измерения метр в секунду [ м / c ], длина волны λ имеет единицу измерения метр [ м ] и постоянная Планка имеет единицу измерения [ Дж*с ].
Таким образом, выражение ( h*c ) / λ имеет единицу измерения: ( Дж * с * м / c ) / м = Дж.
Виды электромагнитных волн и их диапазоны длин
Вид волны | Длина волны |
Радиоволны | Более 1 м |
Микроволны | От 1 мм до 1 м |
Инфракрасные | от 700 нм до 1 мм |
Видимый свет | от 380 нм до 700 нм |
Ультрафиолетовые | от 10 нм до 380 нм |
Рентгеновские лучи | от 5 пм do 10 нм |
Диапазоны длин электромагнитных волн
Волны располагаются в порядке возрастания частоты и уменьшения длины, поскольку чем длиннее волна, тем ниже ее частота. Волны с высокой частотой, т.е. ультрафиолетовые, рентгеновские и гамма-лучи, несут в себе высокую энергию. Взаимодействие этих волн с живыми организмами может привести к повреждению клеток или даже смерти (при высокой дозе излучения).
Применение
Радиоволны.
Радио- и телевизионные волны имеют самые низкие частоты. Они используются в основном для общения. Они позволяют передавать изображения и звук, что является основой радио- и телевизионных станций. Радиоволны делятся на длинные и короткие в зависимости от их длины. Коротковолновые радиостанции используют разные частоты для разных частей страны. Существуют также станции, которые вещают на одной частоте для всей страны – тогда используются так называемые длинные волны.
Радиоволны также использовались в астрономических наблюдениях. В космосе есть небесные тела, которые являются естественными источниками радиоволн. Радиотелескопы (рисунок 2) используются в обсерваториях для проведения так называемого прослушивания, то есть исследования отдаленных частей космоса.
Рис. 2. Радиотелескоп расположен в северной части Чили в пустыне Атакама. Его диаметр составляет 12 м, а масса – 125 тонн. Он был построен в результате сотрудничества между Институтом радиоастрономии Макса Планка, Онсальской обсерваторией (OSO) и Европейской южной обсерваторией (ESO).
Микроволны.
Микроволны чаще всего ассоциируются с микроволновой печью, и это лишь одно из многих возможных применений. Они производятся специальными электронными трубками. Микроволны легко распространяются по воздуху, даже при неблагоприятных атмосферных условиях (туман, осадки). Именно поэтому они используются в радарах – устройствах, применяемых для определения местоположения. Радары используются в метеорологии, например, для отслеживания дождевых облаков. Микроволны также используются в радио- и спутниковой связи, т.е. между спутником и Землей (телефоны, факсы, передача данных) и между спутниками. Частота, соответствующая микроволнам, также используется в: мобильной телефонии, GPS-навигации, связи Bluetooth и беспроводных компьютерных сетях WLAN.
Помните! Микроволны – это электромагнитные волны, используемые в радарах, спутниковой связи и GPS-навигации.
Инфракрасное излучение.
Инфракрасное излучение испускается всеми телами с температурой выше абсолютного нуля. Источниками инфракрасного излучения являются горячий утюг, лампочка, кожа человека, солнце и т.д. Некоторые термометры работают путем измерения частоты излучения, испускаемого кожей. Поскольку человеческое тело является источником инфракрасного излучения, для наблюдения в ночное время можно использовать камеры ночного видения и тепловизоры. Гадюки наблюдают за окружающей средой таким же образом, поскольку у них есть рецепторы, которые работают как приборы ночного видения.
Поверхности твердых тел и жидкостей нагреваются инфракрасным излучением, поскольку частота волны и частота колебаний молекул твердых тел и жидкостей одинаковы. Инфракрасное излучение не нагревает газы, поэтому астрономы используют это свойство для наблюдения за зарождающимися звездами в туманностях. Инфракрасное излучение также нашло применение в передаче данных – в камерах сотовой связи IRDA и в оптических волокнах. Для считывания компакт-дисков используются лазеры, излучающие свет с длиной волны 650-790 нм.
Рис. 3. Инфракрасный снимок. Источник: NASA
Помните! Инфракрасный свет излучается различными телами, например, лампочками, Солнцем, человеческим телом. Он нагревает твердые вещества и жидкости, на которые падает. Он используется, например, в камерах ночного видения и тепловизорах.
Видимый свет.
Видимый свет, т.е. свет, регистрируемый человеческим зрением, находится в диапазоне от 400 нм до 780 нм. Глаз воспринимает волны различных частот и их комбинации, а мозг интерпретирует их как цвета.
Ультрафиолет (УФ) – это излучение, которое достигает нас вместе с солнечными лучами. Он необходим для выработки витамина D в организме человека, но избыток этого излучения может иметь серьезные последствия. Когда вы загораете, загар возникает под воздействием ультрафиолетового излучения, но иногда кожа обгорает. Длительный загар вызывает повреждение коллагеновых волокон кожи и ускоряет ее старение (образование морщин).
Слишком высокие дозы ультрафиолетового излучения могут привести к необратимым изменениям кожи, вплоть до рака. Поэтому важно защитить себя от этого излучения. Рекомендуется использовать кремы с УФ-фильтрами (чем выше фактор защиты от солнца, тем лучше), которые действительно защищают кожу. Помните также, что ультрафиолетовое излучение включает в себя свет электрической дуги, который образуется при электросварке (мы видим такой свет, например, при сварке трамвайных рельсов). Если смотреть на такую дугу в течение нескольких секунд, это повредит зрению.
Ультрафиолетовое излучение.
Ультрафиолетовое излучение можно использовать для считывания водяных знаков на банкнотах (см. рисунок 4). Его источником являются кварцевые лампы. Ультрафиолет оказывает неблагоприятное воздействие на живые организмы, поэтому его используют в больницах, например, для стерилизации помещений или медицинского оборудования. Ультрафиолетовое излучение также используется в криминалистике для наблюдения биологических следов, например, крови.
Рис. 4. Водяные знаки на банкнотах, которые считываются с помощью ультрафиолета
Помните! Ультрафиолет – это электромагнитная волна с частотой выше, чем у видимого света. Источниками ультрафиолета являются Солнце и кварцевые лампы. Он используется, в частности, для стерилизации больничных палат и в судебной медицине.
Рентгеновское излучение.
В 1895 году Вильгельм Рентген открыл рентгеновские лучи (Х-лучи). Его источником являются специальные лампы. Они испускают излучение в результате замедления блуждающих электронов на металлическом электроде. Рентгеновские лучи широко используются в медицинской диагностике (рентген, маммография и другие), поскольку они проникают через кожу и поглощаются костями. Слишком высокая доза этого излучения может привести к повреждению внутренних органов и поражениям, поэтому во время обследований используются экраны – фартуки из резины с содержанием оксида свинца. Такое излучение может повредить генетический материал клеток и привести к генетическим изменениям в потомстве.
Гамма-излучение – это электромагнитная волна с самой высокой частотой и самой короткой длиной волны. Оно гораздо более проникающее, чем рентгеновские лучи, и может свободно проникать через бумагу, картон, алюминий. Но, в тоже время, гамма-излучение отлично поглощается слоем свинца. Источниками этого излучения являются различные радиоактивные элементы. Некоторые из них используются в медицине и радиотерапии.
Какие бывают виды металлов и сплавов?
Металлы окружают нас повсюду: их них сделаны автомобили, каркасы домов, бытовая техника, смартфоны и многие другие изобретения человечества. Но много ли мы о них знаем? Первое, что нужно знать о металлах — это то, что они делятся на черные и цветные. Из этих разновидностей металлы разделяются еще на несколько больших групп, в зависимости от их свойств. Давайте сразу же перейдем к конкретике. В этом материале мы вкратце разберемся, по каким признакам металлы разделяются по разным группам и в каких отраслях они применяются.
На сегодняшний день науке известно более 90 видов металлов и все они используются в самых разных сферах
Характеристика металлов
Металлы — это группа из более 90 простых веществ из периодической таблицы Менделеева. В природе они редко обнаруживаются в чистом виде, поэтому их чаще всего добывают из руды. Так называют вид полезных ископаемых, которые представляют собой соединение нескольких химических компонентов, вроде минералов и тех же самых металлов. Металлам характерны несколько свойств, по которым их разделяют по группам:
- твердость — сопротивление к проникновению в материал другого, более твердого тела;
- прочность — стойкость к разрушению под воздействием внешней нагрузки;
- упругость — изменение формы материала под воздействием внешних сил и восстановление ее после того, как эти силы перестают на нее воздействовать;
- пластичность — изменение формы материала под внешним воздействием и сохранение ее после устранения этого воздействия;
- износостойкость — сохранение хорошего внешнего вида и физических свойств материала после сильного трения;
- вязкость — способность материала вытягиваться под воздействием внешних сил;
- усталость — свойство материала выдерживать многократные нагрузки;
- жароустойчивость — сопротивление окислительным процессам при нагревании до высоких температур.
Недавно ученые создали улучшенный алюминиевый сплав 6063, который уничтожает бактерии. Считается, что из него можно будет изготавливать ручки дверей больниц и других общественных мест.
Черные металлы
Три главные особенности черных металлов: большая плотность, высокая температура плавления и темная окраска. Так как с черными металлами в чистом виде тяжело работать, в них добавляют легирующие компоненты — примеси для изменения физических и химических свойств основного материала.
Чтобы придать черным металлам форму, их сначала нагревают до высоких температур, а потом прессуют
Черные металлы делятся на 5 подгрупп:
Железные металлы
К ним относятся кобальт, никель и марганец. Они применяются как добавки к железу — чаще всего, из сплавов получают прочную сталь, которая используется в изготовлении различных деталей для крупной техники, ножей и других изделий.
Из стали изготавливаются прочные и красивые ножи причем не только кухонные
Тугоплавкие металлы
К этой подгруппе относятся ниобий, молибден, вольфрам и рений. Их общей чертой является то, что ох температура плавления выше, чем у железа — то есть, составляет более 1539 градусов Цельсия. Из них, как правило, изготавливают детали для техники и нити накаливания для различных лампочек.
Нити накаливания в лампочках, как правило, сделаны из вольфрама
Урановые металлы
В эту группу входят уран, калифорний и другие радиоактивные металлы. Они используются исключительно в отрасли атомной энергетики.
В древние времена уран использовался для изготовления желтой посуды
Редкоземельные металлы
В эту классификацию входят лаптан, празеодим, неодим и другие металлы. Все они серебристо-белого цвета и имеют практически полностью одинаковые химические свойства. Свое название редкоземельные материалы получили потому, что их трудно найти в земной коре. Они используются в атомной энергетике и машиностроении. Например, из редкоземельных металлов можно создавать стекла, которые не пропускают через себя ультрафиолетовые лучи.
Редкоземельный элемент скандий используется в ртутно-газовых лампах
Щелочноземельные металлы
В эту подгруппу входят бериллий, магний, кальций, радий и другие металлы. Все они окрашены природой в серый цвет и при комнатной температуре всегда остаются в твердом состоянии. В чистом виде они практически нигде не применяются, за исключением атомных реакторов.
Щелочноземельный элемент бериллий используют для изготовления рентгеновских трубок, через которые лучи выходят наружу
Цветные металлы
Цветные металлы стоят дороже черных, потому что более востребованы в мире. Они нужны при изготовлении автомобилей, строительстве домов и в области высоких технологий — именно они являются основными материалами при изготовлении смартфонов и другой электроники. В сфере строительства они нужны для изготовления всевозможных арматур, балок, уголков и так далее.
Железо и его сплавы относятся к черным металлам, а все остальное — это цветные металлы
Цветные металлы принято разделять на три группы:
Тяжелые металлы
Самыми яркими представителями этой категории цветных металлов считаются медь, латунь и бронза. Наибольшим спросом среди них пользуется медь, потому что она — отличный проводник электрического тока и широко применяется в электронике. Из латуни изготавливают различные проволоки, подшипники и другие металлические элементы. Из бронзы нередко делают памятники, потому что она не боится дождя, снега и механических повреждений.
Легкие металлы
Самые популярные легкие металлы, это алюминий, магний и титан. Их довольно легко расплавить, а также они легче черных металлов. Благодаря устойчивости к коррозии, высокой пластичности и небольшой массе, алюминий активно используется в строительстве самолетов и автомобилей. Магний широко применяется в изготовлении корпусов для различной техники, начиная с фотоаппаратов и заканчивая двигателями. Титан отличается высокой прочностью и небольшой массой, поэтому применяется при изготовлении космических ракет.
В воздухе алюминий мгновенно покрывается пленкой, которая защищает ее от возникновения ржавчины
Благородные металлы
К благородным металлам относятся золото, серебро и платина. Из-за сложности добычи и своей красоты, они считаются самыми дорогими разновидностями металлов. Их стоимость постоянно меняется и их можно купить в банках, тем самым вложив в них свои деньги. Также благородные металлы широко используются в ювелирном деле. Из них изготавливаются кольца, браслеты и прочие украшения.
Про алюминий можно почитать в материале про самые ценные металлы в мире
Виды сплавов
Сплавами называют материалы, которые состоят из двух и более металлических компонентов. Как правило, сплавы состоят из основы, в которую входят несколько металлов, и так называемых легирующих элементов — они необходимы, чтобы придать сплаву мягкость, эластичность и другие свойства. Чаще всего в промышленности применяются смеси с использованием железа и алюминия, но вообще существует более 5 тысяч разновидностей сплавов.
В большинстве своем металлы, с которыми мы взаимодействуем — это сплавы
Сплавы делятся на два вида: литые и порошковые. Литые сплавы получаются путем смешивания расплавленных компонентов. А порошковый метод получения сплавов подразумевает прессование порошков нескольких металлов и их последующее спекания при высоких температурах.
Из металлических сплавов сегодня изготавливается практически все, вплоть до скамеек
По назначению сплавы делятся на конструкционные, инструментальные и специальные. Конструкционные сплавы предназначены для изготовления деталей автомобилей. Из инструментальных сплавов, как можно понять из названия, изготавливают инструменты — например, различные молотки и ножи. А специальные сплавы используются для изготовления деталей специального назначения — например, для предотвращения трения.
Если вам интересны новости науки и технологий, подпишитесь на наш канал в Яндекс.Дзен. Там вы найдете материалы, которые не были опубликованы на сайте!
Как видно, металлов очень много и они сильно друг от друга отличаются. На тему металлов также рекомендую почитать материал, в котором я рассказал о самых интересных разновидностях этого материала. Вот знаете ли вы, как называется самый редкий металл на нашей планете и как его добывают?