Как конденсатор влияет на напряжение
Перейти к содержимому

Как конденсатор влияет на напряжение

Конденсатор

Электрический конденсатор (англ. capacitor) — это устройство, которое может накапливать электрический заряд и хранить его некоторое время. Конденсаторы можно найти практически в любом электронном устройстве. Они бывают разных типов и размеров.

Разные типы конденсаторов

На электрических схемах конденсаторы обозначают двумя параллельными черточками. При этом, у полярных конденсаторов около положительного электрода дополнительно ставится плюсик.

Обозначение конденсатора на схемах

Для чего нужен конденсатор?

У этого прибора есть множество применений. Мы не будем перечислять их все, отметим лишь некоторые.

1) Фильтрация пульсаций в цепях питания. Конденсаторы часто ставят на входе и выходе преобразователей напряжения, на входе питания микросхем. В этом случае конденсаторы служат своего рода амортизаторами, которые могут сгладить неровности напряжения, подобно амортизаторам автомобиля, сглаживающим неровности дороги.

2) Времязадающие электрические цепи. Конденсаторы разной ёмкости заряжаются и разряжаются за разное время. Эту особенность используют в устройствах, где необходимо отсчитывать определенные промежутки времени. Например, с помощью резистора и конденсатора задается период и скважность импульса в микросхеме таймера 555 (урок про таймер 555).

3) Датчики прикосновения. В роли одной из обкладок конденсатора может выступить человек. Эту особенность нашего тела используют в своей работе сенсорные кнопки, тачскрины и тачпады некоторых видов.

4) Хранение данных. Конденсаторы применяются для хранения данных в оперативной памяти — ОЗУ (SRAM). Каждый модуль такой памяти содержит миллиарды отдельных конденсаторов, которые могут быть заряжены или разряжены, что интерпретируется как единица или ноль.

И это далеко не все варианты применения этого незаменимого прибора. Попробуем разобраться, как устройство конденсатора позволяет ему выполнять столько полезных функций!

Устройство простейшего конденсатора

Конденсатор состоит их двух металлических пластин — электродов, называемых также обкладками, между которыми находится тонкий слой диэлектрика.

Устройство конденсатора

Собственно, все конденсаторы устроены именно таким (или почти таким) образом, разве что меняется материал обкладок и диэлектрика.

Чтобы увеличить ёмкость конденсатора, не увеличивая его размеры, применяют разные хитрости. Например, если мы возьмем две обкладки в виде длинных полосок фольги, проложим между ними хотя бы тот же полиэтилен и свернем все это как рулет, то получится очень компактный прибор с большой ёмкостью. Именно так устроены плёночные конденсаторы.

Если вместо полиэтилена взять бумагу и пропитать её электролитом, то на поверхности фольги образуется тонкий слой оксида, который не проводит ток. Такой конденсатор будет называться электролитическим.

Электролитический конденсатор внутри

Существует много разных видов конденсаторов: бумажные, плёночные, оксидные алюминиевые и танталовые, вакуумные и т.п. В нашем уроке мы будем использовать оксидные электролитические конденсаторы из-за их большой ёмкости и доступности.

Полярные и неполярные конденсаторы

Очень важным является разделение конденсаторов на полярные и неполярные.

Приборы на основе оксидов: электролитические алюминиевые и танталовые обычно являются полярными, а значит если перепутать их полярность — они выйдут из строя. Причём этот выход из строя будет сопровождаться бурной электрохимической реакций вплоть до взрыва конденсатора.

Конденсатор взорвался

На полярных конденсаторах всегда имеется маркировка. Как правило на электролитических конденсаторах на корпусе контрастной полосой отмечается отрицательный вывод (катод), у танталовых (в желтых прямоугольных корпусах) полоской помечается положительный вывод (анод). Если есть сомнения в маркировке, то лучше найти документацию на этот конденсатор и убедиться.

Неполярные же конденсаторы можно включать в цепь какой угодно стороной. К примеру, многослойные керамические конденсаторы — неполярные.

Ёмкость и напряжение конденсатора

Теперь обратим внимание на две важные характеристики конденсатора: ёмкость и номинальное напряжение.

Ёмкость конденсатора характеризует способность конденсатора накапливать заряд. Это как ёмкость банки, в которой хранится, к примеру, вода. Кстати, не зря одним из первых электрических конденсаторов была так называемая Лейденская банка. Она представляла собой обыкновенную стеклянную посуду, снаружи обмотанную фольгой. В банку была налита токопроводящая жидкость — электролит. Фольга и электролит играли роль обкладок, а стекло банки служило тем самым диэлектрическим барьером.

Ёмкость электрического конденсатора измеряют в фарадах. В схемах ёмкость обозначают латинской буквой C. Как правило, ёмкость классических конденсаторов варьируется от нескольких пикофарад (пФ) до нескольких тысяч микрофарад (мкФ). Ёмкость указывается на корпусе конденсатора. Если единицы не указаны — то это пикофарады. Микрофарады часто обозначают как uF — так как буква u внешне похожа на греческую букву мю, которую используют вместо приставки микро.

Существует и особый вид конденсаторов, называемых ионисторами (англ. supercapacitor), которые имеют ёмкость в несколько фарад! Чем больше ёмкость конденсатора, тем больше энергии в нём может храниться и тем дольше он заряжается, при прочих равных условиях.

Номинальное напряжение — второй важный параметр. Это такое напряжение, при котором конденсатор будет работать весь срок службы без критичного изменения своих параметров. Нельзя применять в 12-вольтовой цепи конденсатор на 6 вольт — он быстро выйдет из строя.

Именно эти два параметра обычно наносят на поверхность корпуса конденсатора. На фотографии ниже изображён электролитический конденсатор ёмкостью 470 мкФ и номинальным напряжением 16 Вольт.

Маркировка электролитического конденсатора

А вот на керамических конденсаторах часто указывают только ёмкость. На картинке ниже конденсатор имеет маркировку 104. Что бы это значило?

Керамические конденсаторы

Последняя цифра в этом коде — количество нулей после двухзначного числа в начале. 104 = 10 0000 пФ = 100 нФ = 0,1 мкФ

Параллельное и последовательное подключение конденсаторов

Как и в случае резисторов, конденсаторы можно составлять в цепочки. Это бывает нужно, когда в схеме необходима какая-то конкретная ёмкость, а у вас нет такого конденсатора.

Параллельное подключение

Параллельное подключение конденсаторов

В отличие от резисторов, при параллельном подключении конденсаторов их ёмкости складываются. Например, если нам нужно получить ёмкость 3000 мкФ, а у нас есть два конденсатора по 1000 мкФ, и 10 штук по 100 мкФ, смело ставим их параллельно и получаем: 1000*2+100*10 = 2000 + 1000 = 3000 мкФ

Последовательно подключение

Последовательное подключение конденсаторов

При последовательном подключении конденсаторы ведут себя как резисторы, соединённые параллельно. Например, посчитаем суммарную ёмкость двух конденсаторов на 100 мкФ, соединённых последовательно:

Последовательное подключение конденсаторов

Суммарная ёмкость Ctot = 50 мкФ.

Заряд и разряд конденсатора — RC-цепочка

Теперь разберёмся с процессами, происходящими внутри конденсатора во время заряда и разряда. Для этого рассмотрим самую простую электрическую цепь с конденсатором. С левой стороны схемы подключим источник питания. Сверху разместим ключ и резистор, а справа сам конденсатор. Участок цепи, на котором есть конденсатор и резистор называют RC-цепью.

Цепь заряда конденсатора

При замыкании ключа, в такой цепи образуется электрический ток, сила которого зависит от сопротивления резистора и внутреннего сопротивления самого конденсатора. Заряженные частицы устремятся к конденсатору, но не смогут преодолеть слой диэлектрика (по крайней мере все разом). Вследствие чего, с одной стороны конденсатора накопятся отрицательно заряженные частицы, а с другой стороны — положительно заряженные. Концентрация заряженных частиц на обкладках создаст мощное электрическое поле между ними.

Образование электрического поля в конденсаторе

С течением времени, напряжение на конденсаторе растет, а сила тока падает. После завершения процесса заряда, ток в цепи упадет почти до нуля. Останется только очень маленький ток утечки, который образуется благодаря тому, что некоторым заряженным частицам всё же удается проскочить через слой диэлектрика. Напряжение, напротив, станет практически равным напряжению источника.

Когда мы отключим конденсатор от источника питания, этот самый ток утечки постепенно разрядит конденсатор. Эта особенность электрических конденсаторов не даёт нам сделать из них контейнер для длительного хранения энергии. Хотя частично эту проблему решают ионисторы.

Резистор и время заряда конденсатора

Зачем в цепи нужен резистор? Что на мешает подключить его напрямую к источнику? Тому есть две причины.

Резистор ограничивает ток, протекающий через конденсатор. Чем меньше заряженных частиц за единицу времени прибывает в конденсатор, тем больше времени для заряда ему потребуется.

Конденсатор заряжается и разряжается по экспоненциальному закону. Зная это, мы можем легко рассчитать время заряда/разряда в зависимости от его ёмкости и от сопротивления резистора.

График заряда конденсатора

По картинке можно понять, что за время T конденсатор заряжается на 63,2%. А вот за время 3T уже на 95%. Время T здесь равно произведению ёмкости конденсатора C на сопротивление R, последовательно соединенного резистора:

Формула для времени заряда конденсатора

Например, у нас есть конденсатор ёмкостью 100 мкФ, соединенный с резистором 1 кОм. Посчитаем за сколько секунд он зарядится хотя бы до 95%:

Расчёт времени заряда конденсатора

Теперь умножаем это на 3 и получаем 3T = 0,3 секунды — за такое время конденсатор почти полностью будет заряжен.

Таким образом, меняя ёмкость конденсатора и резистора мы можем управлять временем его заряда, что нам ещё пригодится в будущем.

Вторая важная причина, по которой в цепи присутствует резистор — защита источника питания. Дело в том, что разряженные конденсаторы имеют очень низкое внутреннее сопротивление, которое составляет доли Ома. По сути, их можно рассматривать как обычные проводники. А что будет, если замкнуть выводы питания проводником? Будет короткое замыкание! Такой режим работы цепи является аварийным для источника питания, и его нужно всячески избегать.

Плавное выключение светодиода при помощи конденсатора

Проведем небольшой опыт. Для этого соберем на макетной плате цепь с кнопкой, конденсатором и светодиодом. В качестве источника питания используем контакты питания Ардуино Уно.

Принципиальная схема

Принципиальная схема подключения конденсатора

Внешний вид макета

Схема подключения конденсатора

Подключим Ардуино к питанию. Затем, нажмем кнопку и светодиод практически мгновенно загорится. Отпустим кнопку — светодиод медленно начнет гаснуть. Почему так происходит?

Сразу после подключения нашей схемы к источнику питания, в ней начинают происходит интересные процессы.

Как уже говорилось ранее, пока конденсатор пустой, ток через него максимален. Следовательно, конденсатор начинает стремительно набирать заряд. При этом светодиоду, который подключен параллельно, ничего не достается �� Напряжение на нем близко к нулю.

С течением времени конденсатор насыщается, благодаря чему ток начинает постепенно переходить в параллельную цепь — через светодиод. Напряжение на светодиоде начинает расти. Наступает момент, когда напряжение на светодиоде принимает критическое значение (для красного светодиода около 1,8 В), при котором он стремительно отбирает остатки тока у конденсатора и вспыхивает!

Когда мы отпускаем кнопку, ситуация становится гораздо проще. Конденсатор становится источником питания для светодиода с резистором. Светодиод начинает медленно высасывать заряд из конденсатора, пока тот не разрядится. Тут мы и наблюдаем медленно угасание.

Меняя сопротивление R1, мы можем влиять на скорость вспыхивания светодиода. Однако, следует учитывать, что увеличивая R1 мы будем снижать ток в цепи, тем самым уменьшая максимальный заряд конденсатора и яркость светодиода.

Увеличивая C1, мы получим более длительное время работы светодиода после выключения источника. Это как поставить более ёмкую батарейку.

Наконец, меняя R2 можно регулировать яркость светодиода, и соответственно, время его работы. Ведь чем меньше тока мы забираем из конденсатора, тем на большее время его хватит.

К размышлению

Итак, мы познакомились с конденсатором — интересным и порой опасным жителем любой электронной платы. В следующих уроках уделим внимание резистору и индуктивности, а также более сложному их собрату — транзистору.

Что такое конденсатор и для чего он нужен в схемах

Конденсатор — это вторая по популярности радиодеталь после резистора. Он важен и незаменим, участвует в формировании сигналов и фильтрации питания. А ведь изначально, самым первым конденсатором была лейденская банка, которая была изобретена в 1745 году. С тех пор конденсаторы стали неотъемлемой частью электроники.

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.

Обозначается на схеме двумя параллельными линиями.
Что такое конденсатор

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.

Как работает конденсатор

Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Принцип работы конденсатора

Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

Как работает конденсатор в схеме

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Конденсатор и постоянный ток

Добавим в схему лампочку. Она загорится только во время зарядки.

Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

Принцип работы конденсатора в цепи постоянного тока

Лампочка затухает при полной зарядке.

Почему конденсатор не пропускает постоянный ток

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.

Конденсатор и переменный ток

Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.

Как работает конденсатор при переменном токе

Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.

В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.
Назначение конденсатора в схеме

Как работает конденсатор в схеме

С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.

Зачем конденсатор нужен в усилителе

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.

Конденсатор в цепи переменного тока. Емкостное сопротивление конденсатора.

Мы знаем, что конденсатор не пропускает через себя постоянного тока. Поэтому в электрической цепи, в которой последовательно с источником тока включен конденсатор, постоянный ток протекать не может.

Совершенно иначе ведет себя конденсатор в цепи переменного тока (Рис 1,а).

Конденсатор в цепи переменного тока эпюры

Рисунок 1. Сравнение конденсатора в цепи переменного тока с пружиной, на которую воздействует внешняя сила.

В течение первой четверти периода, когда переменная ЭДС нарастает, конденсатор заряжается, и поэтому по цепи проходит зарядный электрический ток i, сила которого будет наибольшей вначале, когда конденсатор не заряжен. По мере приближения заряда к концу сила зарядного тока будет уменьшаться. Заряд конденсатора заканчивается и зарядный ток прекращается в тот момент, когда переменная ЭДС пе-рестает нарастать, достигнув своего амплитудного значения. Этот момент соответствует концу первой четверти периода.

После этого переменная ЭДС начинает убывать, одновременно с чем конденсатор начинает разряжаться. Следовательно, в течение второй четверти периода по цепи будет протекать разрядный ток. Так как убывание ЭДС происходит вначале медленно, а затем все быстрее и быстрее, то и сила разрядного тока, имея в начале второй четверти периода небольшую величину, будет постепенно возрастать.

Итак, к концу второй четверти периода конденсатор разрядится, ЭДС будет равна нулю, а ток в цепи достигнет наибольшего, амплитудного, значения.

С началом третьей четверти периода ЭДС, переменив свое направление, начнет опять возрастать, а конденсатор — снова заряжаться. Заряд конденсатора будет происходить теперь в обратном направлении, соответственно изменившемуся направлению ЭДС. Поэтому направление зарядного тока в течение третьей четверти периода будет совпадать с направлением разрядного тока во второй четверти, т. е. при переходе от второй четверти периода к третьей ток в цепи не изменит своего направления.

Вначале, пока конденсатор не заряжен, сила зарядного тока имеет наибольшее значение. По мере увеличения заряда конденсатора сила зарядного тока будет убывать. Заряд конденсатора закончится и зарядный ток прекратится в конце третьей четверти периода, когда ЭДС достигнет своего амплитудного значения и нарастание ее прекратится.

Итак, к концу третьей четверти периода конденсатор окажется опять заряженным, но уже в обратном направлении, т. е. на той пластине, где был прежде плюс, будет минус, а где был минус, будет плюс. При этом ЭДС достигнет амплитудного значения (противоположного направления), а ток в цепи будет равен нулю.

В течение последней четверти периода ЭДС начинает опять убывать, а конденсатор разряжаться; при этом в цепи появляется постепенно увеличивающийся разрядный ток. Направление этого тока совпадает с направлением тока в первой четверти периода и противоположно направлению тока во второй и третьей четвертях.

Из всего изложенного выше следует, что по цепи с конденсатором проходит переменный ток и что сила этого тока зависит от величины емкости конденсатора и от частоты тока. Кроме того, из рис. 1,а, который мы построили на основании наших рассуждений, видно, что в чисто емкостной цепи фаза переменного тока опережает фазу напряжения на 90°.

Отметим, что в цепи с индуктивностью ток отставал от напряжения, а в цепи с емкостью ток опережает напряжение. И в том и в другом случае между фазами тока и напряжения имеется сдвиг, но знаки этих сдвигов противоположны

Емкостное сопротивление конденсатора

Мы уже заметили, что ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС

Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.

Зависимость емкостного сопротивления от частоты

Рисунок 2. Зависимость емкостного сопротивления конденсатра от частоты.

Для постоянного тока, т. е. когда частота его равна нулю, сопротивление емкости бесконечно велико; поэтому постоянный ток по цепи с емкостью проходить не может.

Величина емкостного сопротивления определяется по следующей формуле:

Емкостное сопротивление конденсатора

где Хс — емкостное сопротивление конденсатора в ом;

f—частота переменного тока в гц;

ω — угловая частота переменного тока;

С — емкость конденсатора в ф.

При включении конденсатора в цепь переменного тока, в последнем, как и в индуктивности, не затрачивается мощность, так как фазы тока и напряжения сдвинуты друг относительно друга на 90°. Энергия в течение одной четверти периода— при заряде конденсатора — запасается в электрическом поле конденсатора, а в течение другой четверти периода — при разряде конденсатора — отдается обратно в цепь. Поэтому емкостное сопротивление, как и индуктивное, является реактивным или безваттным.

Нужно, однако, отметить, что практически в каждом конденсаторе при прохождении через него переменного тока затрачивается большая или меньшая активная мощность, обусловленная происходящими изменениями состояния диэлектрика конденсатора. Кроме того, абсолютно совершенной изоляции между пластинами конденсатора никогда не бывает; утечка в изоляции между пластинами приводит к тому, что параллельно конденсатору как бы оказывается включенным некоторое активное сопротивление, по которому течет ток и в котором, следовательно, затрачивается некоторая мощность. И в первом и во втором случае мощность затрачивается совершенно бесполезно на нагревание диэлектрика, поэтому се называют мощностью потерь.

Потери, обусловленные изменениями состояния диэлектрика, называются диэлектрическими, а потери, обусловленные несовершенством изоляции между пластинами, — потерями утечки.

Ранее мы сравнивали электрическую емкость с вместимостью герметически (наглухо) закрытого сосуда или с площадью дна открытого сосуда, имеющего вертикальные стенки.

Конденсатор в цепи переменного тока целесообразно сравнивать с гиб-костью пружины. При этом во избежание возможных недоразумений условимся под гибкостью понимать не упругость («твердость») пружины, а величину, ей обратную, т. е. «мягкость» или «податливость» пружины.

Представим себе, что мы периодически сжимаем и растягиваем спиральную пружину, прикрепленную одним концом наглухо к стене. Время, в течение которого мы будем производить полный цикл сжатия и растяжения пружины, будет соответствовать периоду переменного тока.

Таким образом, мы в течение первой четверти периода будем сжимать пружину, в течение второй четверти периода отпускать ее, в течение третьей четверти периода растягивать и в течение четвертой четверти снова отпускать.

Кроме того, условимся, что наши усилия в течение периода будут неравномерными, а именно: они будут нарастать от нуля до максимума в течение первой и третьей четвертей периода и уменьшаться от максимума до нуля в течение второй и четвертой четвертей.

Сжимая и растягивая пружину таким образом, мы заметим, что в начале первой четверти периода незакрепленный конец пружины будет двигаться довольно быстро при сравнительно малых усилиях с нашей стороны.

В конце первой четверти периода (когда пружина сожмется), наоборот, несмотря на возросшие усилия, незакрепленный конец пружины будет двигаться очень медленно.

В продолжение второй четверти периода, когда мы будем постепенно ослаблять давление на пружину, ее незакрепленный конец будет двигаться по направлению от стены к нам, хотя наши задерживающие усилия направлены по направлению к стене. При этом наши усилия в начале второй четверти периода будут наибольшими, а скорость движения незакрепленного конца пружины наименьшей. В конце же второй четверти периода, когда наши усилия будут наименьшими, скорость движения пружины будет наибольшей и т. д.

Продолжив аналогичные рассуждения для второй половины периода (для третьей и четвертой четвертей) и построив графики (рис. 1,б) изменения наших усилий и скорости движения незакрепленного конца пружины, мы убедимся, что эти графики в точности соответствуют графикам ЭДС и тока в емкостной цепи (рис 1,а), причем график усилий будет соответствовать графику ЭДС , а график скорости — графику силы тока.

Рисунок 3. а) Процессы в цепи переменного тока с конденсатором и б) сравнение конденсатора с пружиной.

Нетрудно, заметить, что пружина, так же как и конденсатор, в течение одной четверти периода накапливает энергию, а в течение другой четверти периода отдает ее обратно.

Вполне очевидно также, что чем меньше гибкость пружины,- т е. чем она более упруга, тем большее противодействие она будет оказывать нашим усилиям. Точно так же и в электрической цепи: чем меньше емкость, тем больше будет сопротивление цепи при данной частоте.

И наконец, чем медленнее мы будем сжимать и растягивать пружину, тем меньше будет скорость движения ее незакрепленного конца. Аналогично этому, чем меньше частота, тем меньше сила тока при данной ЭДС.

При постоянном давлении пружина только сожмется и на этом прекратит свое движение, так же как при постоянной ЭДС конденсатор только зарядится и на этом прекратится дальнейшее движение электронов в цепи.

А теперь как ведет себя конденсатор в цепи переменного тока вы можете посмотреть в следующем видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Конденсаторы в сети переменного тока

Конденсаторы в сети переменного токаЕсли рассматривать постоянный ток, то он не всегда может быть идеально постоянным: напряжение на выходе источника может зависеть от нагрузки или от степени разряда аккумулятора или гальванической батареи. Даже при постоянном стабилизированном напряжении ток во внешней цепи зависит от нагрузки, что и подтверждает закон Ома. Получается, что это тоже не совсем постоянный ток, но переменным такой ток назвать тоже нельзя, поскольку направления он не меняет.

Переменным обычно называют напряжение или ток, направление и величина которого меняются не под действием внешних факторов, например нагрузки, а вполне «самостоятельно»: именно таким его вырабатывает генератор. К тому же, эти изменения должны быть периодическими, т.е. повторяющимися через определенный промежуток времени, называемый периодом.

Если же напряжение или ток меняется как попало, не заботясь о периодичности и иной закономерности, такой сигнал называется шумом. Классический пример — «снег» на экране телевизора при слабом эфирном сигнале. Примеры некоторых периодических электрических сигналов показаны на рисунке 1.

Для постоянного тока имеется всего две характеристики: это полярность и напряжение источника. В случае с переменным током этих двух величин явно недостаточно, поэтому появляются еще несколько параметров: амплитуда, частота, период, фаза, мгновенное и действующее значение.

Примеры некоторых периодических электрических сигналов

Рисунок 1. Примеры некоторых периодических электрических сигналов

Наиболее часто в технике приходится сталкиваться с колебаниями синусоидальной формы, причем, не только в электротехнике. Представьте себе автомобильное колесо. При равномерном движении по хорошей ровной дороге центр колеса описывает прямую, параллельную дорожному покрытию. В то же время, любая точка на периферии колеса перемещается по синусоиде относительно только что упомянутой прямой.

Сказанное может подтвердить рисунок 2, на котором показан графический метод построения синусоиды: кто хорошо учил черчение, тот прекрасно представляет, как выполняются подобные построения.

Графический метод построения синусоиды

Рисунок 2. Графический метод построения синусоиды

Из школьного курса физики известно, что синусоида является наиболее распространенной и пригодной для изучения периодической кривой. В точности также синусоидальные колебания получаются в генераторах переменного тока, что обусловлено их механическим устройством.

На рисунке 3 показан график синусоидального тока.

График синусоидального тока

Рисунок 3. График синусоидального тока

Нетрудно заметить, что величина тока изменяется по времени, поэтому ось ординат обозначена на рисунке как i(t), — функция тока от времени. Полный период тока обозначен сплошной линией и имеет период T. Если начать рассмотрение от начала координат, то видно, что сначала ток увеличивается, доходит до Imax, переходит через нуль, уменьшается до –Imax, после чего увеличивается и доходит до нуля. Далее начинается следующий период, что показано пунктирной линией.

В виде математической формулы поведение тока записывается так: i(t)= Imax*sin(ω*t±φ).

Здесь i(t) — мгновенное значение тока, зависящее от времени, Imax -амплитудное значение (максимальное отклонение от состояния равновесия), ω — круговая частота (2*π*f), φ — фазовый угол.

Круговая частота ω измеряется в радианах в секунду, фазовый угол φ – в радианах или градусах. Последний имеет смысл лишь в том случае, когда имеется два синусоидальных тока. Например, в цепях с конденсатором ток опережает напряжение на 90˚ или ровно на четверть периода, что и показано на рисунке 4. Если синусоидальный ток один, то можно двигать его по оси ординат как угодно, и от этого ничего не изменится.

В цепях с конденсатором ток опережает напряжение на 90730;

Рисунок 4. В цепях с конденсатором ток опережает напряжение на четверть периода

Физический смысл круговой частоты ω в том, какой угол в радианах «пробежит» синусоида за одну секунду.

Период – T время, за которое синусоида совершит одно полное колебание. То же относится и к колебаниям другой формы, например, прямоугольным или треугольным. Период измеряется в секундах или более мелких единицах: миллисекундах, микросекундах или наносекундах.

Еще один параметр любого периодического сигнала, в том числе и синусоиды это частота, сколько колебаний проделает сигнал за 1 секунду. Единицей измерения частоты является герц (Гц), названный по имени ученого XIX века Генриха Герца. Итак, частота 1Гц это есть ни что иное, как одно колебание/секунду. Например, частота осветительной сети 50Гц, то есть за секунду проходит ровно 50 периодов синусоиды.

Если известен период тока (можно измерить осциллографом), то частоту сигнала поможет узнать формула: f=1/T. При этом, если время выражено в секундах, то результат получится в Герцах. И наоборот, T=1/f, частота в Гц, время получается в секундах. Например, при частоте 50 герц период получится 1/50=0,02сек, или 20 миллисекунд. В электричестве чаще применяются более высокие частоты: КГц – килогерцы, МГц – мегагерцы (тысячи и миллионы колебаний в секунду) и т.д.

Все сказанное для тока справедливо и для переменного напряжения: достаточно на рис 6 просто поменять букву I на U. Формула будет выглядеть вот так: u(t)=Umax*sin(ω*t±φ).

Этих разъяснений вполне достаточно для того, чтобы вернуться к опытам с конденсаторами и объяснить их физический смысл.

Конденсатор проводит переменный ток, что было показано в схеме на рисунке 3 (см. статью — Конденсаторы для электроустановок переменного тока). Яркость свечения лампы увеличивается при подключении дополнительного конденсатора. При параллельном включении конденсаторов их емкости просто складываются, поэтому можно предположить, что емкостное сопротивление Xc зависит от емкости. Кроме того оно зависит еще от частоты тока, и поэтому формула выглядит так: Xc=1/2*π*f*C.

Из формулы следует, что с увеличением емкости конденсатора и частоты переменного напряжения реактивное сопротивление Xc уменьшается. Эти зависимости показаны на рисунке 5.

Зависимость реактивного сопротивления конденсатора от емкости

Рисунок 5. Зависимость реактивного сопротивления конденсатора от емкости

Если подставить в формулу частоту в Герцах, а емкость в Фарадах, то результат получится в Омах.

Будет ли греться конденсатор?

Теперь вспомним опыт с конденсатором и электросчетчиком, почему он не крутится? Дело в том, что счетчик считает активную энергию, когда потребителем является чисто активная нагрузка, например, лампы накаливания, электрочайник или электроплита. У таких потребителей напряжение и ток совпадают по фазе, имеют один знак: если перемножить два отрицательных числа (напряжение и ток во время отрицательного полупериода) результат по законам математики все равно положительный. Поэтому мощность таких потребителей всегда положительна, т.е. уходит в нагрузку и выделяется в виде тепла, как показано на рисунке 6 пунктирной линией.

Активная нагрузка в цепи переменного тока

В случае, когда в цепь переменного тока включен конденсатор ток и напряжение по фазе не совпадают: ток опережает по фазе напряжение на 90˚, что приводит к тому, что получается сочетание, когда ток и напряжение имеют разные знаки.

Конденсатор в цепи переменного тока

В эти моменты мощность получается отрицательной. Другими словами, когда мощность положительная, конденсатор заряжается, а когда отрицательная — запасенная энергия отдается обратно в источник. Поэтому в среднем получается по нулям и считать тут просто нечего.

Конденсатор, если конечно он исправный, не будет даже нисколько нагреваться. Поэтому, часто конденсатор называют безваттным сопротивлением, что позволяет применять его в бестрансформаторных маломощных блоках питания. Хотя такие блоки не рекомендуется использовать ввиду их опасности, все-таки иногда это делать приходится.

Перед тем, как устанавливать в такой блок гасящий конденсатор, его следует проверить простым включением в сеть: если за полчаса конденсатор не нагрелся, то его смело можно включать в схему. В противном случае его придется просто без сожаления выбросить.

Что показывает вольтметр?

При изготовлении и ремонте различных устройств, хоть и не очень часто, но приходится мерить переменные напряжения и даже токи. Если синусоида ведет себя так неспокойно, то вверх, то вниз, что будет показывать обычный вольтметр?

Среднее значение периодического сигнала, в данном случае синусоиды, подсчитывается как площадь, ограниченная осью абсцисс и графическим изображением сигнала, деленная на 2*π радиан или период синусоиды. Поскольку верхняя и нижняя часть абсолютно одинаковы, но имеют разные знаки, среднее значение синусоиды равно нулю, и мерить его совсем не нужно, и даже просто бессмысленно.

Поэтому измерительный прибор показывает нам среднеквадратичное значение напряжения или тока. Среднеквадратичным называется такое значение периодического тока, при котором на одной и той же нагрузке выделяется то же количество теплоты, что и на постоянном токе. Иными словами лампочка светит с той же яркостью.

Формулами это описывается вот так: Iсрк=0,707*Imax= Imax/√2 для напряжения формула та же, достаточно поменять одну букву Uсрк=0,707*Umax=Umax/√2. Именно эти значения показывает измерительный прибор. Их можно подставлять в формулы при расчете по закону Ома или при расчете мощности.

Но это далеко не всё, на что способен конденсатор в сети переменного тока. В следующей статье будет рассмотрено использование конденсаторов в импульсных схемах, фильтрах верхних и нижних частот, в генераторах синусоиды и прямоугольных импульсов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *