Равноускоренное движение: формулы, примеры
Равноускоренное движение — это движение, при котором вектор ускорения не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту. Равномерное движение — частный случай равноускоренного движения с ускорением, равным нулю.
Рассмотрим случай свободного падения (тело брошено под уголом к горизонту) более подробно. Такое движение можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.
В любой точке траектории на тело действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.
Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y — равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.
Формулы для равноускоренного движения
Формула для скорости при равноускоренном движении:
Здесь v 0 — начальная скорость тела, a = c o n s t — ускорение.
Покажем на графике, что при равноускоренном движении зависимость v ( t ) имеет вид прямой линии.
Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.
a = v — v 0 t = B C A C
Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.
Для первого графика: v 0 = — 2 м с ; a = 0 , 5 м с 2 .
Для второго графика: v 0 = 3 м с ; a = — 1 3 м с 2 .
По данному графику можно также вычислить перемещение тела за время t . Как это сделать?
Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .
Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .
s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + ( v — v 0 ) 2 t .
Мы знаем, что v — v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:
s = v 0 t + a t 2 2
Для того, чтобы найти координату тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты в зависимости от времени выражает закон равноускоренного движения.
Закон равноускоренного движения
y = y 0 + v 0 t + a t 2 2 .
Еще одна распространенная задача кинематики, которая возникает при анализе равноускоренного движения — нахождение координаты при заданных значениях начальной и конечной скоростей и ускорения.
Исключая из записанных выше уравнений t и решая их, получаем:
s = v 2 — v 0 2 2 a .
По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:
v = v 0 2 + 2 a s .
При v 0 = 0 s = v 2 2 a и v = 2 a s
Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.
Как посчитать путь ускоряющегося тела не используя время
Существует формула, с помощью которой можно посчитать путь, пройденный телом, когда нам известны его начальная скорость, ускорение и конечная скорость.
Сокращенно эту формулу называют «путь без времени». Так ее называют потому, что в правой ее части время t движения отсутствует (рис. 1).
Формула пути без времени помогает упростить решение некоторых задач кинематики. Особенно, задач, части C.
Однако, не торопитесь на ЕГЭ записывать эту формулу в готовом виде. Сначала в решении задачи нужно записать вывод этой формулы. И только потом ее можно использовать.
Формулу выводят из выражений для равнопеременного движения. Сейчас я помогу вам вывести эту формулу с помощью нескольких простых шагов.
Выводим формулу пути без времени
Для определенности будем считать, что тело движется по прямой все быстрее и быстрее. То есть, скорость тела увеличивается, так как появляется ускорение.
В таком случае векторы ускорения и скорости тела будут сонаправленными (параллельными и направленными в одну и ту же сторону).
Сонаправленные или противоположно направленные векторы называют коллинеарными векторами. Прочитайте подробнее о коллинеарных векторах.
Чтобы вычислить путь тела, когда скорость его увеличивается, нужно использовать две формулы:
\( \large v_ <0>\left( \frac<\text<м>>
\( \large v \left( \frac<\text<м>>
\( \large a \left( \frac<\text<м>>
\( \large S \left( \text <м>\right)\) – путь, пройденный телом;
\(\large t \left( c \right)\) – время, за которое тело прошло этот путь.
В формуле для пути S присутствует время t. Получим из нее формулу для пути, в которой время будет отсутствовать.
- сначала получить выражение для времени t из уравнения для скорости;
- затем в формулу пути подставить полученное выражение вместо времени t.
Выражаем время из формулы для скорости
Выпишем формулу, связывающую начальную и конечную скорость тела:
\[ \large v = v_ <0>+ a \cdot t \]
Избавимся в правой части от начальной скорости, обозначенной символом \( v_<0>\). Для этого из обеих частей уравнения вычтем число \( v_<0>\). Получим такую запись:
\[ \large v — v_ <0>= a \cdot t \]
Теперь, чтобы справа в формуле оставалось только время «t», избавимся от ускорения «a». Для этого разделим обе части уравнения на «a»:
Это выражение нам пригодится для дальнейшего вывода формулы «путь без времени».
В формулу пути подставим выражение для времени
Запишем теперь формулу для пути S и полученную формулу для времени t, объединив их в систему:
В первом уравнении системы будем заменять символ t дробью из второго уравнения. Тогда система из двух уравнений превратится в единственное уравнение. И в этом уравнении не будет символа t времени:
Осталось теперь упростить полученное выражение. Будем производить упрощение по частям.
Упрощаем выражение, расположенное до знака «плюс» в правой части
Выпишем отдельно все, что располагается до знака «плюс» в правой части уравнения:
Умножим числитель дроби на число \(v_<0>\).
- сначала числитель обособим скобками;
- затем запишем число \(v_<0>\) перед скобками;
- а потом внесем это число внутрь скобок.
В числитель дроби, обособленный с помощью скобок помещаем число \(v_<0>\):
Теперь необходимо умножить скобку на число \(v_<0>\). На рисунке 2 указано, как правильно выражение в скобках умножить на число, стоящее за скобками.
Нужно к каждой скорости в скобках дописать число \(v_<0>\), умножая его на эти скорости. Получим такое выражение:
То есть, вместо первоначальной записи, мы получили такую запись:
Возводим в квадрат дробь
После знака «плюс» в правой части уравнения располагается дробь, которую нужно возвести в квадрат. Обратим внимание на эту дробь:
Правильно возвести дробь в степень поможет рисунок 3.
В результате возведения в квадрат дробь приобретет такой вид:
В числителе этой дроби находится выражение в скобках, которое нужно возвести в квадрат. И нам придется применить одну из формул сокращенного умножения. Запоминать формулы сокращенного умножения удобно в виде, приведенном на рисунке 4.
Используем для этого формулу сокращенного умножения, которая содержит знак «минус». Она называется «Квадрат разности». Тогда числитель дроби превратится в такую запись:
Теперь можем записать полученную дробь:
Упрощаем правую часть, записанную после знака «плюс»
Обратим внимание на все, что располагается в правой части уравнения после знака «плюс»:
Мы уже провели некоторые преобразования и можем теперь заменить дробь, возводимую в квадрат более подробной записью:
Примечание: Когда мы умножаем одну дробь на другую, то можем менять местами знаменатели этих дробей.
Итак, поменяем местами знаменатели дробей:
Теперь видно, что мы можем сократить ускорение и еще немного упростить выражение:
А перемножив числители и знаменатели двух дробей, получим такую запись:
Теперь, первоначальную дробь можно заменить дробью, полученной в ходе преобразований:
Мы закончили преобразовывать выражения, содержащиеся в правой части уравнения после знака «плюс».
Теперь, осталось сложить две дроби в правой части – дробь, записанную до знака «плюс» с дробью, записанной после знака «плюс». А чтобы эти дроби можно было сложить, нужно будет привести их к общему знаменателю.
Приводим к общему знаменателю дроби в правой части уравнения
Вернемся еще раз к первоначальному уравнению:
Заменим правую часть этого уравнения выражениями, которые мы получили:
Сравним знаменатели дробей.
Первая дробь обладает знаменателем «a», а вторая – «2a». Выберем число «2a» в качестве общего знаменателя обеих дробей.
Чтобы первую дробь привести к общему знаменателю «2a», умножим ее на единицу:
Примечания:
- Нам известно, что если какое-либо число умножить на единицу, то после умножения это число не изменится. Значит, если какое-либо выражение умножить на единицу, то полученное выражение останется равным самому себе. На единицу можно умножать все, что угодно – дроби, выражения в скобках и т. п.
- Математики часто применяют прием умножения на единицу. А после этого единицу записывают в виде некоторой дроби. При этом используют правило: Единица – это дробь, у которой числитель и знаменатель равны (одинаковые).
Так как снизу в первой дроби не хватает числа 2, то единицу представим в виде дроби 2/2:
Получим такую дробь:
Поместим ее в выражение для пути:
Дроби с одинаковыми знаменателями складываем
Теперь знаменатели дробей равны. И мы можем записать эти дроби под общим знаменателем:
Раскроем скобки в числителе полученного выражения:
Примечание: Обратим внимание на то, что в числителе дважды встречается член \(2v_ <0>v\), обладающий различными знаками. В начале числителя – знаком «плюс», а в конце числителя – знаком «минус». Это означает, что из числа \(2v_<0>v\) вычитается такое же число \(2vv_<0>\). В конце концов, это число покидает нашу запись и, она упрощается:
Перепишем выражение, записав все, что содержит знак «плюс» в начало числителя:
Вычтем подобные члены, содержащие \( v^<2>_<0>\):
В результате получим короткую запись. Именно о ней говорят, когда имеется ввиду формула пути без времени:
Примечания:
- Это формула, с помощью которой можно рассчитать путь тела, когда известны его начальная и конечная скорость, а, так же, ускорение.
- Видно, что время t в правой части этого выражения отсутствует.
- Мы выводили эту формулу для случая, когда тело увеличивало скорость.
Как выглядит формула пути без времени, когда скорость тела уменьшается
Если скорость тела будет уменьшаться, формулу для вычисления пути нужно будет переписать в таком виде:
Получить такую формулу можно, проделав все шаги, описанные выше. Попробуйте самостоятельно ее получить. Выводить формулу нужно, используя формулы для уменьшающейся скорости:
Выводы
Пусть нам известны начальная и конечная скорость тела и его ускорение. Тогда путь, пройденный телом, можно рассчитать так:
Равноускоренное движение и ЗСИ.
Равноускоренное движение
В общем случае равноускоренным движением называют такое движение, при котором вектор ускорения a остается неизменным по модулю и направлению. Примером такого движения является движение камня, брошенного под некоторым углом к горизонту (без учета сопротивления воздуха).
В любой точке траектории ускорение камня равно ускорению свободного падения . g
Для кинематического описания движения камня систему координат удобно выбрать так, чтобы одна из осей, например ось OY, была направлена параллельно вектору ускорения. Тогда криволинейное движение камня можно представить как сумму двух движений – прямолинейного равноускоренного движения вдоль оси OY и равномерного прямолинейного движения в перпендикулярном направлении, т. е. вдоль оси OX
Таким образом, изучение равноускоренного движения сводится к изучению прямолинейного равноускоренного движения.
В случае прямолинейного движения векторы скорости v и ускорения a направлены вдоль прямой движения. Поэтому скорость υ и ускорение a в проекциях на направление движения можно рассматривать как алгебраические величины.
При равноускоренном прямолинейном движении скорость тела определяется формулой
V = V0 + at
В этой формуле υ0 – скорость тела при t = 0 (начальная скорость), a = const – ускорение.
Для нахождения координаты y тела в любой момент времени t нужно к начальной координате y0 прибавить перемещение за время t:
Y = Y 0 + V0 t + at 2 /2
Это выражение называют законом равноускоренного движения.
S = V0 t + at 2 / 2 (1)
При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ0 и конечной υ скоростей и ускорения a. Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t. Результат записывается в виде
S = (V 2 – V0 2 ) 1/2 /2a (2)
Из этой формулы можно получить выражение для определения конечной скорости υ тела, если известны начальная скорость υ0, ускорение a и перемещение s:
V = (V0 2 + 2aS) 1/2 (3)
Если начальная скорость υ0 равна нулю, эти формулы принимают вид
S = V 2 /2a, V = (2aS) 1/2 (4)
Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ0,υ, s, a, y0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения.
________________________________________
Импульс силы
Импульс тела
Закон сохранения импульса
________________________________________
Импульс силы.
Покой и движение тела относительны, скорость движения тела зависит от выбора системы отсчета. По второму закону Ньютона независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движения может происходить только при действии силы, т. е. в результате взаимодействия с другими телами.
Если на тело массой m в течение времени t действует сила F и скорость его движения изменяется от v0 до до v, то ускорение a движения тела равно
a = (v – v0)/t
На основании второго закона Ньютона для силы можно написать выражение
F = ma = m(v – v1)/t. (16.1)
Из равенства (16.1) следует
Ft = mv – mv0 (16.2)
Физическая величина, равная произведению силы F на время t ее действия, называется импульсом силы.
Импульс тела.
Выражение (16.2) показывает, что имеется физическая величина, одинаково изменяющаяся у всех тел под действием одинаковых сил, если время действия силы одинаково. Эта физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела или количеством движения.
Изменение импульса тела равно импульсу силы, вызывающей это изменение. Импульс тела является количественной характеристикой поступательного движения тел. За единицу импульса в СИ принят импульс тела массой 1 кг, движущегося поступательно со скоростью 1 м/с. Единицей импульса является килограмм-метр в секунду (кг*м/с).
Закон сохранения импульса .
Выясним, как изменяются импульсы двух тел при их взаимодействии.
Обозначим скорости тел массами m 1 и m 2 до взаимодействия через v 1 и v 2 , а после взаимодействия — через v 1 1 и v2 1 .
По третьему закону Ньютона силы, действующие на тела при их взаимодействии, равны по модулю и противоположны по направлению; поэтому их можно обозначить F и -F.
Для изменений импульсов тел при их взаимодействии на основании равенства (16.2) можно записать
Ft = m1 v1 1 – m1 v1
-Ft = m2 v2 1 – m2 v2
где t — время взаимодействия тел. Из этих выражений получаем
m1 v1 + m2 v2 = m1 v1 1 + m2 v2 1 (16.3)
Таким образом, векторная сумма импульсов двух тел до взаимодействия равна векторной сумме их импульсов после взаимодействия.
Экспериментальные исследования взаимодействий различных тел — от планет и звезд до атомов и элементарных частиц — показали, что в любой системе взаимодействующих между собой тел при отсутствии действия сил со стороны других тел, не входящих в систему, или равенстве нулю суммы действующих сил геометрическая сумма импульсов тел остается неизменной.
Система тел, не взаимодействующих с другими телами, не входящими в эту систему, называется замкнутой системой.
В замкнутой системе геометрическая сумма импульсов тел остается постоянной при любых взаимодействиях тел этой системы между собой.
Этот фундаментальный закон природы называется законом сохранения импульса.
Необходимым условием применимости закона сохранения импульса к системе взаимодействующих тел является использование инерциальной системы отсчета.
(по материалам пособия "Физика — справочные материалы" Кабардин О.Ф.)
Далее мои, Николая Чичигина, комментарии. Как указано в статье про равноускоренное движение:
При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ0 и конечной υ скоростей и ускорения a. Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t. Результат записывается в виде
S = (V 2 – V0 2 ) 1/2 /2a (2)
Из этой формулы можно получить выражение для определения конечной скорости υ тела, если известны начальная скорость υ0, ускорение a и перемещение s:
V = (V0 2 + 2aS) 1/2 (3)
Если начальная скорость υ0 равна нулю, эти формулы принимают вид
S = V 2 /2a, V = (2aS) 1/2 (4)
Т.е. выражение (3), исходя из выражения (4), можно представить в виде
А отсюда следует, что при равноускоренном движении результирующая при сложении скоростей равна корню квадратному из суммы квадратов слагаемых скоростей.
Почему данный факт не учитывался при составлении ЗСИ, я уже ранее объяснял.
Почему при составлении ЗСИ нелинейную зависимость значений скоростей от перемещения заменили на линейную зависимость (не соответствующую действительности) значений скоростей от перемещения также понятно.
Почему мои "оппоненты" не желают "понять" и задуматься о правомерности ЗСИ, надеюсь, также все уже давно поняли.
Формула равноускоренного движения
Движение, при котором за любые равные промежутки времени скорость меняется на одну величину, называют равнопеременным. Если скорость при этом увеличивается, то такое движение носит название равноускоренного движения.
Равноускоренное движение можно определить еще как движение, при котором модуль касательного ускорения ($a_<\tau>=$ const $>0$).
Основные кинематические величины при равноускоренном движении
где v2 – конечная скорость, v1— начальнаяскорость движения, t–время движения.
Скорость в любой момент равноускоренного прямолинейного движения можно найти как:
где $\bar
Уравнение для координаты материальной при равноускоренном движении записывают как:
где v0x – проекция начальной скорости на ось X, ax – проекция ускорения на ось X.
Перемещение при равноускоренном движении является функцией вида:
где $\bar_0$ – перемещение в начальный момент времени. Или $\bar$ еще можно представить как:
Примеры решения задач
Задание. Тело было брошено вертикально вверх. Оно возвратилось на землю через промежуток времени, равный t. Какой была начальная скорость тела, и на какую высоту оно поднялось?
Решение. Тело в поле тяжести Земли движется с постоянным ускорением равным ускорению свободного падения, на рис.1 оно направлено вниз.
В качестве основы для решения задачи используем формулу для перемещения при равноускоренном движении:
Все движение происходит только по оси Y, поэтому проекция выражения (1.1) примет вид:
Формула для скорости при равноускоренном движении записывается как:
В проекции на ось она преобразуется к виду:
Точке максимального подъема мы имеем y(t1)=h и v(t1)=0 (t1 — время поъема), тогда выражения (1.2) и (1.4) перепишем как: