Physical presence interface что это
Перейти к содержимому

Physical presence interface что это

TPM fundamentals

This article for the IT professional provides a description of the components of the Trusted Platform Module (TPM 1.2 and TPM 2.0) and explains how they are used to mitigate dictionary attacks.

A Trusted Platform Module (TPM) is a microchip designed to provide basic security-related functions, primarily involving encryption keys. The TPM is installed on the motherboard of a computer, and it communicates with the rest of the system by using a hardware bus.

Computers that incorporate a TPM can create cryptographic keys and encrypt them so that they can only be decrypted by the TPM. This process, often called wrapping or binding a key, can help protect the key from disclosure. Each TPM has a master wrapping key, called the storage root key, which is stored within the TPM itself. The private portion of a storage root key or endorsement key that is created in a TPM is never exposed to any other component, software, process, or user.

You can specify whether encryption keys that are created by the TPM can be migrated or not. If you specify that they can be migrated, the public and private portions of the key can be exposed to other components, software, processes, or users. If you specify that encryption keys cannot be migrated, the private portion of the key is never exposed outside the TPM.

Computers that incorporate a TPM can also create a key that is wrapped and tied to certain platform measurements. This type of key can be unwrapped only when those platform measurements have the same values that they had when the key was created. This process is referred to as “sealing the key to the TPM.” Decrypting the key is called unsealing. The TPM can also seal and unseal data that is generated outside the TPM. With this sealed key and software, such as BitLocker Drive Encryption, you can lock data until specific hardware or software conditions are met.

With a TPM, private portions of key pairs are kept separate from the memory that is controlled by the operating system. Keys can be sealed to the TPM, and certain assurances about the state of a system (assurances that define the trustworthiness of a system) can be made before the keys are unsealed and released for use. The TPM uses its own internal firmware and logic circuits to process instructions. Hence, it doesn’t rely on the operating system and it isn’t exposed to vulnerabilities that might exist in the operating system or application software.

For info about which versions of Windows support which versions of the TPM, see Trusted Platform Module technology overview. The features that are available in the versions are defined in specifications by the Trusted Computing Group (TCG). For more info, see the Trusted Platform Module page on the Trusted Computing Group website: Trusted Platform Module.

The following sections provide an overview of the technologies that support the TPM:

The following topic describes the TPM Services that can be controlled centrally by using Group Policy settings: TPM Group Policy Settings.

Measured Boot with support for attestation

The Measured Boot feature provides antimalware software with a trusted (resistant to spoofing and tampering) log of all boot components. Antimalware software can use the log to determine whether components that ran before it are trustworthy versus infected with malware. It can also send the Measured Boot logs to a remote server for evaluation. The remote server can start remediation actions by interacting with software on the client or through out-of-band mechanisms, as appropriate.

TPM-based Virtual Smart Card

The Virtual Smart Card emulates the functionality of traditional smart cards. Virtual Smart Cards use the TPM chip that is available on an organization’s computers, rather than using a separate physical smart card and reader. This greatly reduces the management and deployment cost of smart cards in an enterprise. To the end user, the Virtual Smart Card is always available on the computer. If a user needs to use more than one computer, a Virtual Smart Card must be issued to the user for each computer. A computer that is shared among multiple users can host multiple Virtual Smart Cards, one for each user.

TPM-based certificate storage

The TPM protects certificates and RSA keys. The TPM key storage provider (KSP) provides easy and convenient use of the TPM as a way of strongly protecting private keys. The TPM KSP generates keys when an organization enrolls for certificates. The KSP is managed by templates in the UI. The TPM also protects certificates that are imported from an outside source. TPM-based certificates are standard certificates. The certificate can never leave the TPM from which the keys are generated. The TPM can now be used for crypto-operations through Cryptography API: Next Generation (CNG). For more info, see Cryptography API: Next Generation.

TPM Cmdlets

You can manage the TPM using Windows PowerShell. For details, see TPM Cmdlets in Windows PowerShell.

Physical presence interface

For TPM 1.2, the TCG specifications for TPMs require physical presence (typically, pressing a key) for turning on the TPM, turning it off, or clearing it. These actions typically cannot be automated with scripts or other automation tools unless the individual OEM supplies them.

TPM 1.2 states and initialization

TPM 1.2 has multiple possible states. Windows automatically initializes the TPM, which brings it to an enabled, activated, and owned state.

Endorsement keys

A trusted application can use TPM only if the TPM contains an endorsement key, which is an RSA key pair. The private half of the key pair is held inside the TPM and it is never revealed or accessible outside the TPM.

Key attestation

TPM key attestation allows a certification authority to verify that a private key is protected by a TPM and that the TPM is one that the certification authority trusts. Endorsement keys proven valid are used to bind the user identity to a device. The user certificate with a TPM attested key provides higher security assurance backed up by the non-exportability, anti-hammering, and isolation of keys provided by a TPM.

Anti-hammering

When a TPM processes a command, it does so in a protected environment, for example, a dedicated microcontroller on a discrete chip or a special hardware-protected mode on the main CPU. A TPM is used to create a cryptographic key that is not disclosed outside the TPM. It is used in the TPM after the correct authorization value is provided.

TPMs have anti-hammering protection that is designed to prevent brute force attacks, or more complex dictionary attacks, that attempt to determine authorization values for using a key. The basic approach is for the TPM to allow only a limited number of authorization failures before it prevents more attempts to use keys and locks. Providing a failure count for individual keys is not technically practical, so TPMs have a global lockout when too many authorization failures occur.

Because many entities can use the TPM, a single authorization success cannot reset the TPM’s anti-hammering protection. This prevents an attacker from creating a key with a known authorization value and then using it to reset the TPM’s protection. TPMs are designed to forget about authorization failures after a period of time so the TPM does not enter a lockout state unnecessarily. A TPM owner password can be used to reset the TPM’s lockout logic.

TPM 2.0 anti-hammering

TPM 2.0 has well defined anti-hammering behavior. This is in contrast to TPM 1.2 for which the anti-hammering protection was implemented by the manufacturer and the logic varied widely throughout the industry.

For systems with TPM 2.0, the TPM is configured by Windows to lock after 32 authorization failures and to forget one authorization failure every 10 minutes. This means that a user could quickly attempt to use a key with the wrong authorization value 32 times. For each of the 32 attempts, the TPM records if the authorization value was correct or not. This inadvertently causes the TPM to enter a locked state after 32 failed attempts.

Attempts to use a key with an authorization value for the next 10 minutes would not return success or failure; instead the response indicates that the TPM is locked. After 10 minutes, one authorization failure is forgotten and the number of authorization failures remembered by the TPM drops to 31, so the TPM leaves the locked state and returns to normal operation. With the correct authorization value, keys could be used normally if no authorization failures occur during the next 10 minutes. If a period of 320 minutes elapses with no authorization failures, the TPM does not remember any authorization failures, and 32 failed attempts could occur again.

Windows 8 Certification does not require TPM 2.0 systems to forget about authorization failures when the system is fully powered off or when the system has hibernated. Windows does require that authorization failures are forgotten when the system is running normally, in a sleep mode, or in low power states other than off. If a Windows system with TPM 2.0 is locked, the TPM leaves lockout mode if the system is left on for 10 minutes.

The anti-hammering protection for TPM 2.0 can be fully reset immediately by sending a reset lockout command to the TPM and providing the TPM owner password. By default, Windows automatically provisions TPM 2.0 and stores the TPM owner password for use by system administrators.

In some enterprise situations, the TPM owner authorization value is configured to be stored centrally in Active Directory, and it is not stored on the local system. An administrator can launch the TPM MMC and choose to reset the TPM lockout time. If the TPM owner password is stored locally, it is used to reset the lockout time. If the TPM owner password is not available on the local system, the administrator needs to provide it. If an administrator attempts to reset the TPM lockout state with the wrong TPM owner password, the TPM does not allow another attempt to reset the lockout state for 24 hours.

TPM 2.0 allows some keys to be created without an authorization value associated with them. These keys can be used when the TPM is locked. For example, BitLocker with a default TPM-only configuration is able to use a key in the TPM to start Windows, even when the TPM is locked.

Rationale behind the defaults

Originally, BitLocker allowed from 4 to 20 characters for a PIN. Windows Hello has its own PIN for logon, which can be 4 to 127 characters. Both BitLocker and Windows Hello use the TPM to prevent PIN brute-force attacks.

Windows 10, version 1607 and earlier used Dictionary Attack Prevention parameters. The Dictionary Attack Prevention Parameters provide a way to balance security needs with usability. For example, when BitLocker is used with a TPM + PIN configuration, the number of PIN guesses is limited over time. A TPM 2.0 in this example could be configured to allow only 32 PIN guesses immediately, and then only one more guess every two hours. This totals a maximum of about 4415 guesses per year. If the PIN is 4 digits, all 9999 possible PIN combinations could be attempted in a little over two years.

Beginning with Windows 10, version 1703, the minimum length for the BitLocker PIN was increased to 6 characters to better align with other Windows features that leverage TPM 2.0, including Windows Hello. Increasing the PIN length requires a greater number of guesses for an attacker. Therefore, the lockout duration between each guess was shortened to allow legitimate users to retry a failed attempt sooner while maintaining a similar level of protection. In case the legacy parameters for lockout threshold and recovery time need to be used, make sure that GPO is enabled and configure the system to use legacy Dictionary Attack Prevention Parameters setting for TPM 2.0.

TPM-based smart cards

The Windows TPM-based smart card, which is a virtual smart card, can be configured to allow sign in to the system. In contrast with physical smart cards, the sign-in process uses a TPM-based key with an authorization value. The following list shows the advantages of virtual smart cards:

Physical smart cards can enforce lockout for only the physical smart card PIN, and they can reset the lockout after the correct PIN is entered. With a virtual smart card, the TPM’s anti-hammering protection is not reset after a successful authentication. The allowed number of authorization failures before the TPM enters lockout includes many factors.

Hardware manufacturers and software developers have the option to use the security features of the TPM to meet their requirements.

The intent of selecting 32 failures as the lock-out threshold is so users rarely lock the TPM (even when learning to type new passwords or if they frequently lock and unlock their computers). If users lock the TPM, they must to wait 10 minutes or use some other credential to sign in, such as a user name and password.

Physical presence interface что это

NEW ASUS RAMPAGE VI EXTREME BIOS 3501 Add Trust Computing Management Menu.
Welcome to Windows 11 Official support ERA of ASUS support mobos.

ASUS also update TPM Physical Presence Spec Version from 1.2 to 1.3 that required by Windows 11.

The New TPM Physical Presence Spec Version 1.3 reconized by Windows 11 Security Processor section.

Running great on lastest build of Windows 11.

For more information checking ASUS Windows 11 support mobo below link
https://www.asus.com/us/support/FAQ/1046215/

Which board?
Didnt need any BIOS update on my R6EE. Just had to enable it.

The picture above was taken on my RAMPAGE VI EXTREME mate. For ASUS motherboards that support Windows 11 you must see the link above. 😎

Microsoft Windows 11 Insider Preview Build 22000.132
Microsoft Office Insider Preview Build 14405.20002
Microsoft EDGE Insider Preview Build 92.0.902.73
Running great on new ASUS Windows 11 support BIOS.

The New Windows 11 Insider Preview Build 22000.132 OS kernel optimized for
Skylake X lastest Intel microcode 020006B06 very well.

TIPS :: For everyone who use SAMSUNG ODYSSEY G9 / G9 NEO
NVIDIA GAME READY 471.68 WHQL
@Manual@NVIDIA and his team fixing HDR Enable on Windows 11 Insider Preview Build 22000.132 already.

Microsoft is requiring TPM 2.0. Where do you get PPI 1.3 is required by Microsoft?

Learning about Windows TPM technology below.

@restugavan can you share the bios with latest because i dont need to install again windows 10 to modify it thanks a lot

@PanosXidis24 Hi mate. Due my purpose to testing on Skylake X SKUs. The lastest modded BIOS was contain only SKYLAKE X Microcode.
If you use other model such as 99XX and 109XX. My lastest modded BIOS did not support these CPU series. 😎

R6E Modded BIOS with lastest microcode and module. Please use ASUS Flash back method to update.
Before try it please back up your important data. 😮

@PanosXidis24 Hi mate. Due my purpose to testing on Skylake X SKUs. The lastest modded BIOS was contain only SKYLAKE X Microcode.
If you use other model such as 99XX and 109XX. My lastest modded BIOS did not support these CPU series. 😎

R6E Modded BIOS with lastest microcode and module. Please use ASUS Flash back method to update.
Before try it please back up your important data. 😮

Thanks Mate again i mod your Bios to Oldest CPU microcode on mine 7900X and 7980XE for better perfomance thanks a lot

Learning about Windows TPM technology below.

That did not answer my question.

Microsoft is requiring TPM 2.0. Where do you get PPI 1.3 is required by Microsoft?

Hi,
Think we’d need to add the tpm chip to be compliant seeing we only have tpm 1.2 in bios I believe on x299 ?

I’m sure these requirements will be softened by full release time otherwise 11 will be short lived and as popular as win-8 was lol
Heck is x299 chips even listed only series I’ve seen is 10. x /no 99..x /no 79..x lol

That did not answer my question.

TPM 2.0 PPI Hardware Presence 1.3 was fundamental of TPM 2.0 support
the older version such as 1.2 and below did’t meet TPM 2.0 specification requirement.
For more info checking this link below
https://www.trustedcomputinggroup.org/wp-content/uploads/Physical-Presence-Interface_1-30_0-52.pdf

If you want to running Windows 11 and new software please make sure your system
meet Windows 11 minimum requirement.

If you use ASUS mobo that support Windows 11 Officially.
Do not worry at all. Enjoy and relaxing.

Learning about Windows TPM technology below.

I have the latest bios from asus 3501 https://rog.asus.com/motherboards/rog-rampage/rog-rampage-vi-extreme-omega-model/helpdesk_bios

tpm is enabled anything else need it ?

Enjoy with Windows 11 and new Office suite.

After update to RAMPAGE VI EXTREME BIOS 3501. Enter Advance Menu in BIOS select the lowest menu.
PCH-FW Configuration then select PTT mode instead of dTPM.
Second menu below select PTT Aware.
Hit F10 Save setting then exit.

Running great both 21H2 Insider Build (22000.176) and 22H1 Insider Build (22449.1000)

For more info checking this link below
https://www.trustedcomputinggroup.org/wp-content/uploads/Physical-Presence-Interface_1-30_0-52.pdf

If you want to running Windows 11 and new software please make sure your system
meet Windows 11 minimum requirement.

If you use ASUS mobo that support Windows 11 Officially.
Do not worry at all. Enjoy and relaxing.[/CENTER]

I have changed PPI from 1.3 to 1.2 in the TPM 2.0 section of my BIOS. It still passes checks for Windows 11 compatibility. PPI 1.3 is not required for Windows 11, only TPM 2.0 is.

The lastest BIOS from ASUS was fully Windows 11 support.

They have add Trust Computing Device awakening by default.
Select PPI 1.2 or 1.3 version also had been granted to running beta channel build.
Which one is better depending on users choice.

Microsoft Windows 11 22H1 Insider Preview Build 22449.1000
Microsoft Office Insider Preview Version 2109 Build 14503.20002
Microsoft EDGE Insider Preview Build 93.0.961.38
Running great on X299 platform

For my experience PPI 1.3 on my rig perform very well not only your Win11 beta build (22000.176)
The 22H1 build (22449.1000) also very good. Excellent:cool:

The lastest BIOS from ASUS was fully Windows 11 support.

They have add Trust Computing Device awakening by default.
Select PPI 1.2 or 1.3 version also had been granted to running beta channel build.
Which one is better depending on users choice.

Microsoft Windows 11 22H1 Insider Preview Build 22449.1000
Microsoft Office Insider Preview Version 2109 Build 14430.20030
Microsoft EDGE Insider Preview Build 93.0.961.38
Running great on X299 platform

For my experience PPI 1.3 on my rig perform very well not only your Win11 beta build (22000.176)
The 22H1 build (22449.1000) also very good. Excellent:cool:

so the latest bios 3501 from asus comes with TPM Physical Presence Spec Version 1.3 that required by Windows 11 enabled by default ?

p.s if it’s not enabled 1.3 by default in bios, for the moment we not using windows 11 waiting for the official update if I enable 1.3 on windows no side effects right ?

so the latest bios 3501 from asus comes with TPM Physical Presence Spec Version 1.3 that required by Windows 11 enabled by default ?

p.s if it’s not enabled 1.3 by default in bios, for the moment we not using windows 11 waiting for the official update if I enable 1.3 on windows no side effects right ?

No, Windows 11 doesn’t require Physical Presence 1.3, it only requires TPM 2.0. But if you enable 1.3 Physical presence, no side effects.

No, Windows 11 doesn’t require Physical Presence 1.3, it only requires TPM 2.0. But if you enable 1.3 Physical presence, no side effects.

I did checked 1.3 enabled by default in latest bios from asus 3501 .

I do understand you but it’s better to have the latest update to 1.3 there is some evidence from @ restsugavan

ROG RAMPAGE VI EXTREME CORE i9 7980XE MICROCODE 02006B06 Updating to New Microsoft Windows 11 build UNCUT. 😎

Hi,
Is it true you can’t turn off tpm in bios, it’s just on forever ?
z490 I can switch it on or off.

ASUS motherboards Windows 11 support BIOS had turn on TPM 2.0 by default.

No, Windows 11 doesn’t require Physical Presence 1.3, it only requires TPM 2.0. But if you enable 1.3 Physical presence, no side effects.
Dude, just leave the damn thing on version 1.3. Stop challenging us. Windows 11 doesn’t need it, but it allows a better TPM communication experience between the OS and the BIOS

In more technical terms:

The Physical Presence Interface utilizes the industry-standard Advanced Configuration and Power Interface (ACPI) to provide a communication mechanism between the OS and the BIOS, enabling the OS and the BIOS to cooperate to provide a simple and straightforward platform user experience for administering the TPM without sacrificing security.

ASUS motherboards Windows 11 support BIOS had turn on TPM 2.0 by default.

Hi,
That’s not what I asked obviously the bios update adds and enables it lol

I asked if there was a way to turn it off

And it appears that the answer is no you can not turn tpm off

Because asus did not add a tpm port on x299 boards "or at least not my apex" so yeah no way to switch tpm off or to the mother board port it does not exist.

But fun fact my x99 board has a tpm port so yeah asus and microsoft are really on the same page

BIOS: настройка режима расширенного конфигурирования и управления питанием ACPI

BIOS

Здравствуйте, уважаемые читатели блога Help начинающему пользователю компьютера. В данной статье мы рассмотрим опции БИОС для настройки режима расширенного конфигурирования и управления питанием ACPI .
В качестве ликбеза. Режим расширенного управления питания ACPI ( Advanced Configuration and Power Interface ) реализует управление энергосберегающими функциями ПК:

Технология PCI Express «в разрезе»: что, зачем и почему

Любая компьютерная технология проходит свой путь от рождения, триумфа к свалке истории. Все бы ничего, да каждое очередное нововведение, как правило, чревато серьезным перетряхиванием системных блоков и неопределенностью в умах пользователей – пора или еще подождать с апгрейдом? Тем более огромными кажутся все новшества, которые свалятся на головы покупателей в нынешнем году. Такого всестороннего разрушительного действия на основы платформы не было уже давно — сменятся процессорные разъемы (у Intel настанет время Socket 775, у AMD, соответственно, Socket 939); к концу года действительно новой будет называться система лишь с 240-контактными модулями DDR2; вдогонку ко всему этому близится появление новых форм-факторов самих плат – BTX. Но самым радикальным все же станет низвержение старых привычных элементов ландшафта системной платы – разъемов PCI и AGP, которым приходит время сказать последнее "прости-прощай".

Новое поколение технологий приносит новые скорости и новые технологические решения. Правда, на деле случалось не раз, что революционные нововведения оказывались не всегда своевременными и не такими уж полезными, как красиво заявлялось при их выпуске. Традиционно, отдуваться за эксперименты приходится конечному покупателю. Примеров самых передовых, но неоцененных или невостребованных технологий можно привести множество – шина EISA, память RDRAM, слоты AMR/CNR и многое другое.

Не касаясь тупиковых ветвей эволюции ПК, сегодня стоит поговорить о своевременности внедрения новых технологий на примере шины PCI Express. Сегодня можно с уверенностью сказать, что от перехода на этот шинный стандарт никуда не деться. Попробуем рассмотреть ключевые особенности новоявленной шины, ее сходства и отличия от распространенных сейчас PCI и AGP.

Прежде всего, не стоит рассматривать PCI Express как банального наследника традиций PCI. Консорциум разработчиков нового интерфейса, ранее носившего название 3GIO, ставил перед собой цель разработать новую высокоскоростную шину с максимальной масштабируемостью, простой разводкой, низким уровнем паразитных излучений и электромагнитных помех. Это лишь краткий перечень требований к новому интерфейсу, некоторые особенности его реализации в конкретных условиях, как, например, поддержка "горячего" подключения, требуются лишь в определенных специфических приложениях. Сначала —

Немного истории

Первые разработки шины PCI, стартовавшие в начале 90-х годов, были призваны избавиться от множества присутствовавших на тот момент несовместимых шинных интерфейсов – VLB (VESA Local Bus), EISA, ISA и Micro Channel. Наряду с этим преследовалась цель избавиться от тяжкого наследия фрагментированной шины ISA и впервые добиться соединений класса "чип-чип".

На момент появления в 1993 году базовой версии шины Peripheral Component Interconnect (PCI) — IEEE P1386.1, предусматривались революционные усовершенствования: расширение шины данных до 32 бит, поддержка адресации до 4 ГБ данных (32 бита), а также использование режима синхронного обмена данными. По тем временам тактовая частота шины 33 МГц удовлетворяла условиям работы с периферией в настольных и серверных системах, все были довольны. Последовавший за этим резкий скачок тактовых частот процессоров и памяти привел к увеличению тактовой частоты PCI до 66 МГц, хотя, тактовые частоты процессоров за этот же период скакнули с 33 МГц до 3,0+ ГГц. Все последующие варианты PCI – AGP, PCI-X, MiniPCI, CardBus, несмотря на привнесение определенных дополнений, например, иных форм-факторов разъемов, новых сигнальных уровней и даже передачи данных по фронтам импульса (Double Data Rate/ Quadruple Data Rate), тем не менее, несли в себе ограничения, накладываемые самой топологией интерфейса.

Возможности наращивания пропускной способности шины PCI за счет увеличения тактовой частоты без усложнения схем разводки и соответствующего адекватного удорожания к настоящему времени исчерпаны полностью. А ведь на очереди появились такие актуальные интерфейсы, как 1/10 Gigabit Ethernet, IEEE 1394B, которые полностью выбирают пропускную возможность шины одним устройством и даже выходят за эти рамки. PCI душит рост скорости периферии, критичными становятся ограничения по числу сигнальных контактов шины, торможение процессов реального времени и требования по энергосбережению современных ПК. Если вспомнить наиболее производительные версии шины PCI, например, серверную PCI-X и графическую AGP, то в этом случае мы упираемся в укорачивание проводников шины за счет высокой частоты, требование к установке своего контроллера на каждый слот и достаточно высокую стоимость ее реализации.

Грядет тотальное торжество последовательных шин

Итого, параллельные шины себя исчерпали, рано или поздно взоры разработчиков должны были обратиться в сторону последовательных. Так оно и есть, в результате чего практически все современные индустриальные интерфейсы к настоящему времени перебрались на такой принцип обмена данными. Взгляните на приведенную ниже таблицу: речь идет не только о сетевых интерфейсах, которым на роду написано быть последовательными; все остальные ключевые шины уже имеют последовательную природу.

Между прочим, внешние интерфейсы уже давно перебрались на последовательную топологию, и в самых своих свежих реализациях – USB 2.0, IEEE1394b, показывают скорости, которые немыслимы для параллельных соединений. С этой точки зрения шина PCI в наших компьютерах действительно, выглядит своеобразным анахронизмом.

Особенности PCI Express

Основой нового интерфейса, как известно, в общем случае будут являться дифференциальные сигнальные пары контактов, совершающие обмен данными по схеме "точка-точка". Благодаря новой топологии мы сразу получаем массу положительных моментов: удешевление конструкции, снижение габаритов, более простая разводка печатных дорожек с упрощенными требованиями к борьбе с паразитными излучениями, и, главное, возможность работы на гораздо более высоких частотах, с поддержкой "горячей" замены периферийных устройств. Уходит в прошлое такой важный для параллельного интерфейса параметр, как нужда в синхронизации сигнальных линий всей шины.

Архитектуру PCI Express можно рассматривать послойно, в сравнении с адресной моделью PCI. Конфигурация PCI Express является стандартной для устройств, определенных plug-and-play спецификациями PCI: программный уровень генерирует запросы чтения/записи, уровень транзакций транспортирует эти запросы к периферийным устройствам с помощью разделенного пакетного протокола. Для поддержания высокой производительности шины соединительный (link) уровень добавляет пакетам очередность и CRC; базовый физический уровень состоит из двойного симплексного канала, осуществляющего функции приемной и передающей пары. Таким образом, исходная скорость 2,5 Гб/с в каждом направлении позволяет говорить о создании дуплексного коммуникационного канала производительностью до 200 МБ/с, что в четыре раза превышает возможности классической шины PCI.

Рассматривая процессы, протекающие в шине на сигнальном уровне, нельзя не отметить уникальные плюсы PCI Express — значительное снижение затухания в линиях передачи и повышенная чувствительность приемной части интерфейса. Из чего напрашивается вывод о менее критичных требованиях к импедансу входных цепей, а также возможность увеличения длины разводки проводников шины — в нынешней версии стандарта PCI-E они лимитируются 12 дюймами для системных плат, 3,5 дюймами для контроллеров и 15 дюймами для межчиповых соединений. При этом не предъявляется никаких дополнительных требований к технологии разводки печатной платы: могут использоваться как обычные 4-слойные PCB толщиной 0,062 дюйма, так и варианты с шестью и более слоями.

Теоретически, требования, выдвигаемые стандартом PCI Express, с легкостью могут быть адаптированы для нужд устройств любого уровня – от мобильного телефона до сервера уровня предприятия, а также, в перспективе, могут быть переложены для применения других физических типов носителей. Именно такая гибкость и необходима для интерфейса, собирающегося прослужить стандартом ближайшее обозримое будущее.

Использование новых разъемов и других конструктивных возможностей, оговоренных спецификациями нового стандарта, позволяет говорить об увеличении энергопотребления конечных контроллеров до 75 Вт (при токе до 5,5 А)!

Такие мощные контроллеры потребуют дополнительных мер по отводу тепла из корпуса, зато отпадет нужда в подводке разъемов дополнительного питания, которые так характерны для нынешнего поколения видеокарт AGP 8x.

Системы питания компьютеров с поддержкой разных вариантов PCI Express отличаются от привычных нам спецификаций ATX12 и, скорее, схожи с требованиями, предъявляемыми к питанию серверных систем. Так, привычный 20-контактный разъем питания ATX удлиняется и в нем появляются четыре дополнительных контакта, как раз для усиления силовых шин +12 В, 5,0 В и +3,3 В. Соответственно, до 75 Вт повышаются ограничения на питание одного слота в BIOS. При этом нижняя граница мощности для блоков питания устанавливается на уровне примерно 300 Вт. Словом, хотя изменения в цепях питания и не носят такой радикальный характер, как при переходе с AT на ATX, с мыслью о неминуемом апгрейде БП придется свыкнуться.

Варианты PCI Express: их будет много

Версии PCI Express будут внедряться в зависимости от ставящихся перед интерфейсом задач и типом устройства. Например, серверы, где востребована максимальная пропускная способность, будут оборудованы максимальным количеством слотов PCI Express с максимальными показателям. В то же время, для нужд ноутбуков в большинстве случаев будет достаточно архитектуры PCI Express x1. Для настольных ПК и рабочих станций понадобится комбинация из различных вариантов реализации шины.

Совершенно новые требования выдвигаются к механическим показателям PCI Express. Для того, чтобы периферийные платы не имели возможности вывалиться из слота при вибрации или транспортировке, разработаны повышенные требования к защелкам и крепежу разъемов PCI Express.

Несмотря на то, что новый стандарт дает некую свободу конечным производителям при разработке крепежа, жестко оговоренными остаются следующие требования: энергопотребление – не более 75 Вт, вес – не более 350 граммов, высота – не более 115,15 мм.

Конечно, под такими монстрами прозрачно подразумеваются графические карты с интерфейсом PCI Express 16x; во всех других случаях требования к крепежу и другим характеристикам контроллеров значительно скромнее.

Особняком стоит реализация PCI Express для мобильных устройств в виде стандарта ExpressCard. Первыми поддержку модулей этого подстандарта получат ноутбуки и миниатюрные настольные ПК, хотя, уже известны случаи представления концепций серверных плат с разъемом ExpressCard. основное преимущество применения таких модулей — подключение периферии практически без нужды использования крепежного инструмента, а также инсталляции дополнительных драйверов. Технология ExpressCard заменит собой все устаревшие параллельные шины, в результате останутся только три современных интерфейса — PCI Express, USB 2.0 и FireWire.

В настоящее время разработано два форм-фактора модулей ExpressCard – ExpressCard/34 (ширина 34 мм) и ExpressCard/54 (ширина 54). Оба модуля имеют высоту 5 мм, как у стандарта PC Card Type II; длина модулей 75 мм, что на 10,6 мм меньше, чем у PC Card. При этом, модули ExpressCard/34 и ExpressCard/54 обладают одинаковым интерфейсом. Каждый слот под модули ExpressCard может обслуживать шину PCI Express x1.

Преимущества PCI Express

Сравнивая возможности господствовавшей многие годы параллельной шины PCI и архитектуру PCI Express, можно выделить пять наиболее значимых преимуществ последней:

• Высокая производительность – повышение пропускной способности версии x1 как минимум вдвое по сравнению с PCI, возможность линейного наращивания производительности путем линейного расширения шины. Помимо этого, PCI Express является реально дуплексной шиной.

• Упрощение разводки периферии – стандартизация там, где ранее использовались всевозможные варианты PCI — AGP, PCI-X и др.; снижение комплексных затрат на разработку и внедрение систем.

• Уровневая архитектура – основные затраты на развитие PCI Express в дальнейшем ложатся лишь на разработку соответствующей обвязки, можно экономить на возможности работы с прежним программным обеспечением.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *