Какое топливо используется на атомных электростанциях
Перейти к содержимому

Какое топливо используется на атомных электростанциях

О совершенствовании ядерного топлива

image

Ключевым элементом в системе производства атомной энергии является ядерное топливо. То самое, дорогое высокотехнологичное изделие, над созданием которого трудятся сотни инженеров на протяжении последних 50 лет. Однако, тяжелые аварии, например, на АЭС Три Майл Айленд и Фукусима-Дайичи, показали, что в экстремальных условиях ядерное топливо скорее всего потерпит неудачу и авария приведет к существенным последствиям.

Признавая, что нынешние конструкции топлива уязвимы к тяжелым авариям, возобновляется интерес к проектам альтернативного топлива, которые будут более устойчивыми к отказу и производству водорода, как главному фактору, который приводит к этому отказу. Такие новые конструкции топлива должны быть совместимы с существующими топливными и реакторными системами и соответствовать всем нормативным требованиям современной атомной энергетики.

Немного к истокам и нынешнее положение дел

Такая вот обобщенная статистика для понимания энергоемкости ядерного топлива.

Нынешнее ядерное топливо или тепловыделяющая сборка (ТВС) для большинства АЭС это машиностроительное изделие, представляющее собой пучок циркониевых цилиндрических оболочек (ТВЭЛов), заполненных таблетками из обогащенного урана и газом под давлением. Данный пучок объединяется в единую конструкцию дистанционирующими решётками «сотового» типа, закреплёнными на центральной трубе.

image
Входной контроль ТВС «западного» дизайна на АЭС

Считается, что цирконий в качестве оболочки ТВЭЛ впервые был предложен адмиралом Хайманом Риковером в июне 1946, для программы транспортных реакторов морского флота США. Данный материал обладает нужными свойствами и прекрасно зарекомендовал себя за долгое время.

В качестве материала таблеток повсеместно используется оксид тяжелого металла. Обычно это диоксид урана, гораздо реже — смесь окисей урана и плутония. Используется в современных энергетических реакторах уран с содержанием изотопа 235U, не превышающим 5%, в том числе уран природного изотопного состава (

0,71%) или слабообогащенный.

При сохранении перечисленных общих черт на протяжении последних десятилетий происходило постепенное изменение «вторичных» конструктивных признаков тепловыделяющих сборок. Это улучшало потребительские свойства топлива, его надежность и безопасность, обеспечивая ощутимое конкурентное преимущество с ранними версиями ТВС.

Вот некоторые из них:

  1. Увеличение уровня обогащения: в 1970-х годах оно едва превышало 3%, тогда как сегодня максимальное обогащение для легководных реакторов приближается к 5%. Наряду с повышением уровня обогащения происходит его профилирование в активной зоне реактора — вплоть до различий между частями таблетки в перспективном топливе.
  2. Увеличение загрузки урана по массе. Это изменение произошло прежде всего за счёт изменения геометрии ТВЭЛ и конструкционных частей ТВС. Например, для реакторов ВВЭР увеличивалась длинна «топливной» части сборки – приблизительно на 15 см. Для реакторов западного дизайна со временем изменилось количество ТВЭЛ в сборке квадратного профиля: было 15×15, стало 17×17.
  3. Существенные изменения в циркониевых сплавах. Яркий пример модернизации материалов оболочек — повсеместное внедрение ниобия в качестве одного из главных легирующих элементов. В противоположность сплавам, распространенным в прошлом, в которых ниобий отсутствовал или содержался в незначительных количествах (Zircaloy 4, Zircaloy 2), стали господствовать материалы, содержащие порядка 1% ниобия. Это касается, например, фирменных сплавов Westinghouse (Zirlo, улучшенный Zirlo, AXIOM), Framatome/Areva (сплавы M5, Q) и Росатома (сплавы Э110, Э635). При этом в ряде циркониевых сплавов уменьшались или исключались такие составляющие, как олово, никель и хром. Совершенствовались технологии по минимизации содержания гафния в циркониевом сплаве.
  4. Комплексное усовершенствование конструкций ТВС. В течение развития исключались некоторые элементы конструкции сборок (кожухи и чехлы ТВС). Появлялись решения, повышающие прочность тепловыделяющей сборки, её устойчивость к деформациям, решения, обеспечивающие дополнительную целостность ТВЭЛ (внедрение антидебрисных фильтров) и удовлетворяющие новые регуляторных требования, например, к сейсмостойкости. Конструкцию ТВС сделали разборной, тем самым допустив замену отдельных ТВЭЛов и продолжение эксплуатации.

Камень преткновения

Из первого пункта можно догадаться, что нынешние ТВС за долгое время развития уже успели дойти до предельных показателей эффективности и безопасности, но как минимум два фактора ныне обязывают конструкторов продолжать совершенствовать ядерное топливо дальше.

Учитывая колоссальную удельную мощность энерговыделения активной зоны легководного реактора

150 Вт / см3, в сочетании с возможностью введения положительной реактивности или потерей охлаждения в этой сложной системе, инженеры, проектирующие реакторы ещё с самого начала понимали важность проектирования систем безопасности.

Чтобы разработать стратегию смягчения последствий, при возникновении аварий, за основу для проектирования систем безопасности были взяты два вида событий: события, основанные на положительном вводе реактивности (reactivity insertion accident (RIA)) и события основанные на потере теплоносителя (loss-of-coolant accident (LOCA)). Основные системы безопасности специально проектировались для реагирования на данные проектные события.

Но опыт таких аварий как на АЭС Три Майл Айленд и Фукусима-Дайичи доказал, что при множественных отказах и наложениях исходных событий, активные системы безопасности не в состоянии справится с возложенными на них функциями, в особенности отводе остаточного тепла от ТВС, находящихся в активной зоне.

Уравнение теплопереноса в его простой форме хорошо объясняет происходящее в ядерном реакторе при развитии аварии с потерей теплоотвода:

image

Левая часть уравнения описывает изменение температуры (T) по времени (t); данное изменение также определяется теплоемкостью материалов в активной зоне (рСр). Первое слагаемое в правой части в общем случае представляет в упрощенной форме процессы теплообмена (кондукцию, конвекцию и излучение) для отвода тепла от активной зоны. Второе слагаемое – количество генерируемого тепла в активной зоне (Q).

Во время протекания вышеупомянутых событий, нарушается режим охлаждения активной зоны, первое слагаемое правой части становится численно меньше и тепло Q постепенно вызывает увеличение температуры. С того момента, как активная зона реактора становится частично или полностью оголенной (падает уровень воды, вода сменяется паром), резко падает эффективность теплоотвода от активной зоны, температуры ТВЭЛ продолжают расти, что служит началу химической и физической деградации ТВЭЛов. Физическая деградация оболочки ТВЭЛ начинается при температурах (700-1000 ̊С) и вызывает вздутие и разрыв оболочек.

Химическая деградация выражается, главным образом, путем парового окисления циркония. Ключевым фактором является экзотермичность данной реакции. И конечно же, продуктом данной реакции является взрывоопасный водород. Для примера,

125 кг циркония в каждой топливной сборке реактора под давлением производят около 820 МДж тепла и более чем 2700 моль газообразного водорода при реакции с паром.

В зависимости от проекта легководного реактора, около 25-40 тонн циркония присутствует в активной зоне, при полном окислении которого будет произведено огромное количество тепла, в добавок к остаточному (в лучшем случае) энерговыделению самого топлива.

image
Величина тепловой мощности системы в зависимости от времени останова реактора с учетом экзотермической реакции окисления циркония

Сгенерированный водород, в свою очередь, не будет мирно скапливаться, и без должного срабатывания систем по его утилизации, приведет к масштабному взрыву или пожару, пока активная зона может проплавить корпус и взяться за бетон реакторного отделения.

Концепция топлива, устойчивого к авариям

Описанный выше апокалиптический сценарий в основных чертах повторяет события на АЭС «Фукусима» в 2011 году. Данное событие привело к пересмотру ряда стандартов ядерной безопасности, особенно касающихся серьезных проектных и запроектных аварий (с полным обесточиванием реакторной установки и потерей теплоносителя). В том числе благодаря этой аварии во многих регионах мира обострилась конкуренция АЭС с другими энергоисточниками, что значительно повышает требования к экономике атомных станций, а также их безопасности (при равных или порой проигрышных экономических показателях проектов инвесторы могут отдать предпочтение неядерным источникам энергии).

Данный фактор существенно повышает требования ко всем элементам производства электроэнернегии на АЭС в особенности к ядерному топливу. В нынешнем десятилетии активизировались работы по созданию принципиально нового топлива, способного противостоять условиям тяжелых аварий при сохранении или повышении экономических показателей и безопасности при нормальной эксплуатации. Множество разработок такого рода получили собирательное название Accident Tolerant Fuel (ATF) — топливо с повышенной устойчивостью к авариям.

В основе философии изменений конструкции ТВС лежит замены материалов основных компонентов ядерного топлива, в основном оболочек ТВЭЛ и топливных таблеток на материалы, которые будут более устойчивы к процессам, происходящим в момент протекания аварии.

Оболочка ТВЭЛ

Основным подходом в выборе материалов оболочки ТВЭЛ для ATF топлива является необходимость исключения или снижения степени пароциркониевой реакции и, как следствие, выделения дополнительного тепла и водорода. Быстрое и очевидное решение —применение защитного покрытия поверхности циркониевой оболочки. Тонкие покрытия на оболочку циркония должны оказывать минимальное влияние на тепло- и нейтроннофизические характеристики топлива. Учеными было установлено, что хорошую устойчивость к паровому окислению при высоких температурах имеют хром, алюминий, кремний. Данные примеси демонстрируют стабильность в высокотемпературной паровой среде, не смотря на то что могут несколько реагировать с паром.

image
Скорость параболического окисления для различных материалов в паре в зависимости от температуры

Как видно из графика, скорость окисления этих материалов, которые образуют и соответственно защищены своими оксидными пленками на два порядка ниже чем скорость окисления циркония. Снижение скорости парового окисления непосредственно влияет на скорость выделения тепла и водорода при тяжелой LOCA в активной зоне реактора.

Покрытие оболочек ТВЭЛ металлическим хромом ныне считается самой перспективной технологией для дальнейшего развития. Также перспективными считаются оболочки ТВЭЛ без использования циркония, например материалы FeCrAl, и SiC/SiC.

image
Тестирование кремниевой оболочки топлива EnCore (Westinghouse) при температуре выше 1300ºC

Топливные элементы

Вторым по значимости направлением в развитии ATF топлива является выбор и обоснование материала топливной матрицы, которая будет обладать лучшей, по сравнению с классической керамикой, теплопроводностью. Это, в свою очередь, требует решения ряда возникающих проблем: предотвращения химических реакций оболочки и топлива, распухания и повреждений оболочки топливом, локализации продуктов деления и т. д.

Институт атомной энергии Южной Кореи (KAERI) работает над созданием микроэлементных таблеток (microcell) для увеличения способности удержания продуктов деления и лучшей, по сравнению с обычными таблетками диоксида урана, теплопроводности.

image
Концепт микроэлементной топливной таблетки

На рисунке показана концептуальная иллюстрация, где видно, что зерна или гранулы UO2 окружены тонкой стенкой. Главной задачей создания таких таблеток является уменьшение выхода продуктов деления из таблетки. Улучшенная возможность удерживать продукты деления уменьшает коррозионное растрескивание под напряжением с внутренней стороны ТВЭЛ, вызванное йодом и цезием.

Ожидается, что это может положительно влиять на прочность топливных стержней. Также микроэлементная структура предотвратит массированную фрагментацию таблетки при аварии, тем самым обеспечив дополнительное удержание радиоактивных продуктов деления.

Теплопроводность таких таблеток можно повысить с помощью добавления материалов с высоким коэффициентом теплопроводности, например, используя металлы в виде стенки одного элемента.

image
Типичная структура микроэлементных таблеток с металлом

Данное изменение позволит снизить температуру в центре таблетки при нормальных и аварийных условиях эксплуатации ТВЭЛ.

Для понимания того, как вышеупомянутые нововведения реализуются на практике, приведу следующий пример. Westinghouse создает толерантное топливо под маркой EnCore, которое представляет собой таблетки силицида урана U3Si2, заключенные поначалу (на первом этапе данной программы) в оболочку из хромированного циркониевого сплава Zirlo.

Как ожидается, топливо из силицида урана превзойдет традиционное диоксидное более чем в 5 раз по теплопроводности и на

1/5 по плотности, а поглощение нейтронов карбидокремниевой оболочкой должно быть на

1/4 меньше, чем у сплавов циркония.

Благодаря последним двум параметрам компания предполагает удержать обогащение EnCore в пределах 5%, что облегчит его продвижение на рынке. В 2018 году Westinghouse планирует наладить опытное производство ТВЭЛов в хромированной циркониевой оболочке, в 2019 году — начать их испытание в составе штатных топливных сборок на АЭС «Байрон» в США.

Итоги

Изменения, описанные выше являются частью фактически реализуемых проектов сейчас. Возможно, в будущем мы станем свидетелями внедрения более экзотических решений.

Пока только стоит отметить, что появление на рынке экономически выгодных и новых, с точки зрения безопасности, проектов ядерного топлива поможет укрепить позиции атомной энергетики в мире.

Добыча, переработка, использование и хранение ядерного топлива

Ядерное топливо — это вещество способное выделять энергию в реакторе поддерживая ядерную цепную реакцию.

Все процессы, вовлеченные в получение, очистку и использование этого ядерного топлива, составляют цикл, известный как топливный цикл.

Наиболее распространенными видами ядерного топлива являются радиоактивные металлы уран-235 и плутоний-239.

Уран в качестве основного ядерного топлива

Уран является относительно распространенным элементом, который встречается во всем мире. Он добывается в ряде стран и должен быть переработан, прежде чем его можно будет использовать в качестве ядерного топлива и использования энергии ядерной реакции.

Уран-235 используется в качестве источника энергии в различных концентрациях. Некоторые реакторы, такие как тяжеловодный водо-водяной, могут использовать природный уран с концентрацией урана-235 всего 0,7%, в то время как другие реакторы требуют более значительного обогащения урана до уровней от 3% до 5%. Природный уран является слегка радиоактивным металлом, который встречается по всей земной коре. Он примерно в 500 раз более распространен, чем золото, и примерно так же распространен, как олово. Он присутствует в большинстве пород и почв, а также во многих реках и в морской воде. Природный уран, например, содержится в концентрации около четырех частей на миллион в граните, что составляет 60% земной коры. В удобрениях концентрация урана может достигать 0,04%, а некоторые угольные месторождения содержат металл в концентрациях более 0,01%. Большая часть радиоактивности, связанной с ураном в природе, на самом деле обусловлена другими минералами, полученными из него в результате процессов радиоактивного распада, и которые остаются в добыче и измельчении.

Во всем мире существует ряд областей, где концентрация урана в земле достаточно высока, что добыча его для использования в качестве ядерного топлива экономически целесообразна. Такие концентрации называются рудными.

Добыча урана

добыча урана

Для извлечения урановой руды используются как подземные так открытые методы раскопок. Карьерные шахты требуют больших свободных территорий на поверхности, чем размер рудного месторождения, так как стены карьера должны быть наклонными, чтобы предотвратить обрушение. В результате количество материала, которое должно быть удалено для доступа к руде, может быть большим. Подземные шахты имеют относительно небольшие территории, и количество материала, которое должно быть удалено для доступа к руде, значительно меньше, чем в случае открытой шахты. В подземных шахтах для защиты от воздействия радиации в воздухе требуются особые меры предосторожности, в первую очередь повышенная вентиляция.

Решение о том, какой способ разработки использовать для конкретного месторождения, определяется характером рудного тела, безопасностью и экономическими соображениями.

Плутоний

Плутоний-239 производится и используется в реакторах размножителях на быстрых нейтронах, которые содержат значительные количества урана-238. Его можно также рециркулировать и использовать как вещество способное выделять энергию в термальных реакторах. Вещество имеет большую активность чем уран.

Плутоний-238 применяется в малогабаритных радиоизотопных источниках энергии.

плутоний

Торий

В настоящее время проводятся исследования по использованию тория-232 в качестве источника.

1 грамм чистого тория произведет больше энергии, чем 28 тыс. литров бензина. Однако этот элемент в цепочке распада должен быть превращен из Тория-232 в Уран-233 который представляет высокоэффективное ядерное топливо.

Тория на Земле больше чем урана, он менее токсичен и не образовывает долгоживущие радиоактивные изотопы.

Производство ядерного топлива

Заводы по производству являются объектами, которые преобразуют обогащенный уран в ядерное топливо для реакторов. Для легководных реакторов уран получают с обогатительной фабрики в твердом виде. Затем он химически превращается в порошок диоксида урана. диоксид урана Этот порошок прессуется в брикеты. брикеты топлива

Смешанное оксидное топливо также может быть создано, когда порошок упакован вместе с оксидом плутония. Опасности, существующие на объектах по изготовлению топлива, главным образом химические и радиологические, аналогичны опасностям на обогатительных фабриках. Эти объекты, как правило, представляют низкий риск для общественности.

Использование

При использовании вещества способные выделять энергию могут иметь множество различных форм металла, сплава или какого-то оксида.

Большинство реакторов питаются соединением, известным как диоксид урана. Этот диоксид урана собирается в тепловыделяющую сборку и вводится в ядерный реактор, где он может оставаться в течение нескольких месяцев или нескольких лет.

В реакторе ядерное топливо подвергается делению и выделяет энергию. Эта выделяющаяся энергия используется для выработки электроэнергии. Нейтроны, высвобождаемые в процессе деления, позволяют протекать цепной реакции деления, что позволяет непрерывно генерировать энергию. Отработанное вещество удаляется из реактора после того, как большие количества — будь то уран-235 или плутоний-239—подверглись делению. «Использованное» ядерное топливо известно как отработанное или облученное вещество. После использования вещество необходимо охлаждать в течение нескольких лет, так как оно очень горячее.

Отработанное ядерное топливо помещается в большие глубокие бассейны с водой с радиационным экраном, которые действуют как охлаждающая жидкость. Вода используется как хладагент понижая температуру, а экран защищает работников от радиоактивности. После охлаждения использованное ядерное топливо может быть переориентировано или отправлено на хранение в зависимости от правил.

Топливные стержни

ядерное топливо

Ядерные реакторы работают на порошкообразном диоксиде урана, который был сжат в небольшие гранулы. Для получения большого количества гранул они связываются в топливный стержень.

Одна урановая топливная таблетка размером с кончик пальца может выдать энергии как 481 кубический метр природного газа, 807 килограммов угля или 564 литра нефти. Стержни состоят из многочисленных гранул радиоактивного уранового топлива.

Они могут быть несколько метров в длину и около сантиметра в диаметре. Несколько таких стержней, обычно больше десяти, удерживаются вместе прочными металлическими кронштейнами в тепловыделяющей сборке. Эти штанги между собой имеют зазоры несколько миллиметров между каждой штангой для того, чтобы позволить хладоагенту проходить между ними. Трубки, содержащие гранулы урана, обычно состоят из циркония.

Преимущества и недостатки ядерного топлива

Во всем мире имеются достаточные запасы урана. Хотя ядерное топливо не является возобновляемым, оно является устойчивым, поскольку его так много. В конце концов, оно закончится, но не в этом веке.
В отличие от ископаемых источников, использование ядерного топлива для производства энергии напрямую не приводит к образованию углекислого газа или диоксида серы. Следует отметить, что процессы добычи, транспортировки и переработки имеют связанные с ними выбросы углерода, сравнимые с выбросами ветровой и солнечной энергии.
Хотя углеродный след от использования меньше, все еще существуют недостатки использования ядерного топлива.

ядерная электростанция

Как недостаток, необходимо очень осторожное обращение из-за его радиоактивности. Ядерное топливо требует гораздо более сложных систем для извлечения энергии, что требует более строгого регулирования. Эти сложные системы регулирования должны работать долгое время без сбоев. Кроме того, общественное мнение по атомной энергии, как правило, более негативное, чем по другим источникам энергии.
Переоценка опасностей, связанных с выбросами радиоактивных материалов, является важной проблемой, поскольку крупномасштабные ядерные инциденты происходят и приводят к большим катастрофам.
В настоящее время не существует действующих объектов захоронения (в отличие от хранилищ), в которые можно было бы помещать отработанное топливо, не предназначенное для переработки, и отходы от переработки. В любом случае материал находится в твердой, стабильной форме отходов.
Хотя технические вопросы, связанные с удалением, являются простыми, в настоящее время нет острой технической необходимости в создании таких установок, поскольку общий объем таких отходов относительно невелик. Кроме того, чем дольше он хранится, тем легче его обрабатывать из-за постепенного снижения радиоактивности.
Существует также нежелание утилизировать использованное топливо, поскольку оно представляет собой значительный энергетический ресурс, который может быть переработан на более позднем этапе для обеспечения рециркуляции урана и плутония.

Ряд стран проводят исследования для определения оптимального подхода к удалению отработавшего топлива и отходов переработки. Общее согласие одобряет его размещение в глубоких геологических хранилищах, приблизительно на 500 метров ниже, первоначально извлекаемых, прежде чем быть навсегда запечатанным.

Ядерное топливо

Из всех источников энергии, используемой человечеством, ядерные материалы являются самыми совершенными, опасными и эффективными. В связи с этим на этот вид топлива накладывается ряд ограничений, обязательных при добыче, переработке, перевозке и непосредственному использованию в реакторах. Для работы с таким сырьем необходимы специальные условия, соблюдение которых обеспечивает безопасность человека и окружающей среды. Ядерное топливо характеризуется узким спектром областей применения. В основном это атомная промышленность, оборонный сектор, гражданская энергетика. Проведение разработок для повсеместного внедрения в жизнедеятельность человека не находит массового отклика в научной среде.

Бочки с радиоактивными материалами

Добыча сырья для ядерного топлива

В качестве исходного материала для последующего извлечения энергии чаще всего используется уран. Это вещество считается самым тяжелым металлом. Больше всего в ресурсах планеты урана-238, 99.4%. Встречается более редкий элемент с массой 235, его количество в процентном соотношении 0.6%. Несмотря на печальную статистику аварий на атомных электростанциях, потребность в исходном сырье остается достаточно высокой. Крупные разработки урана сегодня ведутся в таких странах как Казахстан, Австралия, Китай, Бразилия и Россия.

Добыча топлива для ядерных реакторов осуществляется тремя основными способами:

  1. Открытая разработка. Применяется в случае, если залежи ископаемого залегают недалеко от поверхности земли. Урановая руда вместе с грунтом забирается для последующей транспортировки на перерабатывающие комбинаты.
  2. Бывает и так, что будущее ядерное топливо для АЭС (атомных электростанций) залегает на большой глубине. В этом случае применяется шахтный тип разработки. Глубоко под землей требуется труд человека для работы на оборудовании. Смешанная руда вырывается сверлением, затем направляется грузовыми лифтами для транспортировки.
  3. Самый совершенный и безопасный для экологии способ добычи уранового топлива – скважинное выщелачивание. Этот химический процесс проводится под землей при помощи доставляемых реактивов, является экономически самым выгодным из ассортимента промышленных методов.

Выбор способа, которым будет добываться радиоактивные виды топлива, зависит от самого месторождения, глубины залегания и дальности транспортировки сырья для последующего обогащения. В чистом виде ископаемые, как правило, не используются.

Этот элемент в чистом виде является опасным для человека. Исходный состав добываемой руды включает три изотопа с разными атомными массами (234, 235 и 238 соответственно). Полученное сырье подлежит дальнейшей переработке, что необходимо для эффективного и продуктивного использования непосредственно в реакторах. По сути, для получения обогащенного ядерного топлива урана происходит повышение концентрации именно элемента с атомной массой 235.

Урановая руда

Сам процесс приведения сырья в рабочее состояние достаточно сложный и продолжительный. Все зависит от сферы применения урана. Из производства ядерного топлива выходят вещества с различной степенью концентрации:

  • На уровне 3%. Для реакторов РБМК (реактор большой мощности канальный). Примеры: Чернобыльская, Обнинская, Ленинградская станции;
  • На уровне 5%. Водо-водяные энергетические реакторы, самые мощные в мире, пример в Нововоронеже;
  • На уровне 20% — походные (суда и корабли);
  • На уровне до 90% — для исследовательских центров.

На выходе из производства получаются специальные таблетки, которые используются непосредственно в тепловыделяющих установках. При этом уран не является единственным видом топлива для реактора.

Плутоний

В естественном виде в природе существует в виде диоксида. Для добычи его остается ничтожно мало. По этой причине этот вид топлива для ядерного реактора получается искусственно из того же урана. Плутоний считается самым дорогим и перспективным материалом в линейке атомных продуктов. Для удешевления производства применяется технология получения из отработанного сырья.

По основной классификации этот вид атомного топлива делится на оружейный и реакторный. Известно применение готового вещества для поддержания работоспособности и функционирования космической техники. Наибольшую популярность плутоний получил в качестве исходного материала для производства ядерного оружия (речь идет об изотопе 239, концентрация которого составляет не менее 93 процентов). Вещество обладает сильной активностью, высоким периодом полураспада.

Торий

В продолжение того, как называется ядерное топливо, нельзя не упомянуть про этот элемент периодической таблицы. В естественном виде торий может содержаться в земной коре и воде, а также в некоторых природных ископаемых, в составе гранита. В промышленном производстве выделяется из группы 12 минералов путем выщелачивания. В настоящее время используется в мирных целях (фактически не является ядерным топливом) то есть в гражданской энергетике, отличаясь от более радиоактивных аналогов умеренными опасными свойствами. Известно использование в металлургии, медицине, производстве светотехнический изделий. Этот металл участвует в процессах жизнедеятельности живых организмов, накапливается естественным образом и также выводится. Создает нормальный фон облучения.

Производство ядерного топлива

Изготовление альтернативного энергоносителя в Российской Федерации находится в ведении государственной корпорации «Росатом». Отечественная компания ТВЭЛ выпускает известные виды ядерного топлива, разрабатывает и создает тепловыделяющие сборки, включая комплектующие, обслуживает действующие реакторы. Для сравнения продуктивности урана для энергетики можно привести простой пример: 630 граммов урана равнозначны по выдаче 70 тоннам угля или 140 тоннам дров. При этом соотношение отходов после отработки вторичных реакций составляет соответственно 126 граммов с равнозначными 74 тоннами золы и газов или 1.5 тонны золы, остающейся при сжигании древесины.

В современных условиях обогащение того, что содержит ядерное топливо, начинается в непосредственной близости от шахты. Первичная обработка представляет собой сортировку сырья, отделение нерудных компонентов, выделение максимально чистого вещества. Непосредственно технологический процесс основывается на том, что частицы урана достаточно инертны. По этой причине приведение в активное движение исходного состава для ядерного топлива способствует структурированию и выделение вещества в отдельную субстанцию. В зависимости от производства и качества сырья выделяют электромагнитный, аэродинамический методы производства. Долгое время в промышленности используется газовое центрифугование как самый передовой и эффективный метод обогащения урана. Кроме того, этот способ остается одним из самых экономически выгодных. В числе перспективных технологий получения чистого химического элемента для АЭС разделение изотопов при помощи лазера.

Мощности производств в мире (по состоянию на 2020 год, в EPP):

  • ТВЭЛ – Россия, свыше 28000;
  • URENCO – совместный проект Англии, Голландии и Германии – свыше 14000;
  • Китай и Франция – свыше 7000;
  • США лишь на 5 месте, свыше 4000.

Регенерация

Из школьного курса химии известно о продолжительном периоде полураспада урана и других радиоактивных веществ. Даже после использования активного сырья в производстве, вещество остается пригодным для вторичного применения. После переработки уран возвращается в топливный цикл. Для этого сырье может быть обогащено или смешано с готовыми концентратами топлива непосредственно в ядерном реакторе. Что касается России, она и здесь на первом месте, поскольку все запасы регенерации сразу же уходят в производственный цикл.

Ход цепной реакции

Основной целью использования подготовленного ядерного топлива является получение (выделение) большого количества энергии. Цепной реакцией является последовательное вступление элементов полураспада в реакцию с продуктами предыдущего процесса. Катализаторами каждой реакции, соответственно, являются выделенные на прошлом этапе нейтроны. При этом происходит обильное или чрезмерное выделение энергии. Для запуска цепной реакции необходимы специальные химические элементы, которые тоже по сути являются топливом для АЭС.

Цепные реакции бывают неразветвленными и разветвленными. В первом случае, выделяется только по одному связующему нейтрону, при этом не образуется энергия в больших масштабах. Во втором случае при правильном контроле процесса цепной реакции получается обильный выход энергии.

Особенности транспортировки ТВЭЛов

В момент добычи уран еще не обладает губительным радиоактивным излучением. Он набирает силу и энергию только когда превращается в обогащенное ядерное топливо. На место выработки подаются готовые станции. После этого с загруженным сырьем установки обеспечивают хранение сырья и его последующую выработку в промышленных целях. Транспортировка ТВЭЛ осуществляется всеми видами сообщений, для них разрабатывается специальный маршрут, обеспечивается надежное охранение. Внутри находятся пока еще не опасные прессованные таблетки из урана.

Преимущества и недостатки ядерного топлива

В числе достоинств энергоносителя следующие:

  • Высокая концентрация активного вещества, компактность по сравнению с другими видами топлива;
  • Минимальное количество выбросов;
  • Значимый энергетический ресурс;
  • Возможность обеспечивать ресурсами подвижные аппараты, где необходим внушительный запас хода;
  • Решает проблему генерации ресурсов в месте установки реакторов (атомных станций).
  • Не возобновляемый источник энергии;
  • Очень осторожное обращение;
  • Негативное отношение общественности. ввиду того, что каждый знает, из чего состоит ядерное топливо и практику аварий на АЭС.

Принцип работы АЭС

Основным продуктом на выходе из электростанций, работающим на ядерных видах топлива, является электроэнергия. Следуя концепции безопасности и последовательности получения необходимого ресурса, генеральный процесс включает три этапа преобразования:

  • Цепная ядерная реакция с обильным выделением тепла;
  • Тепловая энергия преобразуется в механическую;
  • Механическая генерирует электрическую.

При цепной реакции происходит сильный разогрев ближайшего теплоносителя – воды, которая на время откачивается от стенок реактора (из первого контура во второй) для получения пара. Последний вид энергии под давлением и за счет разности давлений начинает активно вращать турбину, которая находится в жесткой сцепке с электрическим генератором. Существует проблематика охлаждения воды в контурах реактора, для этого применяется система градирен или используются ближайшие водоемы.

Атомная электростанция

Учитывая негативную практику аварий, в настоящее время на современных АЭС большое внимание уделяется функционированию защитных систем: локальных, обеспечивающих и управляющих. Генеральная концепция состоит в строго дозированной подаче ядерного топлива внутрь реактора.

Топливо в активной зоне реактора

В центральной части реактора непосредственно применяется ядерное топливо на атомных электростанциях. Здесь осуществляется управление взаимодействием изотопов или делением атомов. Обычно такие установки работают на смеси веществ с массами U-235 и U-238. Ведущей характеристикой загрузки является исходная концентрация урана, которая напрямую зависит от типа используемой установки.

Непосредственно внутри реактора активные вещества находятся в виде топливных композиций, заключаются в надежную герметичную оболочку, образуют ТВЭЛ.

ТВС после атомной станции

Тепловыделяющие сборки по завершению жизненного цикла или выгорания подлежат извлечению. После этого облученный уран уходит на выдержку, затем на переработку или захоронение.

В России и ряде других стран соблюдается концепция замкнутого топливного цикла. При таком подходе ядерное топливо продолжает существовать в природе, образуя вокруг себя умеренный радиационный фон. Например, из отработанного урана можно получать плутоний, который используется в дальнейшем для производства инновационных видов топлива.

Атомные электростанции

Атомные электростанции в России и в мире, принцип работы АЭС

Атомные электростанции в России и в мире, принцип работы АЭС

Атомная электростанция или сокращенно АЭС это комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.

Во второй половине 40-х годов, перед тем, как были закончены работы по созданию первой атомной бомбы которая была испытана 29 августа 1949 года, советские ученые приступили к разработке первых проектов мирного использования атомной энергии. Основным направлением проектов была электроэнергетика.

В мае 1950 года в районе поселка Обнинское Калужской области, начато строительство первой в мире АЭС.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США.

Для проверки работоспособности генератор был подключен к четырем лампам накаливания, ни то не ожидал, что лампы зажгутся.

С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первые Атомные электростанции

Строительство первой в мире атомная электростанция мощностью 5 МВт было закончено в 1954 году и 27 июня 1954 года она была запущена, так начала работать Обнинская АЭС.

Обнинская АЭС

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт.

Строительство Белоярской промышленной АЭС началось так же в 1958 году. 26 апреля 1964 генератор 1-й очереди дал ток потребителям.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969.

В 1973 г. запущена Ленинградская АЭС.

В других странах первая АЭС промышленного назначения была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания) ее мощность составляла 46 МВт.

В 1957 году вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами в производстве ядерной электроэнергии являются:

  1. США (788,6 млрд кВт•ч/год),
  2. Франция(426,8 млрд кВт•ч/год),
  3. Япония (273,8 млрд кВт•ч/год),
  4. Германия (158,4 млрд кВт•ч/год),
  5. Россия (154,7 млрдкВт•ч/год).

Классификация АЭС

Атомные электростанции можно классифицировать по нескольким направлениям:

По типу реакторов
  • Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятностипоглощения нейтрона ядрами атомов топлива
  • Реакторы на лёгкой воде
  • Реакторы на тяжёлой воде
  • Реакторы на быстрых нейтронах
  • Субкритические реакторы, использующие внешние источники нейтронов
  • Термоядерные реакторы
По виду отпускаемой энергии
  1. Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии
  2. Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

На атомных станциях, расположенных на территории России имеются теплофикационные установки, они необходимы для подогрева сетевой воды.

Виды топлива используемого на Атомных электростанциях

На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.

Во-первых, его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.

ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри

ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.

Во-вторых, использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.

Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:

  • открытым способом в карьерах
  • закрытым в шахтах
  • подземным выщелачиванием, при помощи бурения шахт.

Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.

Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.

В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.

В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

Подготовка урана

В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.

Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.

Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.

В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.

Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.

Именно ТВС называются топливом АЭС.

Как происходит переработка топлива АЭС

Спустя год использования урана в ядерных реакторах необходимо производить его замену.

Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение.

В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них делают свежее ядерное топливо.

Продукты распада урана и плутония направляются на изготовление источников ионизирующих излучений, их используют в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в печь для разогрева, из этой массы варится стекло, такое стекло находится в специальных хранилищах.

Топ-10 АЭС по мощности

Из остатков изготавливают стекло не для массового применения, стекло используется для хранения радиоактивных веществ.

Из стекла сложно выделить остатки радиоактивных элементов, которые могут навредить окружающей среде. Недавно появился новый способ утилизации радиоактивных отходов.

Быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива.

По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Помимо этого, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного.

Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого не применялись.

Принцип работы АЭС

Принцип работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР).

Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура.

Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы.

На выходе из турбин, пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.

Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ.

Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор).

Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) — два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Устройство ядерного реактора

В ядерном реакторе используется процесс деления ядер, при котором тяжелое ядро распадается на два более мелких фрагмента.

Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны.

Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее.

Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией.

При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и атомной электростанции таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции.

Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны.

Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

Основные элементы ядерного реактора

ядерный реактор

  • Ядерное топливо: обогащённый уран, изотопы урана и плутония. Чаще всего используется уран 235;
  • Теплоноситель для вывода энергии, которая образуется при работе реактора: вода, жидкий натрий и др.;
  • Регулирующие стержни;
  • Замедлитель нейтронов;
  • Оболочка для защиты от излучения.

Принцип действия ядерного реактора

В активной зоне реактора располагаются тепловыделяющие элементы (ТВЭЛ) – ядерное топливо.

Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель.

ТВЭЛы регулируют мощность реактора. Ядерная реакция возможна только при определённой (критической) массе топливного стержня.

Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.

Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами.

В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию, в виде гамма излучения и тепла.

Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается.

Это и есть цепная реакция — принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.

Таким образом, в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур).

Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию.

Преобразование ядерной энергии в электрическую можно представить схематично:
  • Внутренняя энергия уранового ядра
  • Кинетическая энергия осколков распавшихся ядер и освободившихся нейтронов
  • Внутренняя энергия воды и пара
  • Кинетическая энергия воды и пара
  • Кинетическая энергия роторов турбины и генератора
  • Электрическая энергия

Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов.

Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора.

Далее, вокруг отражателя устанавливается теплоизоляция. Поверх теплоизоляции находится защитная оболочка из бетона, которая задерживает радиоактивные вещества и не пропускает их в окружающее пространство.

Атомная станция теплоснабжения

Первые проекты таких станций были разработаны ещё в 70-е годы XXвека, но из-за наступивших в конце 80-х годов экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.

Исключение составляют Билибинская АЭС небольшой мощности, она снабжает теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (они занимаются производством плутония):

  • Сибирская АЭС, поставляющая тепло в Северск и Томск.
  • Реактор АДЭ-2 на Красноярском горно-химического комбинате, с 1964 г.поставляющий тепловую и электрическую энергию для города Железногорска.

На момент кризиса было начато строительство нескольких АСТ на базе реакторов, аналогичных ВВЭР-1000:

  • Воронежская АСТ
  • Горьковская АСТ
  • Ивановская АСТ (только планировалась)

Строительство этих АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В 2006 году концерн «Росэнергоатом» планировал построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах.

Имеется проект, строительства необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем»

Недостатки и преимущества АЭС

Любой инженерный проект имеет свои положительные и отрицательные стороны.

Положительные стороны атомных станций:
  • Отсутствие вредных выбросов;
  • Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (золаугольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения);
  • Небольшой объём используемого топлива и возможность его повторного использования после переработки;
  • Высокая мощность: 1000—1600 МВт на энергоблок;
  • Низкая себестоимость энергии, особенно тепловой.
Отрицательные стороны атомных станций:
  • Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
  • Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;
  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Научные разработки в сфере атомной энергетики

Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.

Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.

Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.

Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.

Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.

США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе — и индивидуальных домов.

Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

Производство водорода

Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.

INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.

Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.

Термоядерная энергетика

Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.

Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.

Что такое КПД

Коэффициент полезного действия (КПД) — характеристика эффективности системы или устройства в отношении преобразования или передачи энергии.

Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой. КПД является безразмерной величиной и часто измеряется в процентах.

КПД атомной электростанции

Наиболее высокий КПД (92-95%) – достоинство гидроэлектростанций. На них генерируется 14% мировой электро мощности.

Однако, этот тип станций наиболее требователен к месту возведения и, как показала практика, весьма чувствителен к соблюдению правил эксплуатации.

Пример событий на Саяно-Шушенской ГЭС показал, к каким трагическим последствиям может привести пренебрежение правилами эксплуатации в стремлении снизить эксплуатационные издержки.

Высоким КПД (80%) обладают АЭС. Их доля в мировом производстве электроэнергии составляет 22%.

Но АЭС требуют повышенного внимания к проблеме безопасности, как на стадии проектирования, так и при строительстве, и во время эксплуатации.

Малейшие отступления от строгих регламентов обеспечения безопасности для АЭС, чревато фатальными последствиями для всего человечества.

Пример тому авария на АЭС в Чернобыле и японское землетрясение в марте 2011 года, приведшее к аварии на АЭС, расположенной на острове Хонсю, в городе Окума, префектуры Фукусима.

Кроме непосредственной опасности в случае аварии, использование АЭС сопровождается проблемами безопасности, связанными с утилизацией или захоронением отработанного ядерного топлива.

КПД тепловых электростанций не превышает 34%, на них вырабатывается до шестидесяти процентов мировой электроэнергии.

Кроме электроэнергии на тепловых электростанциях производится тепловая энергия, которая в виде горячего пара или горячей воды может передаваться потребителям на расстояние в 20-25 километров. Такие станции называют ТЭЦ (Тепло Электро Централь).

ТЕС и ТЕЦ не дорогие в строительстве, но если не будут приняты специальные меры, они неблагоприятно воздействуют на окружающую среду.

Неблагоприятное воздействие на окружающую среду зависит от того, какое топливо применяется в тепловых агрегатах.

Наиболее вредны продукты сгорания угля и тяжёлых нефтепродуктов, природный газ менее агрессивен.

ТЭС являются основными источниками электроэнергии на территории России, США и большинства стран Европы.

Однако, есть исключения, например, в Норвегии электроэнергия вырабатывается в основном на ГЭС, а во Франции 70% электроэнергии генерируется на атомных станциях.

Первая электростанция в мире

Первая электростанция в мире фото

Самая первая центральная электростанция, the Pearl Street, была сдана в эксплуатацию 4 сентября 1882 года в Нью-Йорке.

Станция была построена при поддержке Edison Illuminating Company, которую возглавлял Томас Эдисон.

На ней были установлены несколько генераторов Эдисона общей мощностью свыше 500 кВт.

Станция снабжала электроэнергией целый район Нью-Йорка площадью около 2,5 квадратных километров.

Станция сгорела дотла в 1890году, сохранилась только одна динамо-машина, которая сейчас находится в музее the Greenfield Village, Мичиган.

30 сентября 1882 года заработала первая гидроэлектростанция the Vulcan Street в штате Висконсин. Автором проекта был Г.Д. Роджерс, глава компании the Appleton Paper & Pulp.

На станции был установлен генератор с мощностью приблизительно 12.5 кВт. Электричества хватало на дом Роджерса и на две его бумажные фабрики.

Электростанция Gloucester Road. Брайтон был одним из первых городов в Великобритании с непрерывным электроснабжением.

В 1882 году Роберт Хаммонд основал компанию Hammond Electric Light , а 27 февраля 1882 года он открыл электростанцию Gloucester Road.

Станция состояла из динамо щетки, которая использовалась, чтобы привести в действие шестнадцать дуговых ламп.

В 1885 году электростанция Gloucester была куплена компанией Brighton Electric Light. Позже на этой территории была построена новая станция, состоящая из трех динамо щеток с 40 лампами.

Электростанция Зимнего дворца

В 1886 году в одном из внутренних дворов Нового Эрмитажа была построена электростанция.

Автором проекта выступил техник дворцового управления Василий Леонтьевич Пашков.

Электростанция была крупнейшей во всей Европе, не только на момент постройки, но и на протяжении последующих 15 лет.

Электростанция в Зимнем дворце

Ранее для освещения Зимнего дворца использовались свечи, с 1861 года начали использовать газовые светильники. Так как электролампы имели большее преимущество, были начаты разработки по внедрению электроосвещения.

Прежде чем здание было полностью переведено на электричество, освещении при помощи ламп использовали для освещения дворцовых зал во время рождественских и новогодних праздников 1885 года.

9 ноября 1885 года, проект строительства «фабрики электричества» был одобрен императором Александром III. Проект включал электрификацию Зимнего дворца, зданий Эрмитажа, дворовой и прилегающей территории в течение трех лет до 1888 года.

Была необходимость исключить возможность вибрации здания от работы паровых машин, размещение электростанции предусмотрели в отдельном павильоне из стекла и металла. Его разместили во втором дворе Эрмитажа, с тех пор называемом «Электрическим».

Как выглядела станция

Здание станции занимало площадь 630 м², состояло из машинного отделения с 6 котлами, 4 паровыми машинами и 2 локомобилями и помещения с 36 электрическими динамо-машинами. Общая мощность достигала 445 л.с.

Первыми осветили часть парадных помещений:
  • Аванзал
  • Петровский зал
  • Большой фельдмаршальский зал
  • Гербовый зал
  • Георгиевский зал
Было предложено три режима освещения:
  • полное (праздничное) включать пять раз в году (4888 ламп накаливания и 10 свечей Яблочкова);
  • рабочее – 230 ламп накаливания;
  • дежурное (ночное) – 304 лампы накаливания.
    Станция потребляла около 30 тыс. пудов (520 т) угля в год.

Крупные ТЭС, АЭС и ГЭС России

Крупнейшие ТЭС, АЭС и ГЭС России карта

Крупнейшие электростанции России по федеральным округам:

Центральный:
  • Костромская ГРЭС, которая работает на мазуте;
  • Рязанская станция, основным топливом для которой является уголь;
  • Конаковская, которая может работать на газе и мазуте;
Уральский:
  • Сургутская 1 и Сургутская 2. Станции, которые являются одними из самых крупных электростанций РФ. Обе они работают на природном газе;
  • Рефтинская, функционирующая на угле и являющаяся одной из крупнейших электростанций на Урале;
  • Троицкая, также работающая на угле;
  • Ириклинская, главным источником топлива для которой является мазут;
Приволжский:
  • Заинская ГРЭС, работающая на мазуте;
Сибирский ФО:
  • Назаровская ГРЭС, потребляющая в качестве топлива мазут;
Южный:
  • Ставропольская, которая также может работать на совмещенном топливе в виде газа и мазута;
Северо-Западный:
  • Киришская на мазуте.

Список электростанций России, которые вырабатывают энергию при помощи воды, расположены на территории Ангаро-Енисейского каскада:

Енисей:
  • Саяно-Шушенская
  • Красноярская ГЭС;
Ангара:
  • Иркутская
  • Братская
  • Усть-Илимская.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС[38].

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Атомные электростанции США

АЭС Шиппингпорт с номинальной мощностью 60 МВт, открыта в 1958 году в штате Пенсильвания. После 1965 года произошло интенсивное сооружение атомных электростанций по всей территории Штатов.

Основная часть атомных станций Америки была сооружена в дальнейшие после 1965 года 15 лет, до наступления первой серьезной аварии на АЭС на планете.

Если в качестве первой аварии вспоминается авария на Чернобыльской АЭС, то это не так.

Первая авария произошла в штате Пенсильвания на станции Три-Майл-Айленд 28 марта 1979 года.

Причиной аварии стали нарушения в системе охлаждения реактора и многочисленные ошибки обслуживающего персонала. В итоге расплавилось ядерное топливо. На устранение последствий аварии ушло около одного миллиарда долларов, процесс ликвидации занял 14 лет.

Атомные электростанции США карта

После авария правительство Соединенных Штатов Америки откорректировало условия безопасности функционирования всех АЭС в государстве.

Это соответственно привело к продолжению периода строительства и значительному подорожанию объектов «мирного атома». Такие изменения затормозили развитие общей индустрии в США.

В конце двадцатого века в Соединенных Штатах было104 работающих реактора. На сегодняшний день США занимают первое место на земле по численности ядерных реакторов.

С начала 21 столетия в Америке было остановлено четыре реактора в 2013 году, и начато строительство ещё четырех.

Фактически на сегодняшний момент в США функционирует 100 реакторов на 62 атомных электростанциях, которыми производится 20% от всей энергии в государстве.

Последний сооруженный реактор в США был введен в эксплуатацию в 1996 году на электростанции Уотс-Бар.

Власти США в 2001 году приняли новое руководство по энергетической политике. В нее внесен вектор развития атомной энергетики, посредствам разработки новых видов реакторов, с более подходящим коэффициентом экономности, новых вариантов переработки отслужившего ядерного топлива.

В планах до 2020 года было сооружение нескольких десятков новых атомных реакторов, совокупной мощностью 50 000 МВт. Кроме того, достичь поднятия мощности уже имеющихся АЭС приблизительно на 10 000 МВт.

США — лидер по количеству атомных станций в мире

Благодаря внедрению данной программы, в Америке в 2013 году было начато строительство четырех новых реакторов – два из которых на АЭС Вогтль, а два других на Ви-Си Саммер.

Эти четыре реактора новейшего образца – АР-1000, производства Westinghouse.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *