Какое соединение потребителей называют последовательным
Перейти к содержимому

Какое соединение потребителей называют последовательным

10. Последовательное соединение потребителей

Последовательным соединением участков электрической цепи называют соединение, при котором через все участки проходит один и ток (рис.3.5).

Напряжение на каждом последовательно включенном участке пропорционально величине сопротивления этого участка.

При последовательном соединении потребителей с сопротивлениями R1, R2 и R3 (рис. 3.5) напряжение на их зажимах равно

Воспользовавшись вторым законом Кирхгофа для рассматриваемой цепи (рис. 3.5), можно записать

Таким образом, общее (эквивалентное) сопротивление R последовательно включенных сопротивлений (потребителей) равно сумме этих сопротивлений.

Ток в цепи последовательно включенных потребителей (рис. 3.5) определяется выражением

Нетрудно понять, что при изменении сопротивления хотя бы одного потребителя изменяется ток цепи, а следовательно, и режим работы (напряжение) всех последовательно включенных потребителей.

Поэтому последовательное соединение сопротивлений не нашло широкого практического применения.

Следует заметить, что при последовательном соединении резисторов на большем сопротивлении тратится большая мощность

11. Параллельное соединение потребителей

Параллельным соединением участков электрической цепи называют соединение, при котором все участки цепи присоединяются к одной паре узлов, т. е. находятся под действием одного и того же напряжения (рис. 3.8). Токи параллельно включенных участков обратно пропорциональны сопротивлениям этих участков.

При параллельном соединении сопротивлений R1, R2 и R3 токи потребителей соответственно равны

Воспользовавшись первым законом Кирхгофа, можно определить ток I в неразветвленной части цепи

Таким образом, обратная величина общего (эквивалентного) сопротивления R параллельно включенных потребителей равна сумме обратных величин сопротивлений этих потребителей.

Величина, обратная сопротивлению, определяет проводимость потребителя g. Тогда общая (эквивалентная) проводимость цепи при параллельном соединении потребителей определяется суммой проводимостей потребителей

Если параллельно включены n одинаковых потребителей с сопротивлением R / каждый, то эквивалентное сопротивление этих потребителей . Если параллельно включены два потребителя с сопротивлениями R1 и R2, то их общее (эквивалентное) сопротивление в соответствии с (1.30) равно

Если параллельно включены три потребителя с сопротивлениями R1, R2, R3, то общее их сопротивление (см. (1.30))

Изменение сопротивления какого-либо из параллельно соединенных потребителей не влияет на режим работы (напряжение) других потребителей, включая изменяемое. Поэтому параллельное единение нашло широкое практическое применение.

При параллельном соединении потребителей на большем сопротивлении тратится меньшая мощность:

При изучении и расчете некоторых электрических цепей необходимо определить потенциалы отдельных точек цепи и построить потенциальную диаграмму. Для этого можно использовать выражение (3.4) (рис. 3.1а).

На участке АВ точка В имеет положительный потенциал , точка А — отрицательный потенциал , поэтому , так как источник работает в режиме генератора, т. е.

На участке ВС точка В имеет положительный потенциал , точка С — отрицательный , поэтому , источник с ЭДС Е2 работает в режиме потребителя, т. е.

Таким образом, потенциал точки D можно записать

если обходить цепь по направлению тока, или

если обходить цепь против направления тока.

Отсюда можно сделать следующий вывод (правило): если обходить цепь или участок цепи по направлению тока, то потенциал в каждой точке определяется потенциалом предыдущей точки плюс ЭДС источника, работающего в режиме генератора, минус ЭДС источника, работающего в режиме потребителя, и минус падение напряжения на участке между точками цепи.

При обходе контура против направления тока знаки ЭДС и падения напряжения изменяются на противоположные.

Это правило особенно удобно применять в тех случаях, когда в цепи имеются участки с несколькими источниками.

Потенциальная диаграмма представляет собой график зависимости потенциалов точек цепи от величины сопротивлений участков между этими точками.

Для построения потенциальной диаграммы одну из точек электрической цепи условно заземляют, (потенциал ее принимают равным нулю), а потенциалы остальных точек равны напряжению между ними и заземленной точкой.

Потенциальная диаграмма представляет собой ломаную линию (рис. 3.3).

Для цепи, изображенной на рис. 3.2, дано:

Е1 = 8 В; Е2 = 24В; Е3 = 9,5 В; R1 = 0,5 Ом; R2 = 1 Ом; R3 = 1,5 Ом; R01 = 0,15 Ом; R02 = 0,1 Ом; R03 = 0 Ом.

1. Определить величину и направление тока в цепи.

2. Определить потенциал точек В, С, D, Е, G, приняв потенциал точки А равным нулю, .

3. Построить потенциальную диаграмму.

4. Составить и проверить баланс мощностей для цепи.

1. Выбираем направление обхода контура по часовой стрелке, тогда величина тока

Знак «минус», полученный в результате вычислений, указывает на то, что ток направлен против выбранного направления обхода, как показано на рис. 3.2. В дальнейших расчетах знак «минус» не учитывается. Таким образом, источник ЭДС Е2 работает в режиме генератора, а Е1 и Е3 — потребителей.

2. Для определения потенциалов указанных точек обходим контур по направлению тока. При этом получаем

3. Для построения потенциальной диаграммы по оси ординат в масштабе откладываются потенциалы точек, а по оси абсцисс — сопротивления участков. Потенциальная диаграмма изображена на рис. 3.3.

4. Баланс мощностей в электрической цепи с несколькими источниками соблюдается при условии, что сумма мощностей источников, работающих в режиме генераторов, равна сумме мощностей источников, работающих в режиме потребителей, и потерям мощностей на всех сопротивлениях цепи, включая внутренние сопротивления источников:

Рассчитать и построить потенциальную диаграмму для электрической цепи постоянного тока (рис. 1.19, а), если дано: ЭДС источников питания Е1 = 16 В; Е2 = 14 В, внутреннее сопротивление R01 = 3 Ом; R02 = 2 Ом, сопротивления резисторов R1 = 20 Ом; R2 = 15 Ом; R3 = 10 Ом. Определить положение движка потенциометра, в котором вольтметр V покажет нуль, составить баланс мощностей для цепи. Как повлияет на вид потенциальной диаграммы выбор другой точки с нулевым потенциалом?

Решение. Ток в цепи определяют по уравнению, составленному по второму закону Кирхгофа, приведенному к виду:

Потенциальную диаграмму строят в прямоугольной системе координат. При этом по оси абсцисс откладывают в соответствующем масштабе сопротивления всех участков цепи, а по оси ординат — потенциалы соответствующих точек. При построении потенциальной диаграммы одна из точек цепи условно заземляется, т. е. принимается, что потенциал ее φ = 0. На диаграмме эта точка помещается в начале координат.

В соответствии с условием задачи определяют потенциалы точек 1 — 5 электрической цепи, при этом принимают потенциал φ1 точки 1 цепи равным нулю.

Потенциал φ2 точки 2 находят из выражения, записанного по второму закону Кирхгофа для участка 1 — 2 цепи:

Координаты точки 2: R = 20 Ом; φ2 = -12 В.

По второму закону Кирхгофа для участка цепи 1 — 3 справедливо уравнение:

откуда потенциал точки 3 цепи: .

Координаты точки 3 цепи: R = 20 + 3 = 23 Ом; φ3 = 2,2 В. Аналогично определяют потенциал точки 4 цепи:

Координаты точки 4 цепи: R = 23 + 15 = 38 Ом; φ4 = — 6,8В.

Потенциал φ5 точки 5 цепи находят из уравнения, записанного по второму закону Кирхгофа для участка 4 — 5 цепи:

Координаты точки 5 цепи: R = 38 + 2 = 40 Ом; φ5 = 6 В. Потенциал φ1 точки 1 цепи находят из уравнения, составленного по второму закону Кирхгофа для участка 4 — 5 цепи: ; . Координаты точки 1 цепи: R = 40 + 10 = 50 Ом; φ1 = 0.

Для рассматриваемой электрической цепи по результатам расчетов на рис. 1.19, б приведена потенциальная диаграмма.

Из этой диаграммы следует, что положение движка потенциометра в точке 6 цепи соответствует показанию вольтметра, равному нулю, так как потенциалы точек 1 и 6 цепи равны.

При выборе другой точки электрической цепи с нулевым потенциалом разности потенциалов на соответствующих участках цепи не изменяются, так как они определяются величиной тока и величиной сопротивления. Если принять потенциал точки 3 цепи φ3 = 0, то ось абсцисс переместится в точку 3 потенциальной диаграммы (пунктирная линия), т. е. потенциалы всех точек цепи уменьшаются на величину потенциала φ, равного отрезку 0К = 2,3 В.

Баланс мощностей соответствует следующему уравнению:

16 ∙ 0,6 + 14 ∙ 0,6 = 0,6 2 (20 + 3 + 15 + 2 + 10).

Составить схему электрической цепи постоянного тока исходя из данных потенциальной диаграммы, приведенной на рис. 1.20,а.

Решение. Построение электрической цепи целесообразно начать с точки 1, которая совпадает с началом координат и, следовательно, имеет потенциал φ = 0 (точка заземлена).

Так как на потенциальной диаграмме сопротивления отдельных участков цепи откладываются в определенном масштабе по оси абсцисс, а по оси ординат — потенциалы, то каждой точке цепи соответствует точка на потенциальной диаграмме.

Из приведенной потенциальной диаграммы следует, что при переходе от точки 1 к точке 2 цепи потенциал линейно возрастает. При этом тангенс угла α1 наклона прямой 0 — 2 к оси абсцисс пропорционален потенциалу точки 2. Следовательно, согласно диаграмме, на участке цепи 1 — 2 должен быть включен резистор с сопротивлением R1 = 2 Ом.

Так как при переходе от точки 1 к точке 2 цепи потенциал увеличивается, то ток цепи направлен от точки 2 к точке 1 цепи:

На участке 2 — 3 диаграммы потенциал растет скачком. Это свидетельствует о том, что между соответствующими точками цепи включен источник ЭДС, направление которой встречно току (источник работает в режиме потребителя электроэнергии).

Согласно потенциальной диаграмме ЭДС, Е23 = 40 В.

На участке 3 — 4 цепи, согласно диаграмме, должен быть включен резистор, имеющий сопротивление R2 = 1 Ом. На этом участке . При этом .

На участке 4 — 5 цепи, согласно диаграмме, должен быть включен источник ЭДС Е45 =75 В. Так как при переходе от точки 4 к точке 5 цепи потенциал понижается, то ЭДС должна быть направлена от точки 5 к точке 4 цепи.

На участке 5 — 6 цепи потенциал повышается на величину , поэтому здесь должен быть включен резистор с сопротивлением R3 = 1 Ом.

На участке 6 — 7 цепи потенциал резко возрастает. Здесь, согласно диаграмме, должен быть включен источник ЭДС Е67 = 45 В, который работает в схеме в режиме потребителя.

При переходе от точки 7 к точке 8 цепи потенциал возрастает на величину, равную произведению , так как здесь должен быть включен резистор с сопротивлением R4 = 3 Ом.

На участке 8 — 9 цепи потенциал уменьшается скачком вследствие того, что источник ЭДС Е89 = 55 В подключен положительным полюсом к точке 8, а отрицательным — к точке 9. В данном случае источник ЭДС Е89 работает в цепи в качестве источника питания.

На участке 9 — 1 цепи потенциал повышается на величину, равную произведению . Поэтому здесь должен быть включен резистор с сопротивлением R5 = 2 Ом.

Результаты определения потенциалов рассматриваемой электрической цепи приведены в табл. 1.2.

Последовательное и параллельное соединение потребителей.

Последовательным соединением приемников электрического тока, или, иными словами, потребителей электрического тока называется такое соединение, при котором концевая клемма первого потребителя соединяется с начальной клеммой второго потребителя и так далее.

Параллельным соединением потребителей называется такое соединение, при котором к одному полюсу источника напряжения подключены все входные клеммы потребителей, а ко второму полюсу – все выходные клеммы.

Последовательное соединение Параллельное соединение
При последовательном соединении потребителей конец первого потребителя соединяются с началом второго и т. д. 1. При этом сила тока I во всех потребителях одинакова. I общ. = I1 = I2 = … 2. Напряжение всей цепи равно сумме напряжений на отдельных участках. Uобщ. = U1 + U2 + … 3. Общее сопротивление последовательного соединения равно сумме сопротивлений его отдельных участков. Rобщ. = R1 + R2 + … Вывод: 1. Дополнительный проводник, последовательно включенный в цепь, уменьшает в ней силу тока, т. к при последовательном соединении проводников общее сопротивление цепи увеличивается, а сила тока уменьшается – это свойство используется для уменьшения силы тока в цепи. 2. Так как все элементы цепи взаимосвязаны, то они либо все одновременно работают, либо не работают. 3. Для включения цепи необходим только один выключатель. 4. При возникновении неисправности в цепи, необходимо поочередно проверить все элементы, что затрудняет её поиск. 5. Для защиты эл. цепи необходим только один аппарат защиты. Последовательное соединение используется для одновременной работы аппаратов. При параллельном соединении потребителей их начала, и концы имеют общую точку подключения к источнику тока. 1. При этом сила всей цепи равна сумме сил токов во всех параллельно включённых потребителей. I общ. = I1 + I2 + … 2. Напряжение на каждом из потребителей равно напряжению на всем соединении. Uобщ. = U1 = U2 = … 3. Величина, обратная общему сопротивлению параллельного соединения, равна сумме величин, обратных сопротивлениям его отдельных участков. Вывод: 1. Общее сопротивление цепи уменьшается, т. к. с увеличением площади поперечного сечения проводников сопротивление уменьшается и становится меньше наименьшего, составляющего цепи при этом общий ток увеличивается. 2. Цепи независимы друг от друга, и для их включения можно по желанию использовать как общий выключатель, так и индивидуальный выключатель на каждую цепь. 3. Каждая цепь может иметь свой аппарат защиты. 4. При возникновении неисправности в параллельно соединённых цепях, их легко можно выделить. Параллельные соединения используются для независимой работы аппаратов.

Если в электрической схеме есть участки с последовательным и параллельным соединениями, то такое соединение принято считать «смешанным».

Тема № 2. Работа и мощность электрического тока. Свойства электрического тока.

Лекция 2 часа.

Работа электрического тока

При прохождении по цепи электрический ток совершает работу, при этом электрическая энергия источника тока превращается в другие виды энергии (механическую, тепловую, световую и т.д.) Работа электрического тока математически выражается произведением напряжения, силы тока и времени действия.

Работа Аэлектрического тока на участке цепи с электрическим сопротивлением R за время ∆t равна:

А = I–U– t = I 2 –R– t

Работа измеряется в ватт – секундах, ватт – часах или в киловатт – часах. За единицу работы принят джоуль, или ватт-секунда, т.е. работа, совершаемая током в 1 ампер при напряжении 1 вольт за 1 секунду.

Мощностью называется работа, совершаемая током в единицу времени.

Мощность электрического тока математически выражается отношением работы тока А ко времени ∆t. за которое эта работа совершена:

где,

P – мощность тока, Вт
I– сила тока, А
U – электрическое напряжение, В

Прохождение тока по проводнику всегда сопровождается хотя бы одним из особых явлений – действий тока.Известно три действия тока: химическое, магнитное и тепловое.

Тепловое действие тока.

Если на участке цепи под действием электрического тока не совершается механическая работа, и не происходят химические превращения, то работа электрического тока приводит только к нагреванию проводника. При этом работа электрического тока равна количеству тепла, выделяемого для нагревания проводника при протекании по нему электрического тока. Количество выделяемого тепла определяется по закону Джоуля – Ленца:

Q = А = 0,24 I 2 R t (калорий).

Переводной коэффициент «0,24» — это количество тепла, выделяемого в проводнике, имеющем сопротивление 1 ом при прохождении через него тока силой в 1 ампер в течение 1 секунды.

Одна малая калория (или просто калория) -количество тепла, которое необходимо для нагрева воды массой в 1 грамм на 1 градус Цельсия. Одна большая калория или килокалория равна 1000 калорий.

Режим короткого замыкания.

Режим короткого замыкания – явление, когда в цепи резко падает общее сопротивление (т.к. образуется параллельная цепь). По закону Ома в цепи возникает большой ток, который вызывает нагрев проводников. А если учесть, что по закону Джоуля – Ленца количество выделяемого тепла пропорционально квадрату тока, нагрев может привести к возгоранию.

Плавкие предохранители.

  1. Изоляционная трубка
  2. Наполнитель (среда для дугогашения)
  3. Плавкая вставка (легкоплавкий проводник).
  4. Контактный наконечник

На вагоне применяются предохранители для защиты высоковольтных и низковольтных цепей.

Высоковольтные предохранители – неразборные, их «заправляют» на специальном участке, подбирая провода определенного сечения. На корпусе делается маркировка величины тока, на которую рассчитан данный предохранитель.

Предохранители низковольтной цепи – разборные, в них применяются специальные плавкие вставки. Запасные предохранители всегда должны быть в вагонной сумке. Выезжать из парка без запасных предохранителей недопустимо.

Химическое действие тока.

Растворы солей, кислот и щелочей в воде называются ЭЛЕКТРОЛИТАМИ. Электролиты проводят электрический ток. Это объясняется тем, что молекулы вещества в растворе делятся на ИОНЫ, т.е. частицы, несущие заряды. Ионы водорода и металлов несут положительный заряд и под воздействием напряжения между электродами движутся по направлению к КАТОДУ (отрицательному электроду). Здесь, забирая у катода электроны, они нейтрализуются и оседают на нем. Ионы остальных веществ заряжаются отрицательно и под воздействием напряжения движутся в АНОДУ (положительному электроду). Здесь, отдавая ему электроны, они нейтрализуются и оседают на нем. Следовательно, электрический ток в электролитах представляет собой движение ионов. Химическое действие тока широко используется в технике. При электролизе производится покрытие металлических предметов слоем другого металла (гальваностегия), очистка меди, получение чистого алюминия и т.д. На химическом действии тока основана работа аккумулятора.

Аккумулятором называется прибор, способный в результате химических процессов накапливать электрическую энергию и хранить ее в течение определенного времени. В зависимости от используемого электролита аккумуляторы бывают кислотные и щелочные. В качестве электролита в щелочном аккумуляторе используется 20% — ный водный раствор химически чистого едкого натра. Пластины в щелочных аккумуляторах представляют собой железные решетки с различной активной массой. В положительных пластинах в качестве активной массы используется соединение водной окиси никеля, графита и электролитического никеля, а в отрицательных – губчатое железо с гидроокисью кадмия.

В отличие от кислотных, щелочные аккумуляторы не требуют тщательного ухода, они не боятся сотрясений, могут долго оставаться в разряженном состоянии, без повреждений выносят короткие замыкания, которые для кислотных аккумуляторов очень опасны.

Недостатки щелочных аккумуляторов: меньшее рабочее напряжение, меньший КПД (порядка 60%),большое внутреннее сопротивление.

Как одна из технических характеристик аккумулятора, существует такое понятие, как ЕМКОСТЬ АККУМУЛЯТОРА. Это количество электричества, которое аккумулятор может отдать при разряде его определенным током до минимально допустимого напряжения. Емкость батареи измеряется в ампер – часах.

На трамвайном вагоне «ЛМ-68М» применяется никель – кадмиевая щелочная аккумуляторная батарея «НК-125». Батарея состоит из 20 элементов, соединенных последовательно. Общее напряжение – 24 вольта. Емкость батареи – 125 ампер – часов.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Posledovatelnoe soedinenie

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Parallelnoe soedinenie

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

Parallelnoe soedinenie girliandy

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

Posledovatelno kondensatory

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Parallelno kondensatory

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Smeshannoe soedinenie

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Виды соединений потребителей.

Различают последовательное, параллельное и смешанное соединение потребителей.

Припоследовательном соединении потребителей конец первого потребителя присоединяется к началу второго, конец второго – к началу третьего и т.д.

Рисунок 9 – Схема последовательного соединения потребителей

1) Сила тока на всех потребителях одинаковая

2) Общее сопротивление равно сумме сопротивлений отдельных потребителей

3) Напряжение на зажимах цепи равно сумме падений напряжений на отдельных её участках .

При необходимости уменьшить U и I приемника последовательно ему подключают резистор.

Вывод: при выходе из работы одного элемента вся цепь обесточивается, и при изменении сопротивления одного из них меняется ток во всей цепи и напряжение на каждом элементе.

При параллельном соединении элементов цепи все начала собираются в одну точку, а концы в другую точку и включаются в электрическую цепь, образуя параллельные ветви.

Рисунок 10 – Схема параллельного соединения потребителей

1) Общий ток равен сумме токов параллельных ветвей

2) Напряжение на всех потребителях включенных параллельно одинаковое

3) Общее сопротивление будет меньше наименьшего из включенных параллельно

Из закона Ома для участка цепи

для двух потребителей

Если сопротивление потребителей равны, то

При выходе из строя одного потребителя остальные остаются включенные в цепь.

Все приемники находятся под одним напряжением независимо от их мощности (сопротивления).

Смешанным называется такое соединение потребителей, когда в цепи имеются одновременно и параллельное и последовательное их соединение.

Цепь постепенно упрощают, заменяя эквивалентным (равноценным) сопротивлением, используя формулы для последовательного и параллельного соединения потребителей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *